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Abstract

This paperpresents a novel randomizedmotion planner for robots that must achieve a
specified goal underkinematic and/or dynamicmotion constraints while avoiding collision
with moving obstacleswith known trajectories. The planner encodesthe motion constraints
ontherobot with acontrol system andsamplestherobot’sstate� timespaceby picking control
inputsat randomandintegratingits equationsof motion. Theresult is aprobabilistic roadmap
of sampledstate� time points, calledmilestones,connectedby shortadmissible trajectories.
Theplannerdoesnot precomputetheroadmap;instead, for eachplanningquery, it generatesa
new roadmapto connectan initi al anda goal state� time point. Thepaperpresentsa detailed
analysis of the planner’s convergencerate. It shows that, if the state� time spacesatisfies a
geometric property called expansiveness, thena slightly idealized version of our implemented
planner is guaranteed to find a trajectory whenoneexists,with probability quickly converging
to 1, asthenumberof of milestonesincreases.Our planner wastestedextensively not only in
simulatedenvironments,but alsoon a real robot. In thelatter case, a vision moduleestimates
obstaclemotionsjustbeforeplanning starts. Theplanneris thenallocatedasmall,fixedamount
of time to compute a trajectory. If a change in theexpectedmotionof theobstaclesis detected
while therobotexecutes theplannedtrajectory, theplannerrecomputesa trajectory on thefly.
Experimentsontherealrobot led to several extensionsof theplanner in orderto dealwith time
delays anduncertainties that areinherentto an integratedrobotic systeminteractingwith the
physical world.

1 Intr oduction

In its simplestform, motionplanningis apurelygeometricproblem:giventhegeometryof arobot
andstaticobstacles,computea collision-freepathof therobotbetweentwo givenconfigurations.
This formulationignoresseveral key aspectsof the physical world. In particular, robot motions
areoftensubjectto kinematicanddynamicconstraints(kinodynamic constraints[DXCR93]) that
cannotbe ignored. Unlike obstructionby obstacles,suchconstraintscannotbe representedas
forbiddenregionsin theconfigurationspace.Moreover, theenvironmentmaycontainmovingob-
stacles,requiring that computedpathsbe parametrizedby time to indicatewhenthe robot is to
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Figure1: Robottestbedconsistingof anair-cushionedrobotamongmoving obstacles.

achieve a particularstate. In this paper, we considermotion planningproblemswith both kin-
odynamicconstraintsandmoving obstacles,andproposean efficient algorithmfor this classof
problems.In practice,we alsoneedto considernumerousotherissues(e.g., uncertaintyaboutthe
environment),someof whichwill beexaminedhere.

Our work extendstheprobabilistic roadmap(PRM) framework originally developedfor plan-
ning collision-freegeometricpaths[Kav94, KŠLO96, Šve97]. A PRM plannersamplestherobot’s
configurationspaceat randomandretainsthe collision-freesamplesasmilestones. It thentries
to connectpairsof milestoneswith pathsof predefinedshape(typically straight-linesegments in
configurationspace)andretainsthecollision-freeconnectionsaslocal paths. Theresultis anundi-
rectedgraph,calledaprobabilistic roadmap, whosenodesarethemilestonesandtheedgesarethe
local paths.Multi-query PRM plannersprecomputethe roadmap(e.g., [K ŠLO96]), while single-
queryplannerscomputea new roadmapfor eachquery(e.g., [HLM97]). It hasbeenproventhat,
underreasonableassumptionsaboutthegeometryof the robot’s configurationspace,a relatively
smallnumberof milestonespickeduniformly at randomaresufficient to capturetheconnectivity
of theconfigurationspacewith highprobability [HLM97, KLMR95].

The plannerproposedin this paperrepresentskinodynamic constraintsby a control system,
which is a setof differentialequationsthatdescribesall thepossible localmotions of a robot.For
eachquery, theplannerbuildsanew roadmapin thecollision-freesubsetof therobot’sstate� time
space,whereastatetypically encodesboththeconfigurationandthevelocity of therobot.To sam-
ple a new milestone, it first selectsa control input at randomin thesetof admissible controlsand
thenintegratesthecontrolsystemwith this input over a shortdurationof time, from a previously
generatedmilestone. By construction, thelocal trajectorythusobtainedautomaticallysatisfiesthe
kinodynamic constraints.If thistrajectorydoesnotcollidewith theobstacles,its endpointis added
to the roadmapasa new milestone. This iterative incrementalprocedureproducesa tree-shaped
roadmaprootedat theinitial state� timepointandorientedalongthetimeaxis. It terminateswhen
a milestone falls in an “endgame”region from which it is known how to reachthe goal. This
endgameregion may be specificallydefinedfor a given robot. It may alsobe generatedby the
plannerby constructing asecondtreeof milestonesrootedat thegoalandintegratingtheequations
of motion backwardsin time.
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Our plannerexploits thesynergy of previously proposedideas(seeSection2). It makestwo
key contributions,onetheoreticalandoneexperimental:

� We provide an in-depthanalysisof the planner’s convergencerate. It shows that, if the
state� timespacesatisfiesageometricpropertycalledexpansiveness, thenundersuitableas-
sumptions,theprobabilitythattheplannerfails to find a trajectory, whenoneexists,quickly
goesto 0, asthenumberof milestonesincreases.Theexpansivenesspropertydefinedhere
generalizesa similar notion introducedin [HLM97] for holonomic robotsin staticenviron-
ments.Theproofof convergence,however, is differentfrom theonein [HLM97] . Theearlier
proofassumesthatlocalmotionsof therobotaretotally unconstrained.It alsocritically uses
thesymmetry of theconnectivity relationshipin configurationspace—ifa point � is reach-
ablefrom a point � , then � is alsoreachablefrom � . This symmetricrelationship no longer
holdswhentherobothasanasymmetriccontrolsystem(e.g., a car-like robotthatcanonly
move forward)or whenobstaclesaremoving. Currentlywe do not know how to estimatea
priori thedegreeof expansivenessfor agivenstate� timespace.Hence,ouranalysisis only
onesteptowardunderstandingtheconvergenceof randomizedmotion planners.However,
webelievethatexpansivenessis averyusefulconceptfor characterizingthespacesin which
randomizedplannersarelikely to work well (or not sowell). It mayalsohelpin designing
bettersamplingstrategies.

� We alsodescribesour experiencesin integrating the plannerinto a hardwarerobot testbed
(Figure1). In this integratedsystem,avisionmoduleestimatesobstaclemotionsjustbefore
planningstarts. The planneris thenallocateda small, fixed amountof time (a fraction of
a second)to computea trajectory. If a changein the expectedmotion of the obstaclesis
detectedwhile therobotexecutestheplannedtrajectory, theplannerrecomputesa trajectory
onthefly. Experimentsontherealrobotled to severalextensionsof theplannerto dealwith
time delaysanduncertaintiesthat are inherentto an integratedrobotic systeminteracting
with thephysicalworld. This is particularlyimportantbecausekinodynamic constraintsare
notoriously difficult tomodelaccurately. Evenmoredifficult is tobuild anaccuratemodelfor
predictingfutureobstaclemotion. Our experimentalwork demonstratesthata fastplanner
canreliably handledynamicenvironments, even with uncertaintyin the future motionsof
theobstacles.

Therestof thepaperis organizedasfollows. Section2 reviewspreviouswork. Section3 describes
theplanningalgorithm. Section4 developsthe theoreticalanalysisof theplanner’s convergence.
Sections5 through7 describeour experiments with the planneron a nonholonomic robot and
on a dynamically-constrainedrobot developedto investigatespaceroboticstasks. In simulation
(Sections5 and6), we verified that the plannercanreliably solve tricky problems. In the hard-
warerobottestbed(Section7), we verifiedthattheplannercanoperateeffectively despitevarious
uncontrollableuncertaintiesandtimedelays.

This papercombinesandextendsthe resultspreviously reportedin [HKLR00, KHLR00]. For
moredetails,see[Hsu00, Kin01].
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2 PreviousWork

2.1 Motion planning by random sampling

Sampling-basedmotionplanningis aclassicconceptin motionplanning(e.g., see[Don87]). Orig-
inally, theapproachwasproposedto bothavoid difficultiesencounteredin implementingcomplete
planners(e.g., floating-pointapproximations) andfacilitatethe incorporationof searchheuristics
(e.g., potentialfields).Samplesareorganizedinto regulargridsor hierarchicalones(e.g., quadtrees
in 2-D configurationspaces).Thesegrids provide an explicit representationof the robot’s free
spaceandhelpthesearchalgorithmto rememberthepoints alreadyvisited. Their size,however,
growsexponentially with thedimensionalityof theconfigurationspace,i.e., thenumberof degrees
of freedom(dofs)of therobot.Moreover, explicitly computingthegeometryof thefreesubsetof a
configurationspacewith dimension greaterthanfour or five turnsout to have a prohibitively high
cost.

