CS326A – Motion Planning – Spring 2002

HOMEWORK #1 – Due date: April 24

SOLUTIONS

Staple your solution with the text of the homework.

Write your name here: _______________________

	Problem #
	Max grade
	Grade

	1
	20
	

	2
	20
	

	3
	20
	

	4
	20
	

	5
	20
	

	TOTAL
	100
	


We will use the following point distribution for grading:

1.1.a: 2     1.1.b: 3    1.1.c: 2    1.2: 7    1.3: 6

2: 20

3.1: 7    3.2: 7    3.3: 6

4.1: 10    4.2: 10

5.1: 7    5.2: 7    5.3: 6

Problem 1 (Configuration space of lines): 
(20 points)

1. Consider an infinite straight line L that can move freely in 3D space. We assume that the line has no distinguishable orientation from one end to the other. Hence, the configuration of L reached by rotating the line by  around a vector perpendicular to L is indistinguishable from the start configuration.

a. What is the number of dimensions of the configuration space C of L?
b. Propose two parameterizations of C (charts): one that makes use of angles, and another that does not make use of angles. 
c. For each parameterization, what is the minimal number of charts you need to construct an atlas (see slides of class 2 for the definition of a chart and an atlas).

Solutions:
a. 4
b. Place a coordinate system (x,y,z) in 3D space. Consider any plane in this space, e.g., z=0. Unless L is parallel to this plane, it intersects it at a single point (x,y). The configuration of L can be defined by 4 parameters: x, y, , and .  ( [0,) is the angle between the x-axis and the projection of L on z=0 and  ( (0,/2] is the angle between L and its projection on z=0. 
One can also define two parallel planes, e.g., z=0 and z=1, and define the configuration of L (if it’s not parallel to these planes) by 4 parameters (x1,y1,x2,y2), the coordinates (x1,y1) of the intersection with z=0 and the coordinates (x2,y2) of the intersection with z=1.

To deal with the configurations where L is parallel to z=constant we wil have to define multiple charts (see below).

c. To define any configuration of L using the first parameterization, we need 8 charts. First, we need three non-parallel planes, e.g., x=0, y=0, and z=0, so that L is not parallel to at least one of them. Then, for each plane we need two charts, each with a distinct definition of , to cover the passage from  to 0.  Each of the 8 charts corresponds to the choice of one plane and one definition of . 
One may reduce the above 8 charts to 4 as follows. We may use 2 charts (both with, say, z=0) to parameterize every configuration where L is not parallel to z=0. For the lines parallel to z=0 and not parallel to x=0, we can define an additional chart, with x=0. But then we only need one angle  ( (0,/2] to encode the orientation of L. Finally, we can parameterize the lines parallel to both x=0 and z=0, by the coordinates (x,z) of their intersections with y=0.
In general, it is preferable that charts “overlap” to ensure smooth transitions between them. For example, assume that we want to compute the tangent to a path. If this path crosses the boundary between two non-overlapping charts, the tangent is not defined at the crossing point. The 8-chart parameterization provides the needed overlaps, but the 4-chart parameterization doesn’t.

To define any configuration of L using the second type parameterization, we only need 3 charts, e.g., one built by using x=0 and x=1, the second using y=0 and y=1, and the third using z=0 and z=1.
2. Consider a straight-line segment S of finite length that can translate and rotate freely in 3D space. Like in Question 1, there is no mark distinguishing one endpoint of S from the other; hence, the two configurations of S obtained by permuting the two endpoints are indistinguishable.

What is the number of dimensions of the configuration space of S? How does that change the parameterization that you proposed in Question 1?

Solutions:

Now the C-space has 5 dimensions. For example, 4 parameters may be the coordinates of the two intersections of the infinite line supporting S with two parallel planes, e.g., z=0 and z=1. The 5th parameter would be the abscissa of the midpoint of S along this infinite line, with the origin taken at the intersection with z=0 and the positive abscissas being in the half-space z>0. Three charts are needed to handle all orientations of S.
As in Question 1, other parameterizations are possible by encoding the orientation of S with angles. 

3. In this question we focus on the subspace R of the configuration space of the segment S that describes the possible orientations of S. To that purpose, we define the center-point P of S as the reference point of S and we arbitrarily fix the position of P in 3D space. (So, the segment can only rotate.)

A loop of S at fixed P is any continuous path of S that starts and ends at the same orientation of S. The null loop is a path of length 0 (the segment does not move at all).  It can be shown that R is simply connected if all loops are homotopic to a null loop, that is can be continuously deformed to the null loop. Otherwise R is multiply connected.

Make the following “experiment”. Rotate S by 2 around some vector v perpendicular to S at P (at the initial orientation of S). The path of this motion is obviously a loop (in fact, two consecutive loops). Now, break this rotation into two successive rotations of 1 each. The first rotation occurs around v1 = v and the second around v2 = v. Deform the loop continuously by continuously rotating v2 from v into –v.  [Here, understand that the rotation of v2 is not part of the motion of S. This rotation allows us to continuously deform the loop performed by S. Consider two distinct vectors v2. For each vector v2, the loop performed by S is a sequence of two loops. When v2 = v, these two loops are the same. When v2 ( v, they are different. For two vectors v2 that are very close to one another, the two loops performed by S are also very close. When v2 becomes -v, the total loop performed by S consists of two consecutive loops about two opposite vectors (one rotation of 1 around v, followed by another rotation of 1 around -v. Show that this total loop can be continuously shrunk to the null loop.]

