CS326A – Motion Planning – Spring 2002

HOMEWORK #1 – Due date: April 24

Staple your solution with the text of the homework.

Write your name here: _______________________

	Problem #
	Max grade
	Grade

	1
	20
	

	2
	20
	

	3
	20
	

	4
	20
	

	5
	20
	

	TOTAL
	100
	


Problem 1 (Configuration space of lines): 
(20 points)

1. Consider an infinite straight line L that can move freely in 3D space. We assume that the line has no distinguishable orientation from one end to the other. Hence, the configuration of L reached by rotating the line by  around a vector perpendicular to L is indistinguishable from the start configuration.

a. What is the number of dimensions of the configuration space C of L?

b. Propose two parameterizations of C (charts): one that makes use of angles, and another that does not make use of angles. 
c. For each parameterization, what is the minimal number of charts you need to construct an atlas (see slides of class 2 for the definition of a chart and an atlas).

2. Consider a straight-line segment S of finite length that can translate and rotate freely in 3D space. Like in Question 1, there is no mark distinguishing one endpoint of S from the other; hence, the two configurations of S obtained by permuting the two endpoints are indistinguishable.

What is the number of dimensions of the configuration space of S? How does that change the parameterization that you proposed in Question 1?

3. In this question we focus on the subspace R of the configuration space of the segment S that describes the possible orientations of S. To that purpose, we define the center-point P of S as the reference point of S and we arbitrarily fix the position of P in 3D space. (So, the segment can only rotate.)

A loop of S at fixed P is any continuous path of S that starts and ends at the same orientation of S. The null loop is a path of length 0 (the segment does not move at all).  It can be shown that R is simply connected if all loops are homotopic to a null loop, that is can be continuously deformed to the null loop. Otherwise R is multiply connected.

Make the following “experiment”. Rotate S by 2 around some vector v perpendicular to S at P (at the initial orientation of S). The path of this motion is obviously a loop (in fact, two consecutive loops). Now, break this rotation into two successive rotations of 1 each. The first rotation occurs around v1 = v and the second around v2 = v. Deform the loop continuously by continuously rotating v2 from v into –v.  [Here, understand that the rotation of v2 is not part of the motion of S. This rotation allows us to continuously deform the loop performed by S. Consider two distinct vectors v2. For each vector v2, the loop performed by S is a sequence of two loops. When v2 = v, these two loops are the same. When v2 ( v, they are different. For two vectors v2 that are very close to one another, the two loops performed by S are also very close. When v2 becomes -v, the total loop performed by S consists of two consecutive loops about two opposite vectors (one rotation of 1 around v, followed by another rotation of 1 around -v. Show that this total loop can be continuously shrunk to the null loop.]

From this experiment, can you conclude whether the initial rotation of 2 is homotopic to the null loop, or not? What about the loop formed by a single rotation of 1– is it homotopic to the null loop or not? From these results, can you say whether R is simply or multiply connected? 

Problem 2 (Convexity in workspace and C-space)):
(20 points)

Let A be a robot and B be a static obstacle in a 3-D workspace W. A is made of a single rigid body that can only translate. Its configuration is represented by (x,y,z), the coordinates of a reference point selected in A relative to the coordinate system of W. Both A (at any configuration) and B are convex subsets of W. Prove that the C-obstacle corresponding to B is a convex region of the C-space of A.

[Hint: Consider a set S ( Rn. S is convex if for any two points X and Y of S described by their n coordinates, the point X + (l-)Y (with 0 <  < 1) is in S.]

Problem 3 (Connectedness of a C-obstacle):

(20 points)

A robot A is modeled by an oriented line segment of length 2 that can move freely in the plane W. The configuration of A is described by (x,y,), where (x,y) are the coordinates of the center-point of A in the coordinate system of W and  ( [0,2) is the angle between the x-axis of this coordinate system and the oriented line segment representing A. Here, the orientation of the line segment allows us to distinguish between the configurations (x,y,) and (x,y,+).

The workspace contains a single obstacle B, a square centered at (0,2) whose sides have length 2.

1. Draw the C-obstacles corresponding to B when A is only allowed to translate at fixed orientations  = 0, /4, and /2. (Draw three C-obstacles, one for each orientation.)

2. Describe with a few itemized sentences how the C-obstacle corresponding to B looks like in the 3D C-space of A (that is, when A translates and rotates). In particular, is the C-obstacle connected (i.e., made of one single piece)? Does it contain holes? Is it convex? At which orientations its cross-section undergoes qualitative changes? Is there a repeating pattern along the orientation axis?

3. We now constrain the center-point of A to remain on the x-axis of the coordinate system of W. A translates and rotates with this constraint. What is the configuration space of A? Draw (approximately) the C-obstacle corresponding to B. Is it connected? How does this C-obstacle relate to the one described in Question 2?

Problem 4 (Representation of the configuration space of a robot arm):

(20 points)

Consider a planar robot arm A with two revolute joints. Let (1 and (2 be the two joint angles of A. 

1. What is the configuration space of A in each of the following cases?

[a] (1 and (2  take any value in (-(,+(), that is, the motion at each joint is not limited  by any mechanical stop.

[b] (1 and (2 take any value in [0,6(], that is, the motion at each joint is limited to 3 full rotations.

[c] (1 and (2 take any value in [0,2(], that is, the motion at each joint is limited to one full rotation.

[d] (1 and (2 take any value in [0,(], with ( < 2(, that is, none of the joints can perform a full rotation.

2. Suppose that workspace contains an obstacle B. How would you represent A’s configuration space in cases [a], [b], [c], and [d]?

Problem 5 (Relating distances in workspace and C-space):

(20 points)

Consider a planar robot arm with n sequential links and n revolute joints. Each link is a straight-line segment of length L; one endpoint of the link is called the link’s origin, the other the link’s extremity. The first joint is at the origin of the first link and is fixed in the workspace. The ith joint (i = 2, …, n) coincides with both the extremity of the (i-1)th link and the origin of the ith link. Figure 1 illustrates. 

A configuration q of the robot be represented by ((1,(2,…, (n), where (1, …, (n are the joint angles (their precise definition is not important here). The metric d in the robot’s configuration space is the L( metric defined as follows:

For any two configurations q = ((1,(2,…,(n) and q’ = ((1’,(2’,…,(n’) we have:

d(q,q’) = maxi = 1 to n|(i - (i’|.



[image: image1]
1. Let the robot move from an arbitrary configuration q = ((1,(2,…,(n) to another arbitrary configuration q’ = ((1’,(2’,…,(n’) along the straight-line segment joining q and q’ in the Cartesian space Rn (that is, all degrees of freedom are synchronized). 

Show that no point of the robot traces a path longer than  ( d(q,q’) for some positive constant . Give a value of  (that necessarily depends on the link’s length L and the number n of links, hence is robot-dependent).

2. Let DIST(q,B) be a function that returns the distance between the robot placed at configuration q and a workspace obstacle B (distance between the pair of closest points in the robot and B). Using the result of Question 1, express the radius  of the neighborhood 

N(q) = {q’ | d(q,q’) ( }

in which it is guaranteed that the robot can move freely without colliding with B. [Express  using  and DIST(q,B).]

3. Let q1 and q2 be two configurations of the robot. Propose an algorithm to check the straight-line segment joining q1 and q2 in Rn for collision. Can this algorithm be generalized to other robots? How? Can it be improved? How?

Figure 1: Planar robot arm with n = 6 links
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