Randomsampling—morespecifically, PRM methods—was introducedto solve (geometric)
path planningproblemsfor robotswith many dofs [ABD 	 98, BK00, BKL 	 97, BL91, BOvdS99,
HLM99, HST94,Hsu00, Kav94, KŠLO96, Kuf99, LH00, SLL01, Šve97]. The costly computation of
an explicit representationof the free spaceis replacedby a collision test on every randomly
picked sampleandconnectionbetweensamples.This, of course,canbe donewith regular and
hierarchicalgrids, too. More interestingly, randomsamplingprovidesan incrementalplanning
schemewhich doesnot artificially dependon thedimensionality of theconfigurationspace.The
analysisof the convergencerate of several PRM algorithms reveals the true value of random
sampling[Hsu00, HLM97, KKL 98, KLMR95, Šve97]: eachnew milestone addedto a probabilis-
tic roadmap
 refinesthe theconnectivity relationship capturedin 
 andreducestheprobability
thattheplannerfails to find a solution path,whenoneexists(seeSection2.3).

Variousapplicationsof randomizedplannersarereviewed in [Lat99], including robotics,de-
sign for manufacturingandservicing,graphicanimation of digital actors,surgical planning,and
predictionof molecularmotion.

Otherplanningapproaches(e.g., [Ahu94, HXCW98]) attemptto capturetheglobalconnectivity
of a robot’s freespaceby combiningexplorationandsearchin amannersimilar to graphsearchin
artificial intelligence.

2.2 Sampling strategies

ProposedPRM techniquesdiffer in their sampling strategies. An importantdistinction existsbe-
tweenmulti-querystrategies(e.g., [K ŠLO96]) andsingle-queryones(e.g., [HLM97]). A multi-query
plannerprecomputesa roadmapfor a given robot andworkspaceandthenusesthis roadmapto
processmultiple queries.In general,thequeryconfigurationsarenot known in advance.So the
samplingstrategy mustdistribute themilestonesover the entirefree space.In contrast,a single-
queryplannercomputesa new roadmapfor eachquery. Herethe goal is to find a collision-free
pathbetweenthe two queryconfigurationsby exploring aslittl e spaceaspossible. Multi-query
strategiesareappropriatewhenthecostof precomputing a roadmapcanbeamortizedovera large
numberof queries.Single-queryonesareappropriatewhenthenumberof queriesin agivenspace
is small. Intermediatestrategies,which precomputepartial roadmapsandcompletethemto pro-
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cessspecificqueries,havealsobeenproposed[BK00, SMA01]. Theplannerproposedin thispaper
followsthesingle-querysampling paradigm.

Single-querystrategiesoftenbuild anew roadmapfor eachqueryby growing treesof sampled
milestonesrootedat the initial and/orgoal configurations[AG99, HLM97, Hsu00, Kuf99, LK99],
but they differ in theway they samplethemilestonesthat form thenodesof the trees.Similar to
theplannerin [HLM97] , our algorithmselectsa milestone� in a treeto expandat random,with
probability inverseproportionalto the currentdensityof milestonesaround � (seeSection3.2).
A new milestoneis thenpickedby samplingtheneighborhood of � at random.This guarantees
that the roadmapeventually diffusesthroughthe component(s)of the free spacereachablefrom
thequeryconfigurationsandthatthemilestonedistribution over thesecomponentsconvergesto a
uniform one. This condition is neededfor theanalysisof theplanner’s convergencedevelopedin
Section4. An alternative is to first pick a configuration� in the configurationspaceat random,
select� to bethemilestone in thetreeclosestto � , andthenpick a new milestonealongthe line
connecting� to � [LK99]. This techniqueis slightly simplerto implement thanoursandworks
well whenthequeryadmitsa solution thatdoesnot requirelong detours.However, this sampling
strategy biasesthedistribution of milestonestowardthoseregionsin theconfigurationspacewith
large obstacles.This maybe undesirableandseverelyslow down the rateof convergenceof the
planner. Anotherpossibility is to grow thesearchtreeby pickingeachnew milestoneasfarawayas
possible from thecurrentmilestones[AG99]. Othertechniquesor refinementsof thesetechniques
areclearlypossible. Ourexperienceis that,althoughonemayimprove theperformanceof aPRM
planneronsomeexamplesby biaising thedistributionof milestones,asamplingstrategy thatyields
a uniform distribution of milestonesover the reachablefree spaceavoids pathological casesand
givesthebestresultson theaverage.

2.3 Probabilistic completeness

A completemotion planneris onethat returnsa solution whenever oneexists andindicatesthat
no suchpathexistsotherwise.However, aswasshown in [Rei79], pathplanning is PSPACE-hard,
which is strongindication that any completeplanneris likely to be exponential in the number
of dofs of a robot. Adding kinodynamic constraintsandmoving obstaclesfurther increasesthe
complexity of theproblem[DXCR93,RS85].

A plannerbasedon randomsamplingcannotbecomplete.However, a weaker notionof com-
pleteness,calledprobabilistic completeness,was introducedin [BL91]: a planneris probabilis-
tically completeif the probability that it returnsa correctanswergoesto 1 asthe runningtime
increases.Supposethata randomizedplannerreturnsa solution pathassoonasit findsone,and
indicatesthatnosuchpathexistsif it cannotfoundoneafteragivenamountof time. If theplanner
returnsapath,theanswermustbecorrect.If it reportsthatnopathexists,theanswermaybesome-
timeswrong.It hasbeenshown thattheprobability thattherandomizedpotential field plannerfails
to find a solution pathwhenoneexistsgoesto 0 astherunningtime increases,henceproving that
the planneris probabilistically (resolution)complete[BL91]. Several otherrandomizedplanners
havealsobeenprovento beprobabilistically complete[AG99, LK01, LL96, Šve97].

Probabilisticcompleteness, however, is a weakconcept,as it saysnothing abouta planner’s
rateof convergence.In orderto understandwhy PRM plannerswork well in practiceandidentify
thecaseswherethey maynot work well, we needto show that they have a fastconvergencerate.
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This requiresus to develop a characterizationof the complexity of the input geometrythat is
suitablefor randomsampling. This characterizationshouldnot dependon the dimensionality of
theconfigurationspacein anartificial way. After all, is it reallymoredifficult to sampleanempty� -dimensionalhypercubethanto sampleanemptysquare?Along theselines, it hasbeenshown
that,undersuitableassumptions,certainidealizedversionsof multi-queryPRMpathplannershave
a convergencerateexponential in the numberof sampledmilestones[HLM97, HLMK99, KKL 98,
KLMR95, Šve97, ŠO98].

More specifically, thenotionof 
 -goodnesswasintroducedto characterize thecomplexity of
a robot’s configurationspace[KLMR95, BKL 	 97]. If a spaceis 
 -good, thenwith somelimited
help from a completeplanner, a multi-queryPRM plannerthat samplesmilestonesuniformly at
randomfrom theconfigurationspaceconvergesat anexponentialratewith respectto thenumber
of sampledmilestones.The proof of this result relatesPRM methodsto the issueof visibility
setsstudiedin computational geometry, in particular, theart-gallery problem[O’R97]: eachmile-
stoneis regardedasa guardthatseesa subsetof therobot’s freespace,themilestone’s visibility
region [KLMR95] . This insight wasrecentlyexploitedto generatesmallerroadmaps[SLL01].

To remove theneedfor a completeplannerin theproof presentedin [BKL 	 97], expansiveness
wasintroducedasa morerefinedcharacterizationof the robot’s free space.While the computa-
tional complexity of a completeplanneris usuallyexpressedasa functionof thenumberof dofs
and the numberand the degreeof polynomials describingthe boundarysurfaceof a robot and
obstacles,therateof convergenceof aPRM planneris expressedasa functionof parametersmea-
suringthedegreeto which a robot’s freespaceis expansive. Importantly, theexpansivenessof a
free spacecapturesthe “narrow passage”issuestudiedin [HKL 	 98]. It revealsthe true narrow-
nessof a passageandis a bettermeasurethanthewidth of thepassageto capturethedifficulty of
samplingin amulti-dimensionalnarrow passage[HLM99] .

In this paper, we further generalizethe notion of expansivenessandextend it to state� time
space.Weprovethatif thestate� timespaceisexpansive, thenundersuitableassumptions,ournew
randomizedplannerfor kinodynamicplanningwith movingobstaclesis probabilistically complete
with aconvergencerateexponentialin thenumberof sampledmilestones.

2.4 Geometric complexity

Onetenetof thePRMapproachto motionplanningis thata fastalgorithm existsto checksampled
configurationsandconnectionsbetweenthemfor collision. Whenboththerobotandtheobstacles
havesimplegeometricshapes,which is thecaseof mostexamplesin thispaper, thisassumption is
clearlysatisfied.However, doesthis remaintruewhentherobotandtheobstaclesarecomplex 3D
objectsdescribedby 100,000trianglesor more?