From this experiment, can you conclude whether the initial rotation of 2 is homotopic to the null loop, or not? What about the loop formed by a single rotation of 1– is it homotopic to the null loop or not? From these results, can you say whether R is simply or multiply connected? 

Solution:

I gave the solution in class. A loop formed by a rotation of 2 is homotopic to the null loop. A loop formed by a rotation of  is not homotopic to the null loop. Hence, R is multiply connected.

Problem 2 (Convexity in workspace and C-space)):
(20 points)

Let A be a robot and B be a static obstacle in a 3-D workspace W. A is made of a single rigid body that can only translate. Its configuration is represented by (x,y,z), the coordinates of a reference point selected in A relative to the coordinate system of W. Both A (at any configuration) and B are convex subsets of W. Prove that the C-obstacle corresponding to B is a convex region of the C-space of A.

[Hint: Consider a set S ( Rn. S is convex if for any two points X and Y of S described by their n coordinates, the point X + (l-)Y (with 0 <  < 1) is in S.]

Solution:

Let us define B as a set of points b represented by their coordinates in a coordinate system attached to W, and A as a set of points a represented by their coordinates in a coordinate system whose origin is at the reference point and whose axes are parallel to those of the system of W.
Consider a configuration q of A where it collides with B. Then there exists a point a of A that coincides with a point b of B, and hence we have q+a = b, or q = b-a. Reciprocally, consider a configuration q such that there exist a point a of A and a point b of B verifying q = b-a. Then, a and b coincide, hence A and B collide. Therefore, the obstacle B maps to the region CB = {q = b-a | a ( A, b ( B} in the C-space of A. This region is called the Minkowski difference of B and A.
Consider two arbitrary points q and q’ in CB. Let q = b-a and q’ = b’-a’. Any point q” on the line segment between q and q’ is of the form q” = q + (1-)q’, with comprised between 0 and 1. So, we have:

q” 
= 
b – a + (1-)b’ – (1-)a’


b + (1-)b’ – (a + (1-)a’)

Since both A and B are convex, a + (1-)a’ is a point (call it a”) of A and b + (1-)b’ is a point (call it b”) of B. Hence q” = b”-a”, and it is a point of CB. So CB is convex.
Problem 3 (Connectedness of a C-obstacle):

(20 points)

A robot A is modeled by an oriented line segment of length 4 that can move freely in the plane W. The configuration of A is described by (x,y,), where (x,y) are the coordinates of the center-point of A in the coordinate system of W and  ( [0,2) is the angle between the x-axis of this coordinate system and the oriented line segment representing A. Here, the orientation of the line segment allows us to distinguish between the configurations (x,y,) and (x,y,+).

The workspace contains a single obstacle B, a square centered at (0,2) whose sides have length 2.

1. Draw the C-obstacles corresponding to B when A is only allowed to translate at fixed orientations  = 0, /4, and /2. (Draw three C-obstacles, one for each orientation.)

Solution:

The C-obstacle in each case is shown below in thick dashed line.


[image: image1]
2. Describe with a few itemized sentences how the C-obstacle corresponding to B looks like in the 3D C-space of A (that is, when A translates and rotates). In particular, is the C-obstacle connected (i.e., made of one single piece)? Does it contain holes? Is it convex? At which orientations its cross-section undergoes qualitative changes? Is there a repeating pattern along the orientation axis?

Solution:

The C-obstacle is a connected region of the 3D C-space, without holes. It is not convex. The boundary of the C-obstacle consists of surface patches, with each patch generated by line segment (ruled surface). Each cross-section at constant  is a convex polygon. The cross-section undergoes qualitative changes at  = 0, /2, , and 3/2. The portion of the C-obstacle between 0 and  is the same as between  and 2.

3. We now constrain the center-point of A to remain on the x-axis of the coordinate system of W. A translates and rotates with this constraint. What is the configuration space of A? Draw (approximately) the C-obstacle corresponding to B. Is it connected? How does this C-obstacle relate to the one described in Question 2?

Solution:

The C-space is now two-dimensional and a configuration is (x,). The topology of the C-space is that of a cylinder. The C-obstacle is made of two connected components that are symmetrical relative to the x-axis (see figure below). This C-obstacle is the cross-section by the plane y=2 of the C-obstacle discussed at Question 2. That C-obstacle was not convex, which explains why the C-obstacle below is not made of a single connected piece.

[image: image2]
Problem 4 (Representation of the configuration space of a robot arm):

(20 points)

Consider a planar robot arm A with two revolute joints. Let (1 and (2 be the two joint angles of A. 

1. What is the configuration space of A in each of the following cases?

[a] (1 and (2  take any value in (-(,+(), that is, the motion at each joint is not limited  by any mechanical stop.

