Constraint Propagation

(Where a better exploitation of the
constraints further reduces the
need to make decisions)

R&N: Chap. 5 + Chap. 24, p. 881-884

Constraint Propagation ...

.. is the process of determining how the
constraints and the possible values of one
variable affect the possible values of other
variables

It is an important form of "least-commitment”
reasoning

Forward checking is only on simple
form of constraint propagation

When a pair (X€V) is added to assignment A do:
For each variable ¥ not in A do:
For every constraint C relating Y to variables in A do:
Remove all values from ¥'s domain that do not satisfy C

= n=number of variables

= d = size of initial domains

= s = maximum number of constraints
involving a given variable (s < n-1)

= Forward checking takes O(nsd) time

Forward Checking in Map Coloring

Empty set: the current assignment
{(WA ¢R), (Q ¢«6), (V<B)}
does not lead to a solution

wA INT |Q NSW |V sAl [T
RGB |RGB [RGB [RGB [RGB [RGB [RGB
R HB [RGB [RGB |RGB KGR |RGB
V2 6 RZR [RGB |£B RGB

R B 6 RZ |8 V4 RGB

o

Forward Checking in Map Coloring

Contradiction that forward
checking did not detect

R6B [RGB |RcH [RGB
RGB [RGB |Kcp [RGB
RZB [RGB |A4B) [RGB
R [B Ve RGB

Forward Checking in Map Coloring

Contradiction that forward
checking did not detect
/ — A
Detecting this contradiction requires a more
powerful constraint propagation technique

wa [NT [Q@ [MSw [v sa [[T
ReB [R6B [Ree” [RGB [RGB |RGH [RGB
R Ko _4ReB [RGB [RGB |KGk [RGB
R £y |6 RZB [RGB |AB) [RGB
R B 6 RZ |8 Z |re

Constraint Propagation
for Binary Constraints
REMOVE-VALUES(X.Y)
1. removed < false
2. For every value v in the domain of ¥ do

- If there is no value u in the domain of X such that
the constraint on (X,Y) is satisfied then

a. Remove v from Y's domain
b. removed € true
3. Return removed

Constraint Propagation

for Binary Constraints
AC3
1. TInitialize queue Q with all variables (not yet instantiated)
2. While Q= @ do
a. X € Remove(Q)

b. For every (not yet instantiated) variable ¥ related to X
by a (binary) constraint do
- If REMOVE-VALUES(X,Y) then
i. If ¥Y's domain = & then exit
ii. Insert(Y,Q)

Edge Labeling

We consider an image of a scene composed of
polyhedral objects such that each vertex is
the endpoint of exactly three edges

R&N: Chap. 24, pages 881-884

Edge Labeling

An “edge extractor” has accurately extracted
all the visible edges in the image. The problem is
to label each edge as convex (+), concave (-), or
occluding (=) such that the complete labeling is
hysically possible

10

: -+ Concave
Occluding : . dges
edges :

.
e,
) "

(N

.
Y
.
)
.
.
.
.
.

The arrow is
oriented such

.. that the object
is on the right of
the occluding
edge

12

One Possible Edge Labeling

A P
e

13

Junction Types

Fork

14

Junction Label Sets
Ve Y Y Y
T4

(Waltz, 1975; Mackworth, 1977) 15

Edge Labeling as a CSP

= A variable is associated with each
junction

* The domain of a variable is the label set
associated with the junction type

= Constraints: The values assigned to two
adjacent junctions must give the same
label to the joining edge

16

AC3 Applied to Edge Labeling
Q= (Xy, Xz, X3,)

17

AC3 Applied to Edge Labeling

Q= (X, .) \J/}J@ /

/\ X,

18

Q= (X, ..)

Q= (Xs, ...)

Q= (Xs, ..)

Q= (Xs, ...)

Q= (X, ..)

Q= (X, ..)

Q= (X, ...)

26

Xy

27

Complexity Analysis of AC3

n = number of variables acs

Initialize queue Q with all variables (not yet

d = size of initial domains instantiated)
. 8 While Q # & do
s = maximum number of o X< Remove(@)
constraints invo|ving a b. For every (not yet instantiated) variable Y
. N related to X by a (binary) constraint do
given variable (s < n-1) - If REMOVE-VALUES(X,Y) then
Each variables is inserted i IfY's domain = & then exit

ii. Insert(Y,Q)

in Q up to d times

REMOVE-VALUES takes O(d?) [remove-vaLues(xy)

- If there is no value u in the domain of X such that
O(nxsxd?) time
b. removed € true

H 1. removed € false
time 2. For every value v in the domain of ¥ do
2\ —
AC3 takes O(n><d><s><d) - the constraint on (xy) is satisfied then
a. Remove v from ¥'s domain
Usually more expensive |5 gerum removes
than forward checking 28

Is AC3 all that we need?

* No !l
* AC3 can't detect all contradictions among
binary constraints

1.2}

29

Is AC3 all that we need?