During the pastdecade,a numberof efficient collision checkingand distancecomputation
algorithms have beendeveloped. The most popularonesare hierarchicaldecomposition algo-
rithms, which precomputea multi-level boundingapproximation of every object in an environ-
ment,usingprimitivevolumessuchasspheres,axis-alignedboundingboxes,or orientedbounding
boxes[CLMP95,GLM96, Hub96, KHM 	 98,KPLM98, Qui94]. Experimentsreportedin [SA01] indi-
catethatthePQPpackage[GLM96] teststwo objects,describedby 500,000triangleseach,in times
rangingbetween0.0001and0.0025seconds(onanIntel PentiumIII 1GHzprocessor),depending
on theactualdistancebetweenthetwo objects.
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The useof efficient collision checkers in PRM plannershasbeenreportedin [BK00, CL95,
HLM97, SA01,SLL01]. Theseplannersarecapableof efficiently andreliably processingplanning
querieswith geometricmodelscontaininghundredsof thousandsof triangles.

2.5 Moving obstacles

Whenobstaclesaremoving, theplannermustcomputea trajectoryparametrizedby time, instead
of simplyageometricpath.Thisproblemhasbeenprovento becomputationally difficult evenfor
robotswith few dofs[RS85].

A numberof heuristic algorithms(e.g., [FS96,Fuj95, KZ86]) havebeenproposed.Thetechnique
in [KZ86] is a two-stageapproach:in thefirst stage,it ignoresthemovingobstaclesandcomputes
acollision-freepathof therobotamongthestaticobstacles;in thesecondstage,it tunestherobot’s
velocityalongthis pathto avoid colliding with moving obstacles.Theresultingplanneris clearly
incomplete,but it oftengivesgoodresultswhenthenumberof moving obstaclesis smalland/or
the workspaceis not too cluttered. The plannerin [Fuj95] tries to reducethe incompletenessby
generatinga network of paths.Theplannerin [FS96] introducesthenotion of a velocity obstacle,
definedasthesetof velocitiesthatwill causetherobotto collidewith anobstacleat a futuretime.
Velocity obstaclesareusedto generatean initial feasibletrajectoriesfor therobot,which is later
optimized.Theplannercanhandleactuatorconstraintssuchasboundedacceleration.

Thenotionof a configuration� time spacewasintroducedin [ELP87] to coordinatethemotion
of multiple robots. It was later extendedin [Fra93] to that of a state� time space,wherea state
encodesa robot’s configurationandvelocity, to plan robot motions with both moving obstacles
andkinodynamicconstraints.

2.6 Kinematic and dynamic constraints

Kinodynamic motionplanningrefersto problemsin which the robot’s motion mustsatisfynon-
holonomic and/ordynamic constraints.

Planningfor nonholonomicrobotshasattractedconsiderableinterest(e.g., [BL89, Lau86, LCH89,
LJTM94, LM96, ŠO94,SŠLO97]). Oneapproach[Lau86, LJTM94] is to first generatea collision-
free path,ignoring the nonholonomic constraints,andthenbreakthis pathinto small piecesand
replacethem by admissible canonicalpaths(e.g., ReedsandSheppcurves [RS90]). An exten-
sion is to performsuccessive pathtransformationsof varioustypes[Fer98, SL98]. A relatedap-
proach[SŠLO97,ŠO94]usesa multi-queryPRM algorithmthatconnectsmilestonesby canonical
pathsegmentssuchasReedsandSheppcurves.All thesemethodsrequiretherobotsto belocally
controllable[BL93, HK77, LCH89,LM96]. An alternativeapproach,introducedin [BL89, BL93], is
to generatea treeof sampledconfigurationsrootedat theinitial configuration.At eachiteration,a
sampleis selectedfrom thetreeandexpandedto producenew samples,by integratingtherobot’s
equationsof motionover a shortdurationof time with deterministically pickedcontrols.A space
partitioningschemeregulatesthedensityof samplesin any regionof theconfigurationspace.This
approachworkswell for car-like robotsandtractor-trailor robotswith two to four dofsandis ap-
plicableto robotsthatarenot locally controllable. Our new plannertakesa similar approach,but
pickscontrolsat random.Neithertheplannernor theanalysisof its convergenceraterequiresthe
robot to be locally controllable. Comparedto theplannerin [BL93] andtheplannerpresentedin
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this paper, thetwo-stepapproachof [Lau86, LJTM94] hastheadvantagethat it canreachthegoal
configurationexactly, which eliminatestheneedto defineanendgameregion, but it is applicable
only to locally controllablerobots.

Algorithms for dealingwith dynamicconstraintsarecomparableto thosedevelopedfor non-
holonomic constraints. In [BDG85, SD91], a collision-freepath is first computed,ignoring the
dynamicconstraints; avariational techniquethendeformsthispathinto a trajectorythatbothcon-
formsto thedynamicconstraintsandoptimizesacriterionsuchasminimal executiontime. These
methodswork well onmany practicalexamples;however, noformalguaranteeof performancehas
beenestablishedfor them. In fact, it is not alwayspossible to transformthepathgeneratedin the
first phaseinto an admissible trajectory, dueto limits on the actuatorforcesor torques.The ap-
proachin [DXCR93] placesaregulargrid over therobot’sstatespaceanddirectlysearchesthegrid
for anadmissible trajectoryusingdynamicprogramming. It offersprovable performanceguaran-
tees(resolution completenessandan asymptotic boundon the computation time), but it is only
applicableto robotswith few dofs(typically, two or three),asthesizeof thegrid grows exponen-
tially with the numberof dofs. The plannerin [Fra93] usesa similar approachin the state� time
spaceof the robot and dealswith moving obstaclesas well. Both our plannerand the one in
[Kuf99, LK99, LK01] have many similaritieswith the approachtaken in [BL93, DXCR93, Fra93].
Our plannerdiscretizesthe state� time spacevia randomsampling,insteadof placinga regular
grid over it. This makesit possible to dealwith robotswith many moredofs. On theotherhand,
our plannerdoesnot achieve resolutioncompletenessas the one in [DXCR93]. Instead,under
suitableassumptions,it achievesprobabilistic completenesswith anexponential convergencerate
(Section4).

The representationand the algorithm usedin our plannerbuild uponseveral existing ideas,
in particular: single-queryrandomsamplingof configurationspace[HLM97] , state� time space
formulation[BL93, DXCR93,ELP86,Fra93], andrepresentationof kinodynamic constraintswith a
controlsystem[BL93, DXCR93, Fra93]. Themostsalientcontributionsof thiswork arethegeneral-
izationof expansivenessto state� timespace,thetheoreticalanalysisof theplanner’sconvergence
rate,andtheintegrationandexperimentsof theplannerona realrobot.

3 Planning framework

Ouralgorithmbuildsaprobabilistic roadmapin thecollision-freesubset� of thestate� timespace
of therobot.Theroadmapis computedin theconnectedcomponentof � thatcontainstherobot’s
initial state� time point.

3.1 State-spaceformulation

Motion constraintsWeconsidera robotwhosemotion is governedby anequationof theform

������������������ (1)

where � �"! is therobot’s state,
�� is its derivative relative to time,and �"�$# is thecontrolinput.

Thesets! and # aretherobot’sstatespaceandcontrol space, respectively. Weassumethat ! and
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Figure2: A simple modelof acar-like robot.

# areboundedmanifoldsof dimensions � and � with �-, � . By definingappropriatecharts,we
cantreat ! and # assubsetsof R. andR/ .

Eq. (1) can representboth nonholonomic and dynamic constraints. The motion of a non-
holonomic robot is constrainedby 0 independent,non-integrablescalarequationsof the form132 � � � �� �4�65 , 7 � 89��:;�=<><=<?� 0 , where � and

�� denotethe robot’s configurationandvelocity, re-
spectively. Define the robot’s stateto be �$� � . It is shown in [BL93] that, underappropriate
conditions, the constraints

1�2 �@�9� ��A�B�C5D� 7 �E89��:;�><=<=<F� 0 areequivalent to Eq. (1) in which � is a
vectorin R/ � R.HGJI . In particular, Eq. (1) canberewrittenas 0 ���LK � independentequations
of the form

132 ���9� ��M� �N5 . Dynamicconstraintsarecloselyrelatedto nonholonomic constraints.
In Lagrangianmechanics,dynamicsequationsareof the form 
 2 � � � �� �DO� �P�-5 , where � , �� , andO� aretherobot’s configuration,velocity, andacceleration,respectively. Definingtherobot’s state
as �L�Q� � � �� � , we canrewrite the dynamicsequationsin the form

1R2 ���9� ��A�S�T5 , which, asin the
nonholonomic case,is equivalentto Eq.(1).

Robotmotionsmayalsobeconstrainedby inequalitiesof theforms
1U2 � � � �� � , 5 and 
 2 � � � �� �;O� � ,5 . These-constraintsrestrictthesetsof admissible statesandcontrolsto subsetsof R . andR/ .

