Constraint Propagation

(Where a better exploitation of the constraints further reduces the need to make decisions)

R\&N: Chap. 5 + Chap. 24, p. 881-884

Forward checking is only on simple form of constraint propagation

When a pair $(X \leftarrow v)$ is added to assignment A do:
For each variable Y not in A do:
For every constraint C relating Y to variables in A do: Remove all values from V 's domain that do not satisfy C

- $n=$ number of variables
- $d=$ size of initial domains
- s = maximum number of constraints involving a given variable ($s \leq n-1$)
- Forward checking takes O (nsd) time

Constraint Propagation

... is the process of determining how the constraints and the possible values of one variable affect the possible values of other variables

It is an important form of "least-commitment" reasoning

Forward Checking in Map Coloring
Empty set: the current assignment $\{(W A \leftarrow R),(Q \leftarrow G),(V \leftarrow B)\}$ does not lead to a solution

$W A$	$N T$	Q	$N S W$	V	$S A$	T
$R G B$						
R	$\not \subset G B$	$R G B$	$R G B$	$R G B$	$\not \angle G B$	$R G B$
R	$\not \subset B$	G	$R \not \subset B$	$R G B$	$\not \angle B$	$R G B$
R	B	G	$R \not \subset$	B	$\not \subset$	$R G B$

Forward Checking in Map Coloring

Forward Checking in Map Coloring

$W A$	$N T$	Q	$A S W$	V	$S A$	T
$R G B$						
R	$R G B$	$R G B$	$R G B$	$R G B$	$\not \subset G B$	$R G B$
R	$B B$	G	$R \not \subset B$	$R G B$	$A B$	$R G B$
R	B	G	$R \not \subset$	B	$\not Z$	$R G B$

Constraint Propagation for Binary Constraints

REMOVE-VALUES (X, Y)

1. removed \leftarrow false
2. For every value v in the domain of y do

- If there is no value u in the domain of X such that the constraint on (X, Y) is satisfied then
a. Remove v from Y 's domain
b. removed \leftarrow true

3. Return removed

Constraint Propagation for Binary Constraints

AC3

1. Initialize queue Q with all variables (not yet instantiated)
2. While $Q \neq \varnothing$ do
a. $\quad X \leftarrow \operatorname{Remove}(Q)$
b. For every (not yet instantiated) variable Y related to X by a (binary) constraint do

- If REMOVE-VALUES (X, Y) then
i. If Y 's domain $=\varnothing$ then exit
ii. Insert (Y, Q)

Edge Labeling

We consider an image of a scene composed of polyhedral objects such that each vertex is the endpoint of exactly three edges

R\&N: Chap. 24, pages 881-884

Edge Labeling

An "edge extractor" has accurately extracted all the visible edges in the image. The problem is to label each edge as convex (+), concave (-), or

Edge Labeling as a CSP

- A variable is associated with each junction
- The domain of a variable is the label set associated with the junction type
- Constraints: The values assigned to two adjacent junctions must give the same label to the joining edge

AC3 Applied to Edge Labeling $Q=\left(X_{1}, X_{2}, X_{3}, \ldots\right)$

Complexity Analysis of AC3

- $n=$ number of variables AC3
$d=$ size of initial domains 1. Initalize queue Q with all variables (not y er
- $S=$ maximum number of \quad 2. $\begin{aligned} & \text { While } Q \neq \varnothing \text { do } \\ & \text { a. } \\ & \quad \times \& R \text { Remove(} Q \text {) }\end{aligned}$ $s=$ maximum number of constraints involving a given variable ($s \leq n-1$)
- Each variables is inserted in Q up to d times
- REMOVE-VALUES takes O(d²) time
- AC3 takes $O\left(n \times d \times s \times d^{2}\right)=$ $O\left(n \times s \times d^{3}\right)$ time

For every (not yet instantiated) variable y
related to X by a (binary) constraint dom If REMOVE-VALUES (X, Y) then
i. If y 's domain $=\varnothing$ then exit
ii. Insert (Y, Q)

- Usually more expensive than forward checking

1. removed \leftarrow false

- If there is no value u in the of $~ Y$ do x such that If there is no value u in the domain of
the constraint on (x, y) is satisfied then a. Remove v from y 's domain
b. removed \leftarrow tru

3. Return removed

Is AC3 all that we need?

- No !!
- AC3 can't detect all contradictions among binary constraints

Is AC3 all that we need?

- No !!
- AC3 can't detect all contradictions among binary constraints

Is AC3 all that we need?

- No !!
- AC3 can't detect all contradictions among binary constraints

REMOVE-VALUES $(X$, 1. removed \leftarrow false

1. removed \leftarrow false 2. For every value w in the domain of Z do
2. For every value v - If there is no pair (u, v) of values in the domains

If there is no of X and Y verifying the constraint on (X, Y) such that the cons \quad that the constraints on (X, Z) and (Y, Z) are that the const that the constraints on (X, Z) and (Y, Z) are
satisfied then satisfied then
a. Remove w from Z's domain b. removed $\quad \begin{aligned} & \text { a. Remove } w \text { from } Z \\ & \text { b. removed } \leftarrow \text { true }\end{aligned}$

Return removed
Return removed

Tradeoff

Generalizing the constraint propagation algorithm increases its time complexity
\rightarrow Tradeoff between time spent in backtracking search and time spent in constraint propagation
A good tradeoff when all or most constraints are binary is often to combine backtracking with forward checking and/or AC3 (with REMOVEVALUES for two variables)

A Complete Example: 4-Queens Problem

1) The modified backtracking algorithm starts by calling AC3, which removes no value

Is AC3 all that we need?

- No !!
- AC3 can't detect all contradictions among binary constraints

- Not all constraints are binary

Modified Backtracking Algorithm with AC3

CSP-BACKTRACKING(A, var-domains)

1. If assignment A is complete then return A
2. Run AC3 and update var-domains accordingly
3. If a variable has an empty domain then return failure
4. $X \leftarrow$ select a variable not in A
5. $D \leftarrow$ select an ordering on the domain of X
6. For each value v in D do
a. Add $(X \leftarrow v)$ to A
b. var-domains \leftarrow forward checking(var-domains, X, v, A)
c. If no variable has an empty domain then
(i) result \leftarrow CSP-BACKTRACKING(A, var-domains) (ii) If result \neq failure then return result
d. Remove $(X \leqslant v)$ from A
7. Return failure

4-Queens Problem

2) The backtracking algorithm then selects a variable and a value for this variable. No heuristic helps in this selection. X_{1} and the value 1 are arbitrarily selected ${ }^{6}$

Exploiting the Structure of CSP

Whenever a variable is assigned a value by the backtracking algorithm, propagate this value and remove the variable from the constraint graph

Exploiting the Structure of CSP

Whenever a variable is assigned a value by the backtracking algorithm, propagate this value and remove the variable from the constraint graph

If the graph becomes a tree, then proceed as shown in previous slide

