

Probabilistic Roadmaps (Sampling-Based Planning)

PRM planners work well in practice. Why?

- Why are they probabilistic?
- What does their success tell us?
- How important is the probabilistic sampling measure π?
- How important is the randomness of the sampling source?

23

Why is PRM planning probabilistic?

- A PRM planner ignores the exact shape of F. So, it acts like a robot building a map of an unknown environment with limited sensors
- The probabilistic sampling measure π reflects this uncertainty. The goal is to minimize the expected number of remaining iterations to connect s and g, whenever they lie in the same component of F

So ...

- PRM planning trades the cost of computing F exactly against the cost of dealing with uncertainty, by incrementally sampling milestones and connecting them in order to "learn" the connectivity of F
- This choice is beneficial only if a small roadmap has high probability to represent F well enough to answer planning queries correctly and such a small roadmap has high probability to be generated
- Under which conditions is this the case?

Probabilistic Completeness of PRM Planning

Theorem 1

Let F be $(\epsilon,\alpha,\beta)\text{-expansive, and }s$ and g be two configurations in the same component of F.

 $\tt BasicPRM(s,g,N)$ with uniform sampling returns a path between s and g with probability converging to 1 at an exponential rate as N increases

Theorem 2

For any $\varepsilon > 0$, any N > 0, and any g in (0,1], there exists α_0 and β_0 such that if F is not $(\varepsilon, \alpha, \beta)$ -expansive for $\alpha > \alpha_0$ and $\beta > \beta_0$, then there exists s and γ in the same component of F such that **BasicPRM**(s,g,N) fails to return a path with probability greater than γ .

Probabilistic Completeness of PRM Planning

Theorem 1

Let F be (s, , , , ,)-expansive, and s and g be two configurations in the same component of F.

 ${\tt BasicPRM}(s,g,N)$ with uniform sampling returns a path

En general, a PRM planner is unable to detect that no path exists

Theorem 2

For any $\varepsilon > 0$, any N > 0, and any g in (0,1], there exists α_0 and β_0 such that if F is not ($\varepsilon, \alpha, \beta$)-expansive for $\alpha > \alpha_0$ and $\beta > \beta_0$, then there exists s and γ in the same component of F such that BasicPRM(s,g,N) fails to return a path with probability greater than γ .

Key Topics for Future Lectures

Sampling/connection strategies

43

Fast collision checking