ExamplesThesenotionsareillustratedbelow with two examplesthatwill alsobeusefullater in
thepaper:

Nonholonomic car navigation. Considerthecarexamplein Figure2. Let �WVX��YZ� bethepositionof
the midpoint [ betweenthe rearwheelsof the robot and \ be the orientationof the rearwheels
with respectto the V -axis.Definethecar’sstateto be �WVX�]Y^� \ �U� R_ . Thenonholonomicconstraint`baHc \ � �YDd �V is equivalentto thesystem

�V � egf>h9i \�Y � egi�j c \�\ � �We;dlkm� `balcon <
Thisreformulationcorrespondstodefiningthecar’sstatetobeitsconfiguration�WVX��Yp� \ � andchoos-
ing thecontrol input to bethevector �qer� n � , where e and

n
arethecar’s speedandsteeringangle.
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Boundson �sVX�]Y^� \ � and �qer� n � canbeusedto restrict ! and # to subsetsof R _ andRt , respectively.
For instance,if themaximumspeedof thecaris 1, thenwehave u e uv, 8 .
Point-massrobot with dynamics. For a point-massrobot w moving on a horizontalplane,we
typically want to control the forcesappliedto w . This leadsus to definethe stateof w as �x��WVX��Yp�]eMy9��e{z>� , where �sVX�]YD� and �qeMy��]eMz>� aretheposition andthevelocity of w . Thecontrol inputs
arechosento betheforcesappliedto w in the V - and Y -direction. Hencetheequationsof motion
are �V � eMy �eMy � �ryAd ��Y � eMz �e{z � �rz>d � � (2)

where� is themassof w and �W�^y9���rz>� is theappliedforce.Thevelocity �qely9�]e{z=� andforce �q�|yl�]�|z>�
arerestrictedto subsetsof Rt dueto limits on themaximumvelocityandforce.

Planning query Let !U} denotethe state� time space! ��~ 5;������� . Obstaclesin the robot’s
workspacearemappedinto this spaceasforbiddenregions.The freespace�-� !�} is thesetof
all collision-freepoints ���9����� . A collision-freetrajectory ��� ��� ~ �>�F��� t

���� � �W���o�C���J�s���F������� � is
admissible if it is inducedby a function � �M~ �=���b� t

�p� # throughEq.(1).
A planningqueryis specifiedby an initial state� time �@�9�]������� anda goal state� time ���M�M�����?� .

A solution to thequeryis eithera function � �M~ ��������� ��� # that inducesa collision-freetrajectory
��� �L� ~ ���]����� ���� � �s�������@�v�W����������� � , suchthat �J�s�������Q�=� , �v�W���?���Q�>� , or an indicationthat
no admissible trajectoryexistsbetween�@�H�]������� and �@�>�M�����?� . This formulationcanbeextendedto
allow ��� to beany instantin somegiven time interval, or to betheearliestpossiblearrival time.

In thefollowing, weconsiderpiecewise-constantfunctions���W��� only.

3.2 The planning algorithm

Ourplanningalgorithmis anextensionof thealgorithmpresentedin [HLM97] . It iteratively builds
a tree-shapedroadmap� rootedat � �L� ���=�b������� . At eachiteration, it first picks at randoma
milestone �@�9����� from � , a time ��� with ��� , ��� , and a control function � �A~ ������� ��� # . It then
computesthe trajectoryinducedby � by integrating Eq. (1) from �@�9����� . If this trajectorylies in
� , its endpoint �@�M� �����¡� is addedto � asa new milestone;a directededgeis createdfrom �@�9����� to�@� � ��� � � , and � is storedwith this edge. The kinodynamic constraintsare thusnaturallyenforced
in all trajectoriesrepresentedin � . The plannerexits with successwhen the newly generated
milestonefalls in an“endgame”region thatcontains�@�H�M�����?� .
Milestone selectionThe plannerassignsa weight ¢ � � � to eachmilestone � in � . The weight
of � is thenumberof othermilestoneslying in theneighborhoodof � . So ¢ � � � indicateshow
denselythe neighborhoodof � hasalreadybeensampled.At eachiteration, the plannerpicks
an existing milestone � in � at randomwith probability £�¤ � � � inverselyproportionalto ¢ � � � .
Hence,a milestonelying in a sparselysampledregion hasa greaterchanceof beingselectedthan
a milestonelying in analreadydenselysampledregion. This techniqueavoidsoversampling any
particularregionof � .

Control selectionLet ¥§¦ be the set of all piecewise-constant control functionswith at most ¨
constantpieces. So every �©� ¥�¦ admitsa finite partition ��ª¬«N�]�­«®<=<><�«E� ¦ suchthat �§�s���
is a constant̄

2 �°# over the time interval �W� 2 G �����
2 � , for 7 � 89��:;�><=<=<F� ¨ . We also require � 2 K
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� 2 G � ,®±�²X³@´ , where ±�²X³@´ is a constant. Our algorithmpicks a control �µ� ¥U¦ , for somepre-
specified̈ and ±F²X³@´ , by sampling eachconstantpieceof � independently. For eachpiece, ¯ 2 and
± 2 �¶� 2 K·� 2 G � areselecteduniformly at randomfrom # and ~ 5D� ±>²X³@´ � , respectively. The specific
choicesof theparameters̈ and ±F²X³@´ will bediscussedin Section4.5. In theactualimplementation
of thealgorithm, however, onemaychosë �¸8 , becauseany trajectorypassingthroughseveral
consecutivemilestonesin thetree � is obtainedby applyingasequenceof constantcontrols.

EndgameconnectionUnlike someotherplanningtechniques(e.g., [Lau86, LJTM94]), theabove
“control-driven” samplingtechniquedoesnot allow usto reachthegoal ���9�M�����?� exactly. We need
to “expand” the goal into an endgameregion that the samplingalgorithmwill eventually attain
with highprobability. Thereareseveralwaysof creatingsucha region:
� In [BL93], theendgameregionis definedto beaball of smallradiuscenteredatthegoal.Any

point in thisball is consideredto beasufficiently goodapproximation of thespecifiedgoal.
This techniqueis practicalonly in spacesof small dimensionality, as the relative volume
of a ball of small fixed radiusgoestoward 0 as the dimensionality increases.We could
neverthelessadaptthis techniqueby settingtheparameter±M²X³@´ proportionalto thedistance
betweenthe milestone picked from � andthe goal, allowing the densityof milestonesto
increasein thegoal’svicinity, andterminating with successwhentheplannersamplesanew
milestonecloseenoughto thegoal.

� For somerobots,it is possible to analyticallycomputeoneor severalcanonicalcontrolfunc-
tionsthatexactly connecttwo given pointswhile obeying thekinodynamicconstraints.An
exampleis theReedsandSheppcurves[RS90]developedfor nonholonomiccar-like robots.
If suchcontrol functionsareavailable,onecantestif a milestone � belongsto theengame
regionby checkingwhetheracanonicalcontrolfunctiongeneratesacollision-freetrajectory
from � to �@�=�M�����?� .

� A moregeneralmethodis to build a secondarytree � � of milestonesfrom the goal in the
samewayasthatfor theprimarytree � , exceptthatEq.(1) is integratedbackwardsin time.
Let ���=� �����¹� beanew milestoneobtainedby integratingbackwardsfrom anexistingmilestone��������� in � � . By construction,if thetime goesforward,thecontrol functiondrivestherobot
from state� � at time � � to state� at time � (Figure3). Thusthereis a known trajectoryfrom
every milestone in � � to the goal. The sampling processterminateswith successwhena
milestone � � � is in theneighborhoodof a milestone � � � � � . In this case,theendgame
regionis theunionof theneighborhoodsof milestonesin � � . To generatethefinal trajectory,
we simply follow theappropriateedgesof � and � � ; however, thereis a smallgapbetween
� and � � . Thegapcanoftenbedealtwith in practice.For example,beyond � , onecanuse
a PD controllerto trackthetrajectoryextractedfrom � � . Constructingendgame regionsby
backwardintegrationis averygeneraltechniqueandcanbeappliedto any systemdescribed
by (1).

In Sections5–7, we will presentimplementationsof the planner, using the last two techniques
describedabove.

Endgameregion canalsobe usedwhenthe goal doesnot have a uniqueconfiguration. For
example,in [AG99], the goal region is definedto be the subsetof configurationsof a redundant
robotsuchthattheend-effectorachievesagivenposture.

11



º

º�» ¼¾½�¼�¿�À�Á�Â Ã=ÄÁ�ÂÆÅX¼§ÇbÃ>ÂÆÄ�Ç�ÈÉÃFÊÌË|Í]ÊÏÎÐFÑ ÍFÄFÄ�ÂÆÄ�ÇÁ�ÂÆÅX¼3Ç�Ã>ÂÆÄ�Ç�Ò]Í]¿�Ó�ËZÍbÊÏÎ

Ô
Ô »

Figure3: Building asecondarytreeof milestonesby integratingbackwardsin time.

Algorithm in pseudo-codeTheplanningalgorithmis summarizedin thefollowing pseudo-code.

Algorithm 1 Control-drivenrandomizedexpansion.
1. Insert � � into � ; 7�Õ 8 .
2. repeat
3. Pick amilestone � from � with probability £Ö¤ � � � .
4. Pick acontrolfunction � from ¥�¦ uniformly at random.
5. � � Õ PROPAGATE � � �]�p� .
6. if � �§×�ÙØ|ÚsÛ then
7. Add � � to � ; 7�Õ 7 �Ü8 .
8. CreateanedgeÝ from � to � � ; store� with Ý .
9. if � �^� ENDGAME then exit with SUCCESS.
10. if 7 �ßÞ then exit with FAILURE.