[b] (1 and (2 take any value in [0,6(], that is, the motion at each joint is limited to 3 full rotations.

[c] (1 and (2 take any value in [0,2(], that is, the motion at each joint is limited to one full rotation.

[d] (1 and (2 take any value in [0,(], with ( < 2(, that is, none of the joints can perform a full rotation.

Solutions:

[a] It is the square [0,2)([0,2), with the opposite sides identified (the topology is that of a torus, as seen in class).

[b] It is the square [0,6]([0,6].

[c] It is the square [0,2]([0,2].

[d] It is the square [0,]([0,].

2. Suppose that workspace contains an obstacle B. How would you represent A’s configuration space in cases [a], [b], [c], and [d]?

Solutions:

[a] As indicated above. There would be no duplication of the C-obstacle.
[b] We can use [0,6]([0,6], but the C-obstacle would be represented 9 times. 
[c] As indicated above.
[d] As indicated above.
Problem 5 (Relating distances in workspace and C-space):

(20 points)

Consider a planar robot arm with n sequential links and n revolute joints. Each link is a straight-line segment of length L; one endpoint of the link is called the link’s origin, the other the link’s extremity. The first joint is at the origin of the first link and is fixed in the workspace. The ith joint (i = 2, …, n) coincides with both the extremity of the (i-1)th link and the origin of the ith link. Figure 1 illustrates. 

A configuration q of the robot be represented by ((1,(2,…, (n), where (1, …, (n are the joint angles (their precise definition is not important here). The metric d in the robot’s configuration space is the L( metric defined as follows:

For any two configurations q = ((1,(2,…,(n) and q’ = ((1’,(2’,…,(n’) we have:

d(q,q’) = maxi = 1 to n|(i - (i’|.



[image: image3]
1. Let the robot move from an arbitrary configuration q = ((1,(2,…,(n) to another arbitrary configuration q’ = ((1’,(2’,…,(n’) along the straight-line segment joining q and q’ in the Cartesian space Rn (that is, all degrees of freedom are synchronized). 

Show that no point of the robot traces a path longer than  ( d(q,q’) for some positive constant . Give a value of  (that necessarily depends on the link’s length L and the number n of links, hence is robot-dependent).

Solution:

The longest curve that can be traced by a point of the robot is the one traced by the tip of the robot when the arm is fully extended. Let D(q,q’) be the distance traveled by this point when the robot moved from q to q’ along a straight line in C-space. We have: 

D(q,q’) 
( n(L(|1 – 1’| +(n-1)(L(|2 – 2’| + … + L(|n – n’|

( (n + n-1 + … + 1)(L(d(q,q’) = (1/2)(n(n+1)(L(d(q,q’).

So,  = n(n+1)(L/2.

2. Let DIST(q,B) be a function that returns the distance between the robot placed at configuration q and a workspace obstacle B (distance between the pair of closest points in the robot and B). Using the result of Question 1, express the radius  of the neighborhood 

N(q) = {q’ | d(q,q’) < }

in which it is guaranteed that the robot can move freely without colliding with B. [Express  using  and DIST(q,B).]

Solution:

The robot is guaranteed to move from q to q’ without colliding if D(q,q’) < DIST(q,B). Obviously, this condition is achieved whenever  ( d(q,q’) < DIST(q,B). So: 

 = DIST(q,B)/.
3. Let q1 and q2 be two configurations of the robot. Propose an algorithm to check the straight-line segment joining q1 and q2 in Rn for collision. Can this algorithm be generalized to other robots? How? Can it be improved? How?

Solution:

Let us use a collision-checking algorithm, like Quinlan’s, that computes the distance between a robot and the obstacles. So, a collision-checking operation performed by this algorithm at a configuration q of the robot will return the Euclidean distance DIST(q) between the robot and the closest obstacle. 

To check the connection between two milestones q1 and q2 for collision, we can proceed as follows:

1. If d(q1,q2) < [DIST(q1) + DIST(q2)]/ then return that the connection is collision-free

2. Else 

a. Compute DIST(q3) at the mid-point q3 between q1 and q2
b. If DIST(q3) = 0 then return that the connection is colliding

c. Else call the algorithm recursively for the two segments between q1 and q3, and between q3 and q2
This algorithm always terminates, but its running time is not upper-bounded in the worst-case. If along the connection between q1 and q2 the robot grazes an obstacle, then the algorithm may have to recurse many times before recognizing that the connection is collision-free. One way to avoid this problem is to consider any configuration q3 such that DIST(q3) <  as being in collision, where   is a small given threshold.
The above technique can be generalized to any robot for which there exists a finite , that is any robot that does not extend to infinity (this means to every robot!). However, a distinct  must be established for each new robot (this might be done automatically from the Jacobian matrix). One possible way to improve the technique would be to decompose the C-space into regions and compute a tighter  in each region. For instance, in the case of the robot of Figure 1, the two degrees of freedom that affect the most the largest displacement of a point on the robot are the 2nd and 3rd joints. We could tessellate the subspace (2,3) into cells and have a distinct  in each such cell.
Figure 1: Planar robot arm with n = 6 links
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