
1

Constraint Propagation
(Where a better exploitation of the

constraints further reduces the
need to make decisions)

R&N: Chap. 5 + Chap. 24, p. 881-884

1

Constraint Propagation …

… is the process of determining how the
constraints and the possible values of one
variable affect the possible values of other
variables

It is an important form of “least-commitment”
reasoning

2

Forward checking is only on simple
form of constraint propagation

When a pair (X v) is added to assignment A do:
For each variable Y not in A do:

For every constraint C relating Y to variables in A do:
Remove all values from Y’s domain that do not satisfy C

3

n = number of variables
d = size of initial domains
s = maximum number of constraints
involving a given variable (s ≤ n-1)
Forward checking takes O(nsd) time

Forward Checking in Map Coloring

Empty set: the current assignment
{(WA R), (Q G), (V B)}

does not lead to a solution

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R RGB RGB RGB RGB RGB RGB
R GB G RGB RGB GB RGB
R B G RB B B RGB

4

Forward Checking in Map Coloring

T
WA

NT

SA

Q

NSW

V

Contradiction that forward
checking did not detect

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R RGB RGB RGB RGB RGB RGB
R GB G RGB RGB GB RGB
R B G RB B B RGB

5

Forward Checking in Map Coloring

T
WA

NT

SA

Q

NSW

V

Contradiction that forward
checking did not detect

Detecting this contradiction requires a more
powerful constraint propagation technique

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R RGB RGB RGB RGB RGB RGB
R GB G RGB RGB GB RGB
R B G RB B B RGB

p f p p g q

6

2

Constraint Propagation
for Binary Constraints

REMOVE-VALUES(X,Y)
1. removed false
2. For every value v in the domain of Y do

– If there is no value u in the domain of X such that
th t i t (X Y) i ti fi d ththe constraint on (X,Y) is satisfied then
a. Remove v from Y‘s domain
b. removed true

3. Return removed

7

Constraint Propagation
for Binary Constraints

AC3
1. Initialize queue Q with all variables (not yet instantiated)
2. While Q ≠ ∅ do

a. X Remove(Q)
b. For every (not yet instantiated) variable Y related to X

by a (binary) constraint do
– If REMOVE-VALUES(X,Y) then

i. If Y’s domain = ∅ then exit
ii. Insert(Y,Q)

8

Edge Labeling
We consider an image of a scene composed of
polyhedral objects such that each vertex is
the endpoint of exactly three edges

R&N: Chap. 24, pages 881-884 9

Edge Labeling
An “edge extractor” has accurately extracted
all the visible edges in the image. The problem is
to label each edge as convex (+), concave (-), or
occluding () such that the complete labeling is
physically possible

10

Concave
edgesOccluding

edges

Convex
edges

11

+

- -

+
+

+
+

The arrow is
oriented such
that the object
is on the right of
the occluding
edge

+

12

3

One Possible Edge Labeling

++
+

+

+

++

+

+

+

+

+

--

13

Junction Types

Fork
L

T

Y

14

Junction Label Sets

+ + --

-
- - + +

++ +
+

+

-
-

-
-

-+

(Waltz, 1975; Mackworth, 1977) 15

Edge Labeling as a CSP

A variable is associated with each
junction
The domain of a variable is the label set m f
associated with the junction type
Constraints: The values assigned to two
adjacent junctions must give the same
label to the joining edge

16

Q = (X1, X2, X3, ...)

X

X5

X3

AC3 Applied to Edge Labeling

X1
3

X8

X12

X2

X4

17

+
-

+- -
++

X

X5

Q = (X1, ...)
AC3 Applied to Edge Labeling

+ -

X1

18

4

+
-

+- -
++

X

X5

Q = (X1, ...)

+ -

X1

19

+
-

+- -
++

X5

Q = (X5, ...)

+ -
20

+

+

Q = (X5, ...)

X5

X3

+
+

+-
-
-

-
- -

3

21

+

+

Q = (X5, ...)

X5

X3

+
+

+-
-
-

-
- -

3

22

+

+

Q = (X3, ...)

X3

+
+

+-
-
-

-
- -

3

23

+

Q = (X3, ...)

X3

+

+
+

+

+

-
- - + +

++

3

X8

24

5

+

Q = (X3, ...)

X3

+

+
+

+

+

-
- - + +

++

3

X8

25

+

Q = (X8, ...)

+

+
+

+

+

-
- - + +

++

X8

26

+

+ + --

+

Q = (X8, ...)

+

- -
++

X12

X8

27

Complexity Analysis of AC3
n = number of variables
d = size of initial domains
s = maximum number of
constraints involving a
given variable (s ≤ n-1)

AC3
1. Initialize queue Q with all variables (not yet

instantiated)
2. While Q ≠ ∅ do

a. X Remove(Q)
b. For every (not yet instantiated) variable Y

related to X by a (binary) constraint do
If REMOVE VALUES(X Y) then given variable (s ≤ n 1)

Each variables is inserted
in Q up to d times
REMOVE-VALUES takes O(d2)
time
AC3 takes O(n×d×s×d2) =
O(n×s×d3) time
Usually more expensive
than forward checking

REMOVE-VALUES(X,Y)
1. removed false
2. For every value v in the domain of Y do

– If there is no value u in the domain of X such that
the constraint on (x,y) is satisfied then
a. Remove v from Y‘s domain
b. removed true