In line 5, PROPAGATE � � �]�p� integratestheequationsof motion from � with control � . It returnsa
new milestone � � if thecomputedtrajectoryis admissible; otherwiseit returnsnil. If thereexists
no admissible trajectoryfrom � �o�¸�@�=�]������� to ���=�M�����?� , thealgorithmcannotdetectit. Therefore,
in line 10, we boundthe maximumnumberof milestonesto be sampledby a constantÞ . The
outcomeFAILURE maybeinterpretedas“thereexistsnosolution trajectory”,but thisanswermay
beincorrect.

Theabove algorithmcanpotentially benefitfrom moresophisticatedsamplingstrategies,but
thesestrategiesconsiderablycomplicatethe following formal analysis.Moreover, the sampling
strategy in Algorithm 1 gaveverysatisfactoryexperimental results(seeSections5–7).
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Figure4: A freespacewith anarrow passage

4 Analysisof the Planner

The experimentsto be describedin Sections5–7 demonstratethat Algorithm 1 providesan effi-
cientsolutionfor difficult kinodynamicmotion planningproblems.Neverthelesssomeimportant
questionscannotbe answeredby experimentsalone. What is the probability ã that the planner
fails to find a trajectorywhenoneexists? Does ã converge to 5 asthenumberof milestonesin-
creases?If so, how fast? In this section,we generalizethe notion of expansiveness,originally
proposedin [HLM97] for (geometric)pathplanning. We show thatin anexpansive space,thefail-
ure probability ã decreasesexponentially with the numberof sampledmilestones. Hence,with
high probability, a relatively smallnumberof milestonesaresufficient to capturetheconnectivity
of thefreespaceandanswerthequerycorrectly.

4.1 Expansivestateä time space

Expansivenesstriesto characterizehow difficult it is to capturetheconnectivity of thefreespace
by randomsampling. To beconcrete,considerthesimpleexampleshown in Figure4. Assumethat
therearenokinodynamicconstraintsandapoint robotcanmove freely in thespaceshown. Let us
saythat two pointsin thefreespace� seeeachother—equivalently, aremutually visible—if the
straightline segmentbetweenthemliesentirelyin � . Thefreespace� in Figure4 consistsof two
subsetså � and å t connectedby a narrow passage.Few pointsin å � seea largefractionof å t .

Recall thata classicPRM plannersamples� uniformly at randomandtries to connectpairs
of milestonesthatseeeachother. Let the lookout of å � bethesubsetof all pointsin å � thatsees
a largefractionof å t . If the lookout of å � werelarge, it would beeasyfor theplannerto sample
a milestone in å � andanotherin å t thatseeeachother. However, in our example, å � hasa small
lookout dueto the narrow passagebetweenå � and å t : few points in å � seea large fraction of
å t . Thusit is difficult for theplannerto generatea connectionbetweenå � and å t . This example
suggeststhatwe cancharacterizethecomplexity of a freespacefor randomsamplingby thesize
of lookout sets.In [HLM97], a freespace� is saidto beexpansive if every subsetå��æ� hasa
large lookout. It hasbeenshown that in anexpansive space,a classicPRM plannerwith uniform
randomsamplingconvergesatanexponentialrateasthenumberof sampledmilestonesincreases.

Whenkinodynamic constraintsarepresent,thebasicissuesremainthesame,but thenotionof
visibility (connectingmilestoneswith straight-line paths)is inadequate.Algorithm 1 generatesa
differentkind of roadmaps,in which trajectoriesbetweenmilestonesmaybeneitherstraight, nor
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Figure5: Thelookoutof aset å .

reversible.This leadsusto generalizethenotionof visibility to thatof reachability.
Giventwo points ���9����� and �@�M�í�����¡� in �-� !U} , �@�=� �����¹� is reachablefrom ��������� if thereexists a

controlfunction � �A~ ����� � �Ö� # thatinducesanadmissible trajectoryfrom �@�9����� to ��� � ��� � � . If �@� � ��� � �
remainsreachablefrom ���9����� by using �î� ¥�¦ , apiecewise-constantcontrolwith atmosẗ constant
piecesasdefinedin Section3.2,thenwesaythat ��� � ��� � � is locally reachable, or ¨ -reachable, from�@�9����� . Let ï � � � and ï�¦ � � � denotethesetof pointsreachableand ¨ -reachablefrom somepoint � ,
respectively; we call themthereachability andthe ¨ -reachability setof � . For any subsetåÜ�ð� ,
thereachability( ¨ -reachability)setof å is theunionof thereachability( ¨ -reachability)setsof all
thepoints in å :

ï � å ���òñ
ó=ô=õ ï

� � � alcZö ïP¦ � å �R�÷ñ
ó=ôAõ ïP¦

� � �F<

We definethelookoutof a set åø��� asthesubsetof all pointsin å whosë -reachabilitysets
overlapsignificantlywith thereachabilitysetof å thatis outsideå (Figure5):

Definition 1 Let ù bea constantin �q5D�=8 � . The ù -lookoutof a set åú�·� is

ù -LOOKOUT � å ����û � � åÜuMü � ï4¦ � � ��ý å ��þ ùÿü � ï � å �Öý å ���v�
where ü ��� � denotethevolumeof a set � �·� .

Thefreespace� is expansiveif for everypoint � � � , everysubsetå � ï � � � hasa largelookout:

Definition 2 Let � and ù be two constantsin �q5D�=8 � . For any � � � , the set ï � � � is � � � ù � -
expansive if for everyconnectedsubsetå �·ï � � � ,

ü � ù -LOOKOUT � å ���Uþ �Sü � å ��<
Thefreespace� is � � � ù � -expansive if for every � � � , ï � � � is � � � ù � -expansive.

To bettergraspthesedefinitions, think of � in Definition 2 asthe initial milestone � �®�@�;�]�������
and å as the ¨ -reachabilitysetof a setof milestonessampledby Algorithm 1. If � and ù are
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both reasonablylarge, thenAlgorithm 1 hasa goodchanceto samplea new milestone whosë -
reachabilitysetaddssignificantlyto thesizeof å . In fact,weshow below thatwith highprobability,
the ¨ -reachabilitysetof thesampledmilestonesexpandsquickly to cover mostof ï � � ��� ; hence,
if thegoal �@�=�M�����?� lies in ï � � ��� , thentheplannerwill quickly find anadmissible trajectorywith
highprobability.

4.2 Ideal sampling

To simplify ourpresentationandfocusonthemostimportantaspectsof ourplanner, let usassume
for now that we have an ideal samplerIDEAL-SAMPLE that picks a point uniformly at random
from the ¨ -reachabilityset of existing milestones. If it is successful,IDEAL-SAMPLE returnsa
new milestone � � anda trajectoryfrom anexisting milestone� to � � . With idealsampling, the
planningalgorithmcanberestatedasfollows:

Algorithm 2 Randomizedexpansionwith IDEAL-SAMPLE.
1. Insert � ª�� � � into a tree � ; [ ª ÕòïP¦ � � ª�� .
2. repeat
3. Invoke IDEAL-SAMPLE � [ 2 � , whichsamplesanew milestone� � andreturnsatrajectoryfrom

anexisting milestone� to � � if thetrajectoryis admissible.
4. if � � ×� nil then
5. Insert � � into � .
6. CreateadirectededgeÝ from � to � � , andstorethetrajectorywith Ý .
7. [ 2 	 � Õ [ 2�� ïP¦ � � �¹� ; 7§Õ�7 �ß8 .
8. if � �^� ENDGAME then exit with SUCCESS.

Thisalgorithmis thesameasAlgorithm 1, exceptthattheuseof IDEAL-SAMPLE replaceslines
3–5in Algorithm 1. We will discusshow to approximate IDEAL-SAMPLE in Section4.4.

4.3 Bounding the number of milestones

Let � � ï � � ��� be the setof all points reachablefrom � � underpiecewise-constantcontrols.
Algorithm 1 determineswhetherthegoal lies in � by sampling a setof milestones;it terminates
assoonasamilestonefalls in theendgameregion. Therunningtimeof theplanneris thuspropor-
tional to thenumberof sampledmilestones.In this subsection, we givea boundon thenumberof
milestonesneededin orderto guaranteea milestonein theendgame region with high probability,
assumingtheintersectionof theendgameregionand � is non-empty.

Let � � � � ªA� � �F� � t �=<=<=< � be a sequenceof milestonesgeneratedby Algorithm 2, and let� 2 denotethe first 7 milestonesin � . A milestone � 2 is calleda lookout point if it lies in the
ù -lookout of ï�¦ � � 2 G ��� . Lemma1 below statesthat the ¨ -reachabilityset of � spansa large
volumeif it containsenoughlookout points, andLemma2 givesanestimateof theprobability of
thishappening.Togetherthey imply thatwith highprobability, the ¨ -reachabilitysetof arelatively
smallnumberof milestonesspansa largevolume in � .