= No !l
* AC3 can't detect all contradictions among
binary constraints

{1,2 X2Y {12

REMOVE-VALUES(X,Y)
1. removed < false
2. For every value v in the domain of ¥ do
- If there is no value u in the domain of X such
that the constraint on (X,Y) is satisfied then

a. Remove v from Y's domain
b. removed € true
3. Return removed 30

Is AC3 all that we need?
= No ll

= AC3 can't detect all contradictions among
binary constraints

L aQ——Hu.a

REMOVE-VALUES(X.,Y Z)

REMOVE-VALUES(X,Y 1. removed <« false
1. removed € false| 2. For every value w in the domain of Z do

2. For every value V| - If there is no pair (u,v) of values in the domains
- If there is no of X and Y verifying the constraint on (X,Y) such
that the consi that the constraints on (X,Z) and (Y,Z) are
satisfied then
a. Remove

a. Remove w from Z's domain
b. removed € true
Return removed

b. removed

3. Return removed 3 31

Is AC3 all that we need?
= No ll

* AC3 can't detect all contradictions among
binary constraints

= Not all constraints are binary

32

Tradeoff

Generalizing the constraint propagation algorithm
increases its time complexity

>Tradeoff between time spent in
backtracking search and time spent in
constraint propagation

A good fradeoff when all or most constraints are
binary is often to combine backtracking with
forward checking and/or AC3 (with REMOVE-
VALUES for two variables)

33

Modified Backtracking
Algorithm with AC3
CSP-BACKTRACKING(A, var-domains)

1. TIf assignment A is complete then return A
2. Run AC3 and update var-domains accordingly
3. If avariable has an empty domain then return failure
4. X € select a variable not in A
5. D € select an ordering on the domain of X
6. For each value v in D do
a. Add (X<v) to A
b. var-domains €« forward checking(var-domains, X, v, A)
c. If no variable has an empty domain then
(i) result < CSP-BACKTRACKING(A, var-domains)
(ii) If result # failure then return result
d. Remove (X<v) from A
7. Return failure ”

A Complete Example:
4-Queens Problem

X, | [%
1 2 3 4 {12,344} {1234}
1
2
3
4 X5 X,
{1,2,3,4} {1,2,3,4}

1) The modified backtracking algorithm starts by

calling AC3, which removes no value
35

4-Queens Problem

Xoo || X
1 2 3 4 {1,2,3,4} {1,234}
14
2
3
4 X, X,
1,2,3.4) (1,2,3.4)

2) The backtracking algorithm then selects a variable
and a value for this variable. No heuristic helps in this
selection. X; and the value 1 are arbitrarily selected®

4-Queens Problem

X X,
L2034 {1,2,3.4) {, .34
1Helel®
2l @
3 [)
4
L X, X,
(2, 4 (23.)

3) The algorithm performs forward checking, which
eliminates 2 values in each other variable's domain -

4-Queens Problem

REMOVE-VALUES(X).._ " - Queens Pr‘Ob l em

1 removed € false
2. For every value v in the domain of ¥'d6~~~-___
- If there is no value (in the domain of X such fhat-~.___
the constraint on (x.y) is satisfied then
a. Remove v from ¥'s domain

b. removed € frue e o X,
3. Return removed \
T o s (11234 (.34
1 X,=3is
! +. . . 4 inzcomp::ﬁble
2 ' 4 with any of the
S 4 remaining values
3 . Y of X3
4 ~ 7
® X X,
{2, 4 {23}

4) The algorithm calls AC3, which eliminates 3 from the
domain of X, w

X, X,
L2 s 4 {1,2,3,4) {, 34
14olee
2 @
3 []
4 e X, X,
{2 4 {231}
4) The algorithm calls AC3
38
4-Queens Problem
X4 X
L2034 (1234 (.. 8
14+oee
2 @
3 @0
! ® X3 X4
{24 23}

4) The algorithm calls AC3, which eliminates 3 from the

domain of X;, and 2 from the domain of X3 "

4-Queens Problem

X [X
1 2 3 4 (1234} .4

i4-ole®

2l 00

3| @@

] e x T x

.. 4 {231}

4) The algorithm calls AC3, which eliminates 3 from the
domain of X,, and 2 from the domain of X3, and 4
from the domain of X;

4-Queens Problem

Xy Xz
L2 03 4 (12,34} (. 48
14 oee
A))
3 | @@
4 [() X, | [x

...} (.23}
5) The domain of X; is empty > backtracking

42

4-Queens Problem

4-Queens Problem

Xl _ X2
1.2 3 4 {234} {4
1 @
24000
3 @
4
e X3 X4
{1, 3,1} {1, 3,4}

7) The algorithm performs forward checking

Xl XZ
1 2 3 4 {234 {1234}
1
s
3
4 X, | X,
{1,2,3,4} {1,2,3,4}
6) The algorithm removes 1 from X;'s domain and assign
2 to X,
43
4-Queens Problem
X X
123 4 (234 4
1 @
2o ee
3 @
4 L X, X,
{1, 3.} {1, 34}

8) The algorithm calls AC3

45

4-Queens Problem

X [x
1 2 3 4 (234 t 4

i [OHH®

:Hol®®

3| @@

4 HHele X, X,

{t. B .1} (.31

8) The algorithm calls AC3, which reduces the domains
of X3 and X, to a single value

46

Exploiting the Structure of CSP

If the constraint graph contains several
components, then solve one independent
CSP per component

47

Exploiting the Structure of CSP

If the constraint graph is a tree, then :

1. Order the variables from the
root to the leaves
> (X Xz, -y Xp)

2. Forj=n,n-1, .., 2 call
REMOVE-VALUES(X;, X;)
where X; is the parent of X;

3. Assign any valid value to X;

4. Forj=2,..,ndo
Assign any value to X;
consistent with the value
assigned o its parent X;

Exploiting the Structure of CSP

Whenever a variable is assigned a value
by the backtracking algorithm, propagate
this value and remove the variable from
the constraint graph

49

Exploiting the Structure of CSP

Whenever a variable is assigned a value
by the backtracking algorithm, propagate
this value and remove the variable from
the constraint graph

If the graph becomes
o] a tree, then proceed
nsw| as shown in previous
slide

50