3. Return removed
28

– If REMOVE-VALUES(X,Y) then
i. If Y’s domain = ∅ then exit
ii. Insert(Y,Q)

Is AC3 all that we need?
No !!
AC3 can’t detect all contradictions among
binary constraints

X YX≠Y {1, 2}{1, 2}

Z

X≠Z Y≠Z

{1, 2}

29

Is AC3 all that we need?
No !!
AC3 can’t detect all contradictions among
binary constraints

X YX≠Y {1, 2}{1, 2}

Z

X≠Z Y≠Z

{1, 2}

REMOVE-VALUES(X,Y)
1. removed false
2. For every value v in the domain of Y do

– If there is no value u in the domain of X such
that the constraint on (X,Y) is satisfied then
a. Remove v from Y‘s domain
b. removed true

3. Return removed 30

6

Is AC3 all that we need?
No !!
AC3 can’t detect all contradictions among
binary constraints

X YX≠Y {1, 2}{1, 2}

Z

X≠Z Y≠Z

{1, 2}

REMOVE-VALUES(X,Y)
1. removed false
2. For every value v in the domain of Y do

– If there is no value u in the domain of X such
that the constraint on (X,Y) is satisfied then
a. Remove v from Y‘s domain
b. removed true

3. Return removed

REMOVE-VALUES(X,Y,Z)
1. removed false
2. For every value w in the domain of Z do

– If there is no pair (u,v) of values in the domains
of X and Y verifying the constraint on (X,Y) such
that the constraints on (X,Z) and (Y,Z) are
satisfied then
a. Remove w from Z‘s domain
b. removed true

3. Return removed
31

Is AC3 all that we need?
No !!
AC3 can’t detect all contradictions among
binary constraints

X YX≠Y {1, 2}{1, 2}

Not all constraints are binary

Z

X≠Z Y≠Z

{1, 2}

32

Tradeoff

Generalizing the constraint propagation algorithm
increases its time complexity

Tradeoff between time spent in
backtracking search and time spent in backtracking search and time spent in
constraint propagation

A good tradeoff when all or most constraints are
binary is often to combine backtracking with
forward checking and/or AC3 (with REMOVE-
VALUES for two variables)

33

Modified Backtracking
Algorithm with AC3

CSP-BACKTRACKING(A, var-domains)
1. If assignment A is complete then return A
2. Run AC3 and update var-domains accordingly
3. If a variable has an empty domain then return failure
4 X select a variable not in A4. X select a variable not in A
5. D select an ordering on the domain of X
6. For each value v in D do

a. Add (X v) to A
b. var-domains forward checking(var-domains, X, v, A)
c. If no variable has an empty domain then

(i) result CSP-BACKTRACKING(A, var-domains)
(ii) If result ≠ failure then return result

d. Remove (X v) from A
7. Return failure 34

A Complete Example:
4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

1) The modified backtracking algorithm starts by
calling AC3, which removes no value

35

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

2) The backtracking algorithm then selects a variable
and a value for this variable. No heuristic helps in this
selection. X1 and the value 1 are arbitrarily selected36

7

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

3) The algorithm performs forward checking, which
eliminates 2 values in each other variable’s domain

37

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

4) The algorithm calls AC3

38

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

X2 = 3 is
inc mp tibl

REMOVE-VALUES(X,Y)
1. removed false
2. For every value v in the domain of Y do

– If there is no value u in the domain of X such that
the constraint on (x,y) is satisfied then
a. Remove v from Y‘s domain
b. removed true

3. Return removed

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

4) The algorithm calls AC3, which eliminates 3 from the
domain of X2

incompatible
with any of the
remaining values
of X3

39

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

4) The algorithm calls AC3, which eliminates 3 from the
domain of X2, and 2 from the domain of X3

40

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

4) The algorithm calls AC3, which eliminates 3 from the
domain of X2, and 2 from the domain of X3, and 4
from the domain of X3

41

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

5) The domain of X3 is empty backtracking

42

8

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

6) The algorithm removes 1 from X1’s domain and assign
2 to X1

43

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

7) The algorithm performs forward checking

44

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

8) The algorithm calls AC3

45

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

8) The algorithm calls AC3, which reduces the domains
of X3 and X4 to a single value

46

Exploiting the Structure of CSP
If the constraint graph contains several
components, then solve one independent
CSP per component

T
WA

NT

SA

Q

NSW

V

47

Exploiting the Structure of CSP
If the constraint graph is a tree, then :
1. Order the variables from the

root to the leaves
(X1, X2, …, Xn)

2 For j = n n 1 2 call

X

Y Z2. For j = n, n-1, …, 2 call
REMOVE-VALUES(Xj, Xi)
where Xi is the parent of Xj

3. Assign any valid value to X1

4. For j = 2, …, n do
Assign any value to Xj
consistent with the value
assigned to its parent Xi

Y Z

U V

W

(X, Y, Z, U, V, W)

48

9

Exploiting the Structure of CSP

Whenever a variable is assigned a value
by the backtracking algorithm, propagate
this value and remove the variable from
th st i t hthe constraint graph

WA

NT

SA

Q

NSW

V

49

Exploiting the Structure of CSP

Whenever a variable is assigned a value
by the backtracking algorithm, propagate
this value and remove the variable from
th st i t h

WA

NT
Q

NSW

V

the constraint graph
If the graph becomes
a tree, then proceed
as shown in previous
slide

50