The following resultsassumethat � is ( � � ù )-expansive. For convenience,let usscaleup all
thevolumessothat ü � � �R�Ù8 .
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Figure6: A sequenceof sampledmilestones.

Lemma 1 If a sequenceof milestones� contains0 lookoutpoints,then ü � ïx¦ � � ��� þ 8 K Ý G��>I .
Proof. Let � � 2�� � � 2�� � � 2�� �=<=<=<?� � 2 � � bethesubsequenceof lookoutpointsin � , where7 ªA� 7 ��� 7 t �=<=<=<
givetheindicesof thelookout points in thesequence� �æ� � ª=� � �F� � t �><=<=< � . For any 7 �Ù89��:;�=<><=< ,
wehave

ü � ïP¦ � � 2 ���m� ü � ï ¦ � � 2 G �����Ö� ü � ïP¦ � � 2 �Öý ïP¦ � � 2 G �����F< (3)

Thus ü � ï�¦ � � 2 ���Uþ ü � ïP¦ � �"! ��� for all 7 þ$# , in particular,

ü � ïP¦ � � ����þ ü � ïP¦ � � 2 � ���F� (4)

where � 2 � � � � ªA� � ��� � t �=<=<=<?� � 2 � � . Using(3) with 7 � 7 I in combination with thefact that � 2��
is a lookoutpoint,weget

ü � ïP¦ � � 2 � ����þ ü � ïP¦ � � 2 � G �����Ö� ùÿü � � ý ïP¦ � � 2 � G �����F<
Let e 2 � ü � ïP¦ � � 2 ��� . Since ü � � ý ïP¦ � � 2 � G ����� � ü � � �mK ü � ïP¦ � � 2 � G �������C8�K e 2 � G � , we havee 2 � þ�e 2 � G ��� ù ��8 K e 2 � G ��� , whichcanberewrittenas

e 2 � þ�e 2 �&% � � ù ��8 K e 2 �&% � �Ö����8 K ù �?�qe 2 � G ��K e 2 �&% � �F< (5)

Note 7 I K·8Bþ 7 I?G � (Figure6) andthus e 2 � G ��K e 2 �&% � þÜ5 . It followsfrom (5) that

e 2 � þ�e 2 �&% � � ù ��8 K e 2 �&% � �F<
Setting¢ I �ðe

2��
leadsto therecurrence¢ I þ ¢ IFG �Ö� ù ��8 K ¢ I?G ��� , with thesolution

¢ I þÙ��8 K ù � I ¢ ª�� ù
IFG �'!)( ª ��8 K ù � ! � 8 Kß��8 K ù � I ��8 K ¢ ª���<

Since* ª,+.- and /10325476 G�� , weget * I + /1056 G��=I . Combinedwith (4), it yields

ü � ï ¦ � � ����þ 8 K Ý G��=I < 8
Lemma 2 A sequenceof 9 milestonescontains 0 lookout points with probability at least 8 K
0DÝ G;:=<?>¾I .
Proof. Let � beasequenceof 9 milestones,and k betheeventthat � contains0 lookoutpoints.
We divide M into 0 subsequencesof 9 d 0 consecutive milestoneseach. Denoteby k 2 the event
that the ith subsequencecontainsat leastonelookout point. Sincethe probability of � having
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0 lookout points is greaterthantheprobability of every subsequencehaving at leastonelookout
point,wehave

Pr��km��þ Pr��km�A@�k t <=<=<B@îk I ���
which implies

Pr� kg� , Pr� kg� � k t <=<=< � k I � , I' 2 ( ª Pr� k 2 ��<

Sinceeachmilestonepicked by IDEAL-SAMPLE hasprobability � of beinga lookout point, the
probability Pr� k 2 � of having no lookout point in the ith subsequenceis atmost ��8 K � � <?>¾I . Hence

Pr��km��� 8 K Pr� kg��þ 8 K 0 ��8 K � � <?>¾I <
Notethat ��8 K � � <?>¾I ,ßÝ G;:=<?>¾I . SowehavePr��km��þ 8 K 0DÝ G;:=<C>¾I . 8

Themainresult,statedin thetheorembelow, establishesaboundon thenumberof milestones
neededin orderto guaranteeamilestone in theendgameregionwith highprobability.

Theorem 1 Let DFE 5 be the volumeof the endgameregion G in � and ã be a constantin��5;�=8 � . A sequence� of 9 milestonescontains a milestonein G with probability at least 8�K ã , if9 þ � 0 d � ��H c ��: 0 d ã ���ð�@:9d D ��H c ��:9d ã � , where 0 �æ��8Ad ù ��H c �@:9d D � .
Proof. Let usdivide � �°� � ª=� � �F� � t �><=<=<>� � < � into two subsequences� � and � � � suchthat � �
containsthefirst 9 � milestonesand � � � containsthenext 9 � �D� 9 K 9 � milestones.

By Lemma2, � � contains0 lookoutpointswith probability at least 8oK 0 ��8 K � � <JIK>¾I . If there
are 0 lookout pointsin � � , thenby Lemma1, ï�¦ � � �¡� hasvolumeat least 8oK D dl: , providedthat

0 þ 8Md ù H c �@:9d D ��<
As a result, ïP¦ � � � � hasa non-emptyintersectionL with the endgameregion of volumeat leastD d9: , andsodoesï�¦ � � 2 � , for 7 þ 9 � .

TheprocedureIDEAL-SAMPLE picksa milestoneuniformly at randomfrom the ¨ -reachability
setof theexisting milestones,andthereforeevery milestone� 2 in � � � falls in L with probability� D d9:l��d ü � ïP¦ � � 2 G ����� . Since ü � ïP¦ � � 2 G ����� , 8 for all 7 , andthemilestonesaresampledindepen-
dently, � � � containsa milestonein L with probabilityat least 8 KÜ��8 K D d9:9� < I I þ 8 K Ý G�< I I � > t .

If � fails to containa milestone in the endgameregion G , theneitherthe ¨ -reachabilityset
of � � doesnot have a large enoughintersectionwith G (event M ), or no milestone of � � � lands
in the intersection(event N ). From the precedingdiscussion,We know that Pr� M � , ã d9: if9 �RþT� 0 d � ��H c ��: 0 d ã � andPr� N � , ã d9: if 9 � �Rþ ��:9d D ��H c �@:ld ã � . Choosing9 þT� 0 d � ��H c ��: 0 d ã ����@:ld D ��H c �@:9d ã � guaranteesthatPr� M � N � , Pr� M �3� Pr� N � ,�ã . Substituting 0 �µ��8Md ù ��H c ��:9d D �
into theinequality bounding9 , wegetthefinal result

9 þ H c �@:9d D ���ù H c :OH c �@:9d D �
ùXã

� :D H c :
ã
<

8
If theplannerreturnsFAILURE, eitherthequeryadmitsno solution, i.e., �@���M�����?� ×� � , or the

algorithmhasfailed to find one. The latter event, which correspondsto returningan incorrect
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answerto the query, hasprobability lessthan ã . Sincethe boundin Theorem1 containsonly
logarithmic termsof ã , theprobabilityof an incorrectanswerconvergesto 0 exponentially in the
numberof milestones.

The boundgiven by Theorem1 alsodependson the expansivenessparameters� , ù andthe
volume D of theendgameregion. Thegreater� , ù , and D , thesmaller thebound.In practice,it is
oftenpossible to establisha lower boundfor D . However, � and ù aredifficult to estimate,except
for every simple cases.This preventsusfrom determiningtheparameterÞ , themaximalnumber
of milestonesneededfor Algorithm 1 a priori. Neverthelesstheseresultsare important. First,
they tell us that thefailureprobabilityof our plannerdecreasesexponentially with thenumberof
milestonessampled.Second,thenumberof milestonesneededincreasesonly moderatelywhen �
and ù decrease,i.e., whenthespacebecomeslessexpansive.

4.4 Approximating IDEAL-SAMPLE

Theabove analysisassumestheuseof IDEAL-SAMPLE, which picksa new milestone uniformly at
randomfromthe ¨ -reachabilitysetof theexistingmilestones.Onewayto implementIDEAL-SAMPLE

would berejectionsampling[KW86], which throws away a fractionof samplesin regionsthatare
moredenselysampledthanothers.However, rejectionsampling is not efficient: many potential
candidatesarethrown away in orderto achieve theuniformdistribution.

