

Experimental Methods

Protein Data Bank (PDB):

Repository of folded structures of **74,732** proteins (August 2011)

- X-ray crystallography (65,195 entries)
 - → high resolution, but one or few conformations
- NMR spectroscopy (9,014 entries)
 - → multiple conformations, but for small proteins
- Cryo-electron microscopy (373 entries)
 - → multiple conformations, but low resolution

Energy-Based Computer Simulation

- Molecular Dynamics simulation
- Monte Carlo simulation
- Others:
 - coarse-grained force fields,
 - multi-scale modeling,
 - replica exchange
 - normal mode analysis,
- elastic network models, ...
- Advantages: produce time-dependent information at atomic resolution
- Drawbacks: huge running times, enormous amount of data, delicate setup

8

Application of Robotics and Motion Planning Techniques

- Kinematic/Geometric models of proteins
 Develop algorithm-friendly models that
 directly encode dominant energy terms.
- Kino-Geometric Conformational Sampling Use these models to sample conformations and represent a protein's folded state by a cloud of points.
- Graph-Based Models of Protein Motion
 Transform a cloud representation into a
 probabilistic roadmap representing protein
 kinetics

Timescales of Protein Motion Bond/atomic Water dynamics Helix Fast correlated conf change Conf change

How can one access directly to relevant timescales?

 Simulating a protein over a nanosecond timescale is like simulating human locomotion over a tiny fraction of a footstep, or like trying to understand how to reach the Moon by jumping 1.5 feet in the air.

Kinematic Model #1: Collection of independent atoms

[Quick reminder: Kinematics studies the motion of objects without consideration of the forces that cause the motion.]

- Atoms can move independently, i.e., all constraints between atoms are eventually represented in a force field function
- A conformation is defined by 3×n parameters (the coordinates of the atom centers)
- All motion frequencies can be simulated

Advantages/Drawbacks of Linkage Model

- Fewer DOFs, hence smaller dimensionality of the conformational space
- Many force terms are directly encoded in representation, hence the model can't create motion that would violate these terms
- Most high-frequency motions are de facto filtered out

But:

 Generating kinematically valid conformations can be more difficult

Kino-Geometric Conformational Sampling

Computational challenges:

- Requires satisfying often antagonistic constraints: kinematic and volume exclusion constraints
- Folded conformations form a relatively tiny region of the conformational space. How to hit this region?

Kino-Geometric Conformational Sampling

- ROCK (Rigidity Optimized Conformational Kinetics) [Zavodsky et al., 2004]
- FRODA (Framework Rigidity Optimized Dynamic Algorithm) [Wells et al., 2005, Farrell et al., 2010]
- KGS (Kino-Geometric Sampling) [Yao et al. 2011]
- PEM (Protein Ensemble Method) [Shehu et al., 2006]

- Initialize conformation distribution Δ to
- 2. Iterate
- a. Pick q from Δ
- b. Deform q into new conformation q_{new}

Kino-Geometric Conformational Sampling

- ROCK (Rigidity Optimized Conformational Kinetics) [Zavodsky et al., 2004]
- FRODA (Framework Rigidity Optimized Dynamic Algorithm) (Wells et al., 2005, Farrell et al., 2010)
- KGS (Kino-Geometric Sampling) [Yao et al. 2011]
- PEM (Protein Ensemble Method) [Shehu et al., 2006]

- Initialize conformation distribution Δ to $\{q_{\rm oiven}\}$
- 2. Iterate
 - a. Pick q from Δ
 - b. Deform q into new conformation $q_{\rm new}$

Sampling - ROCK (Rigidity Optimized Conformational Kinetics) [Zavodsky et al., 2004] FRODA (Framework Rigidity Optimized Dynamic Algorithm) [Wells et al., 2005, Farrell et al., 2010]

Kino-Geometric Conformational

- KGS (Kino-Geometric Sampling) [Yao et al. 2011]
- 1. Select conformation q in Δ ROCK and FRODA: q is most recent conformation on Δ KGS: q is picked at random with probability inverse to sampling density
- 2. Select stable H-bonds in q ROCK and FRODA: select H-bonds with energy less than a thresholk KGS: uses a regression tree trained from Molecular Dynamics data
- Perform rigidity analysis in qROCK, FRODA, and KGS: transform kinematic constraints into distance constraints between atoms, run Pebble Game algorithm to identify all rigid groups of atoms
- 5. Check q_{new} for volume exclusion

Statistics for Two Proteins

atoms: 992 # rigid groups: 503 # cycles: 47

2LAO 84

atoms: 3649 # rigid groups: 1023 # cycles: 84

Kino-Geometric Conformational Sampling

- ROCK (Rigidity Optimized Conformational Kinetics) [Zavodsky et al., 2004]

- FRODA (Framework Rigidity Optimized Dynamic Algorithm) [Wells et al., 2005, Farrell et al., 2010] KGS (Kino-Geometric Sampling) [Yao et al. 2011]

- 1. Select conformation q in Δ ROCK and FRODA: q is most recent conformation on Δ KGS: q is picked at random with probability inverse to sampling density
- 2. Select stable H-bonds in qROCK and FRODA: select H-bonds with energy less than a threshold KGS: uses a regression tree trained from Molecular Dynamics data

Deform q into q_{sce}
 ROCK: Perturb dihedral angles and close cycles by minimizing to zero a measure of closure violation
 FRODA: Perturb dihedral angles in null space

5. Check q_{new} for volume exclusion

States are conformations Sampling distribution can be generated using kino-geometric methods, or by sub-sampling many short MD simulation trajectories, or by other methods [Apaydin et al., 2003] [Singhal et al., 2004]

