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Configuration Space of an 
Articulated Robot

Idea: Reduce the Robot to a Point
Configuration Space

Free space

Two-Revolute-Joint Robot

A configuration of a robot 
is a list of non-redundant 
parameters that fully 
specify the position and 

i t ti  f h f it  

q2

orientation of each of its 
bodies
In this robot, one possible 
choice is: (q1, q2)
The configuration space
(C-space) has 2 dimensions

q2

?
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Every robot maps to a point in 
its configuration space ...
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Every robot maps to a point in 
its configuration space ...

q1q0
12 D6 D

15 D ~40 D

q1

q3

q0

qn

q4
~65-120 D

... and every robot path is a 
curve in configuration space
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Issues!!

Dimensionality of configuration space
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Geometric complexity of free region

Plan in configuration space, 
but compute in workspace

Probabilistic Roadmaps 
(S li B d Pl i )
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(Sampling-Based Planning)

The cost of computing an exact 
representation of the configuration space 
of a multi-joint articulated object is 
often prohibitive.

But very fast algorithms exist that can 

Rationale of Probabilistic 
Roadmap (PRM) Planners
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But very fast algorithms exist that can 
check if an articulated object at a given 
configuration collides with obstacles.

A PRM planner computes an extremely 
simplified representation of F in the 
form of a network of “local” paths 
connecting configurations sampled at 
random in F according to some 
probability measure
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Probabilistic Roadmap (PRM)
feasible space

n-D space
forbidden space

g
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g

Probabilistic Roadmap (PRM)
Configurations are sampled by picking coordinates at random
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Probabilistic Roadmap (PRM)
Configurations are sampled by picking coordinates at random

g
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Probabilistic Roadmap (PRM)
Sampled configurations are tested for feasibility

g
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Probabilistic Roadmap (PRM)
Feasible configurations are retained as “milestones”

g
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g

Probabilistic Roadmap (PRM)
Each milestone is linked by straight paths to its nearest neighbors

g
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s

g
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Probabilistic Roadmap (PRM)
The feasible links are retained to form the PRM

g
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Probabilistic Roadmap (PRM)
The feasible links are retained to form the PRM

g
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g

Probabilistic Roadmap (PRM)
The PRM is built until s and g are connected 

g
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s

g Connection 

Sampling strategy

Procedure BasicPRM(s,g,N)
1. Initialize the roadmap R with two nodes, s and g
2. Repeat:

a. Sample a configuration q from C with probability measure π
b. If q ∈ F then add q as a new node of R
c. For some nodes v in R such that v ≠ q do

If th( ) F th  dd ( )    d  f Rstrategy
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This answer may occasionally be incorrect

If path(q,v) ∈ F then add (q,v) as a new edge of R
until s and g are in the same connected component of R or R 
contains N+2 nodes

3. If s and g are in the same connected component of R then
Return a path between them

4. Else
Return NoPath

PRM planners work well in 
practice. Why?

Why are they probabilistic?

What does their success tell us?
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How important is the probabilistic 
sampling measure π?

How important is the randomness 
of the sampling source?

Why is PRM planning 
probabilistic?

A PRM planner ignores the exact shape of F. 
So, it acts like a robot building a map of an 
unknown environment with limited sensors

Th  b bili ti  li   fl t  The probabilistic sampling measure π reflects 
this uncertainty. The goal is to minimize the 
expected number of remaining iterations to 
connect s and g, whenever they lie in the same 
component of F
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So ...
PRM planning trades the cost of computing F 
exactly against the cost of dealing with 
uncertainty, by incrementally sampling 
milestones and connecting them in order to 
“learn” the connectivity of F y

This choice is beneficial only if a small roadmap  
has high probability to represent F well enough 
to answer planning queries correctly and such a 
small roadmap has high probability to be 
generated

Under which conditions is this the case?

Monte Carlo Integration

f(x)

∫
2

1

x

x

I= f(x)dx

A = a × b
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xa

b
A = a × b

≈
#brownI ×A

#brown+#gray

x1 x2

Connectivity Issue
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Experiment

Two configurations q and q’ see each other if 
path(q,q’) ∈ F

Visibility in F

S1 S2

Connectivity Issue

30
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S1 S2S1 S2

Connectivity Issue
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Lookout of S1

F is expansive if each one of its subsets X has a “large” lookout

Expansiveness only depends on volumetric 
ratios
It is not directly related to the 
dimensionality of the configuration space

In 2-D the expansiveness of 
the free space can be made 
arbitrarily poor
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Which Ones are Most Difficult?
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Probabilistic Completeness of 
PRM Planning

Theorem 1
Let F be (ε,α,β)-expansive, and s and g be two configurations 
in the same component of F. 
BasicPRM(s,g,N) with uniform sampling returns a path 
between s and g with probability converging to 1 at an 
exponential rate as N increases exponential rate as N increases 

γ = Pr(Failure) ≤

Experimental convergence
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Intuition
If F is favorably expansive, then it is easy to capture its 
connectivity by a small network of sampled configurations

s g

Linking sequence

Probabilistic Completeness of 
PRM Planning

Theorem 1
Let F be (ε,α,β)-expansive, and s and g be two configurations 
in the same component of F. 
BasicPRM(s,g,N) with uniform sampling returns a path 
between s and g with probability converging to 1 at an 
exponential rate as N increasesexponential rate as N increases

Theorem 2
For any ε > 0, any N > 0, and any g in (0,1], there exists α0
and β0 such that if F is not (ε,α,β)-expansive for α > α0 and 
β > β0, then there exists s and γ in the same component of F 
such that BasicPRM(s,g,N) fails to return a path with 
probability greater than γ.
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Probabilistic Completeness of 
PRM Planning

Theorem 1
Let F be (ε,α,β)-expansive, and s and g be two configurations 
in the same component of F. 
BasicPRM(s,g,N) with uniform sampling returns a path 
between s and g with probability converging to 1 at an 
exponential rate as N increasesIn general, a PRM planner is unable to exponential rate as N increases

Theorem 2
For any ε > 0, any N > 0, and any g in (0,1], there exists α0
and β0 such that if F is not (ε,α,β)-expansive for α > α0 and 
β > β0, then there exists s and γ in the same component of F 
such that BasicPRM(s,g,N) fails to return a path with 
probability greater than γ.

g p
detect that no path exists 
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What does the empirical 
success of PRM planning tell us?

It tells us that F has often good visibility 
properties despite its overwhelming 
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p p p g
geometric complexity

In retrospect, 
is this property surprising?

Not really! 
Narrow passages are unstable 
features under small random 
perturbations of the 
robot/workspace geometryrobot/workspace geometry

Most narrow passages in F are 
intentional …

… but it is not easy 
to intentionally 
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y
create complex 
narrow passages in F

Alpha puzzle

Impact of Sampling Strategy
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s g

Gaussian
[Boor, Overmars, 

van der Stappen, 1999]
Connectivity expansion
[Kavraki, 1994]
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Key Topics for Future Lectures

Sampling/connection strategies
Fast collision checking

43