Soinstead,our implementedplannerstry to approximatetheidealsampler. Theapproximation
is muchfasterto compute,but generatesaslightly lessuniformdistribution. Recallthatto sample
a new milestone� � , we first choosea milestone � from theexisting milestonesandthensamplein
theneighborhood of � . Everynew milestone � � thuscreatedtendsto berelatively closeto � . If we
selecteduniformly amongtheexisting milestones,theresultingdistribution wouldbeveryuneven;
with highprobability, wewouldpick amilestone in analreadydenselysampledregionandobtain
a new milestone in that sameregion. Thereforethe distribution of milestonestendsto cluster
aroundtheinitial state� time point. To avoid this problem,we associatewith every milestone � a
weight ¢ � � � , which is thenumberof milestonesin asmallneighborhoodof � , andpick anexisting
milestoneto expandwith probability inverselyproportional to ¢ � � � . Soit is morelikely to sample
a regioncontaininga smallernumberof milestones.Thedistribution £§¤ � � �QP 8Md ¢ � � � contributes
to thediffusionof milestonesover the free spaceandavoidsoversampling any particularregion.
In general,maintainingthe weights ¢ � � � as the roadmapis beingbuilt incursa muchsmaller
computational costthanperformingrejectionsampling.

Thereis also a slightly greaterchanceof generatinga new milestonein an areawherethe
¨ -reachabilitysetsof severalexisting milestonesoverlap. However, milestoneswith overlapping
¨ -reachabilitysetsaremorelikely to becloseto oneanotherthanmilestoneswith nosuchoverlap-
ping. Thusit is reasonableto expectthatusing £X¤ Pæ8Md ¢ �s��� keepstheproblemfrom worseningas
thenumberof milestonesgrows.

If thereareno kinodynamicconstraintson the robot’s motion, thenotherthanthe two issues
mentionedabove, Theorem1 givesan asymptotic boundthat closely characterizesthe amount
of work that the plannermustdo in orderto guaranteefinding a trajectorywith high probability
wheneveroneexists. In particular, theresultappliesto (geometric)pathplanningproblems.

Thereis, however, onemoreissueto considerwhenkinodynamic constraintsarepresent.Al-
thoughline 4 of Algorithm 1 selects� uniformly at randomfrom ¥ ¦ , the distribution of � � in
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ïP¦ � � � is not uniform in general,becausethe mappingfrom ¥U¦ to ïP¦ � � � may not be linear. In
somecases,onemay precomputea distribution £SR suchthat picking � from ¥�¦ with probability
£TR �q�p� yieldsauniformdistributionof � � in ïP¦ � � � . In othercases,rejectionsamplingcanbeused
locally. First pick several control functions � 2 � 7 �÷8l��:;�=<=<>< andcompute the corresponding� �2 ,
theendpointof thetrajectoryinducedby � 2 . Thenthrow awaysomeof themto achievea uniform
distribution amongtheremaining� �2 ’s,andpick a remaining� �2 at random.

4.5 Choosingsuitable control functions

To samplenew milestones,Algorithm 1 picksat randoma piecewise-constantcontrol function �
from ¥�¦ . Every � � ¥§¦ hasat most ¨ constantpieces,eachof which lastsfor a time durationless
than ±F²X³@´ . Theparameters̈ and ±F²X³@´ arechosenaccordingto specificpropertiesof eachrobot.

In theory, ¨ mustbe largeenoughso that for any � � ï � � ��� , ïP¦ � � � hasthesamedimension
as ï � � ��� . Otherwise,ï�¦ � � � haszerovolumerelative to ï � � ��� , and ï � � ��� cannotbeexpansive
even for arbitrarily small valuesof � and ù . This can only happenwhen somedimensions of
ï � � ��� arenot spanneddirectly by basisvectorsin thecontrolspace# , but thesedimensionscan
thenbegeneratedby combining severalcontrolsin # usingLie-brackets[BL93]. Themathematical
definitionof aLie bracketcanbeinterpretedasaninfinitesimal“maneuver” involving twocontrols.
Spanningall the dimensionsof ï � � ��� may requirecombining morethantwo controlsof ¥ by
imbricatingmultiple Lie brackets.At most � KP: Lie bracketsareneeded,where� is thedimension
of thestatespace.Henceit is sufficient to choosë �Ü�LKú: .

In general,the larger ¨ is, thegreater� and ù tendto be. Soaccordingto our analysis,fewer
milestonesareneeded;on theotherhand,thecostof integrationandcollision checkingduringthe
generationof anew milestonebecomesmoreexpensive. Thechoiceof ±A²X³@´ is somewhatrelated.A
larger ± /VU y mayresultin greater� and ù , but alsoleadtheplannerto integratelongertrajectories
that are more likely to be inadmissible. Experiments show that ¨ and ±l²X³@´ can be selectedin
relatively wide intervalswithout significantimpacton theperformanceof theplanner. However, if
thevaluesfor ¨ and ±F²X³@´ aretoo large,theapproximationto IDEAL-SAMPLE becomesverypoor.

5 Nonholonomic robots

We implemented Algorithm 1 for two different robot systems. One consistsof two nonholo-
nomic cartsconnectedby a telescopiclink andmoving amongstaticobstacles.The other is an
air-cushionedrobotthatis actuatedby air thrustersandoperatesamongmoving obstaclesonaflat
table. Theair-cushionedrobot is subjectto strict dynamicconstraints.In this section,we discuss
the implementationof Algorithm 1 for thenonholonomic carts. In thenext two sections,we will
do thesamefor theair-cushionedrobot.

5.1 Robot description

Wheeledmobile robotsare a classicalexample for nonholonomic motion planning. The robot
consideredhereis a new variationon this theme.It consistsof two independently-actuatedcarts
moving on a flat surface(Figure 7). Eachcart obeys a nonholonomic constraintand hasnon-
zerominimum turningradius.In addition,thetwo cartsareconnectedby a telescopiclink whose
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��WJ� ���F�
Figure7: Two-cartnonholonomic robots. �XWJ� Cooperativemobile manipulators. ���F� Two wheeled
nonholonomic robotsthatmaintaina directline of sightandadistancerange.

lengthis lower andupperbounded.This systemis inspiredby two scenarios.Oneis themobile
manipulation project at the University of Pennsylvania’s GRASPLaboratory [DK99]; the two
cartsareeachmountedwith a manipulator arm andmustremainwithin a certaindistancerange
so that the two armscancooperatively manipulatean object(Figure7W ). Themanipulationarea
betweenthe two cartsmustbe free of obstacles.In the otherscenario,two cartspatrolling an
indoorenvironmentmustmaintainadirectline of sightandstaywithin acertaindistancerange,in
orderto allow visualcontactor simpledirectionalwirelesscommunication(Figure7� ).

We projectthegeometryof thecartsandtheobstaclesontothehorizontalplane.For 7 �°89��: ,
let [ 2 be the midpoint betweenthe rearwheelsof the 7 th cart,

1�2
be the midpoint betweenthe

front wheels,and k 2 be the distancebetween[ 2 and
132

. We definethe stateof the systemby�S�¶�WV��F�]Yv��� \ ����V t �]Y t � \ t � , where �WV 2 �]Y 2 � arethecoordinatesof [ 2 , and \ 2 is theorientationof the
rearwheelsof 7 th cart relative to the V -axis (Figure2). To maintaina distancerangebetweenthe
two cart,we require Y9²[Z]\�,_^ �sV���K¬V t � t �ð�qYv�§K Y t � t ,`Y9²X³@´ for someconstantsYv²[Z]\ and Y9²X³@´ .

Eachcarthastwo scalarcontrols,� 2 and
n 2

, where � 2 is thespeedof [ 2 , and
n 2

is thesteering
angle.Theequationsof motionfor thesystemare

�V��Q� ���Jf>h9i \ � �V t � � t f>hli \ t�YJ� � ���Ji�j c \ � �Y t � � t i�j
c \ t�\ �Q� �q����dHk���� `balcon � �\ t � �W� t dlk t �

`balcon
t <

(6)

Thecontrolspaceis restrictedby u � 2 u�, � ²X³@´ and u n u�, n ²X³@´ , which boundthecarts’ velocities
andsteeringangles.

5.2 Implementation details

We assumethatall obstaclesarestationary. Sotheplannerbuilds a roadmap� in therobot’s 6-D
statespace(without thetimedimension).

Computing the weightsTo computetheweight ¢ � � � of a milestone � , we definetheneighbor-
hoodof � to be a small ball of fixed radiuscenteredat � . The currentimplementation usesa
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��WJ� ���F� � ¯ �
Figure8: Computedexamplesfor nonholonomiccarl-like robots.

naivemethodthatchecksevery new milestone � � againstall themilestonescurrentlyin � . Thus,
for every new milestone, updating ¢ takeslinear time in the numberof milestonesin � . More
efficient rangesearchtechniques[Aga97] would certainlyimprove theplanner’s runningtime for
problemsrequiringvery largeroadmaps.

Implementing PROPAGATE Givena milestone� anda control function � , PROPAGATE usesthe
Euler methodwith a fixed stepsize to integrate(6) from � andcomputesa trajectory a of the
systemunderthe control � . More sophisticatedintegrationmethods,e.g., fourth-orderRunge-
Kuttaor extrapolation method[PTVP92], canimprove theaccuracy of integration, but at a higher
computational cost.

Wethendiscretizea intoasequenceof statesandreturnsnil if any of thesestatesis in collision.
For eachcart,we precomputea 3-D bitmapthatrepresentsthecollision-freeconfigurationsof the
cart prior to planning. It then takesconstanttime to checkwhethera given configurationis in
collision. A well-known disadvantageof this methodis that if the resolution of the bitmap is
not fine enough,we may get wrong answers. In the experimentsreportedbelow, we usedan8M:cb � 8A:cb �edcf bitmap,whichwasadequatefor our testcases.

EndgameregionWe obtaintheendgameregion by generatinga secondarytree � � of milestones
from thegoal �A� .

5.3 Experimental results

Weexperimentedwith theplannerin many workspaces.Eachoneis a10m � 10m squareregion
with staticobstacles.The two cartsare identical,eachrepresentedby a polygoncontainedin a
circle with diameter0.8 m, and k �o�æk t �æ5D<hg m. Thespeedof thecartsrangesfrom Kji m/stoi m/s,andits steeringangle

n
variesbetweenKji95�k and i95lk . Theallowable distancebetween[ �

and [ t rangesfrom 89< f m to iD<hi m.
Figure8 shows threecomputedexamples. Environment �XWJ� is a maze;the robot cartsmust

navigatefrom onesideof it to theother. Environment ���F� containstwo largeobstaclesseparated
by a narrow passage.Thetwo carts,which areinitially parallelto oneanother, changeformation
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Scene Time(sec.) monqp rqsut m1v
w p m1xyt z
mean std mean std{}|B~
1.39 0.91 62402 27001 2473 21316
0.74 0.65 43564 23640 1630 15315
0.54 0.41 35960 18410 1318 12815
0.55 0.44 38384 20772 1310 14066{��?~
4.45 3.92 126126 61836 4473 45690{��&~

14.09 7.42 287828 86987 9123 107393
0.92 0.51 56367 20825 1894 20250

Table1: Performancestatisticsof theplanneron thenonholonomicrobot.

andproceedin a single file throughthepassage,beforebecomingparallelagain.Environment � ¯ �
consistsof two roomsclutteredwith obstaclesandconnectedby ahallway. Thecartsneedto move
from the roomat thebottomto theoneat the top. Themaximumsteeringanglesandthesizeof
thecircularobstaclesconspireto increasethenumberof requiredmaneuvers.

We ran the plannerfor several differentqueriesin eachworkspaceshown in Figure8. For
every query, we ran theplanner30 timesindependentlywith differentrandomseeds.Theresults
are shown in Table 1. Our plannerwas written in C++, and the running times reportedwere
obtainedonanSGI Indigo2workstation with a195Mhz R10000processor.

Every row of thetablecorrespondsto aparticularquery. Columns2–5list theaveragerunning
time,theaveragenumberof collisionchecks,andtheir standarddeviations. Columns6–7give the
total numberof milestonessampledandthe numberof calls to PROPAGATE. The runningtimes
rangefrom lessthana secondto a few seconds.The first queryin environment � ¯ � takeslonger
becausethecartsmustperformseveralmaneuversin thehallwaybeforereachingthegoal(seethe
examplein Figure8̄ ).

Thestandarddeviations in Table1 arelarger thanwhatwe would like. In Figure9, we show
a histogramof morethan100 independentrunsfor a particularquery. In mostruns,the running
time is well underthemeanor slightly above. This indicatesthatour plannerperformswell most
of thetime. Thelargedeviation is causedby a few runsthat take aslong asfour timesthemean.
Thelongandthin tail of thedistribution is typicalof theteststhatwehaveperformed.

6 Air -cushionedrobots

6.1 Robot description

Ouralgorithmhasalsobeenimplementedandevaluatedonasecondsystem, whichwasdeveloped
at the StanfordAerospaceRoboticsLaboratoryfor testingspaceroboticstechnology. This air-
cushionedrobot (Figure1) movesfrictionlessly on a flat granitetableamongmoving obstacles.
Eight air thrustersprovidesomni-directionalmotion capability, but the thrustavailable is small
comparedto therobot’smass,resulting in tight accelerationconstraints.

Wedefinethestateof therobotto be �sVX�]Yp� �VX� �Y;� , where �WVX�]YD� arethecoordinatesof therobot’s
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Figure9: Histogramof planningtimesfor morethan100runson a particularquery. Theaverage
time is 1.4sec,andthefour quartilesare0.6,1.1,1.9,and4.9seconds.

center, and � �VX� �Y;� is thevelocity. Theequationsof motionare

OV�� 8
�
� f>h9i \ alcZö OY�� 8

�
��i�j c \ �

where � is therobot’s mass,and � and \ arethemagnitudeanddirectionof the forcegenerated
by thethrusters.Wehave 5 , �pd �E, 5;<Ì5�:cg m/st and 5lk ,Ü\ , i d 5lk . Themaximumspeedof the
robotis 0.18m/s.

For planningpurposes,the workspaceis representedby a 3 m � 4 m rectangle,the robot
by a disc of radius0.25 m, and the obstaclesby discsof radii between0.1 and 0.15 m. The
plannerassumesthattheobstaclemovesalongastraight-linepathatconstantspeedbetween5 and5D<Ì: m/s(morecomplex trajectorieswill beconsideredin Section7.4). Whenanobstaclereaches
theworkspace’sboundary, it leavestheworkspaceandis nolongerconsideredathreatto therobot.

6.2 Implementation details

Theplannerbuildsaroadmap� in therobot’s5-Dstate� timespace,It isgivenaninitial state� time�@�=�]�]5�� anda goalstate� time ���M�M�����?� , where ��� is any time lessthana given � ²X³@´ . In addition, the
planneris given the obstacletrajectories.Unlike the experimentswith the real robot in the next
section,planningtime is not limited here.This is equivalentto assumingthat theworld is frozen
until theplannerreturnsa trajectory.

Computing the weights The 3-D configuration� time spaceof the robot is partitioned into an
8 � 11 � 10 arrayof identicallysizedrectangularboxescalledbins. Whena milestoneis inserted
in � , the planneraddsit to the list of milestonesassociatedwith the bin in which it falls. To
implement line 3 of Algorithm 1, the plannerfirst picks at randoma bin containingat leastone
milestoneandthenamilestonefrom within this bin. Bothchoicesaremadeuniformly at random.
Thiscorrespondsto pickingamilestonewith probability approximatelyproportional to theinverse
of thedensityof samplesin therobot’s configuration� time space(ratherthanits 5-D state� time
space). We did someexperimentswith bins in state� time space,but the resultsdid not differ
significantly.
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Scene Time(sec) mov
w p
mean std mean std{}|B~
0.249 0.264 2008 2229{��?~
0.270 0.285 1946 2134{}�&~
0.002 0.005 22 25

Table2: Performancestatisticsof theplanneron theair-cushionedrobot.

Implementing PROPAGATE Thesimplicity of theequationsof motion makesit possible to com-
putetrajectoriesanalytically. Thetrajectoriesarethendiscretized,andateachdiscretizedstate� time
point, the robot is checked for collision againstevery obstacle.This naive techniqueworks rea-
sonablywell whenthenumberof obstaclesis small,but canbeeasilyimprovedto handlea large
numberof obstacles.

Endgame region The endgameregion is generatedwith specializedcurves, specifically, third-
ordersplines.Wheneveranew milestone � is addedto � , it is checkedfor connectionwith 0 goal
points ���A�M�����?� , for somepre-definedconstant0 . Eachof the 0 valuesof ��� is chosenuniformly at
randomfrom theinterval ~ � ²[Z]\ ��� ²X³@´ � , where� ²[Z]\ is anestimateof theearliesttime whentherobot
mayreach �>� , given its maximum velocity. For eachvalueof �]� , theplannercomputesthe third-
ordersplinebetween� and �@�=�M�����?� . It thenverifiesthatthespline is collision freeandsatisfiesthe
velocityandaccelerationbounds.If all thetestssucceed,then � lies in theendgameregion. In all
theexperiments reportedbelow, 0 is setto 10.

6.3 Experimental results

We performedexperimentsin morethanonehundredsimulated environments. To simplify the
simulation, collisions amongobstaclesare ignored. So two obstaclesmay overlap temporarily
without changingcourses.In a smallnumberof queries,theplannerfailed to returna trajectory,
but in noneof thesecaseswerewe able to determinewhetheran admissible trajectoryactually
existed. On theotherhand,theplannersuccessfullysolvedseveralqueriesfor which we initially
thoughttherewasnosolution.

Threeexamplescomputedby the plannerare shown in Figure 10. For eachexample,we
displayfive snapshots labeledby time. The largegraydisc indicatestherobot; thesmallerblack
discsindicatetheobstacles.Thesolid anddottedlinesmark the trajectoriesof therobotandthe
obstacles,respectively. For eachof thethreequeries,we rantheplanner100timesindependently
with differentrandomseeds.Theplannersuccessfullyreturnedatrajectoryin all runs.Table2 lists
the meansandstandarddeviationsof the planningtimesandthe numberof sampledmilestones
for eachquery. The reportedtimeswereobtainedfrom a plannerwritten in C andrunningon a
Pentium-IIIPCwith a550Mhz processorand128MB of memory.

In the first two examples,the moving obstaclescreatenarrow passagesthroughwhich the
robotmustpassin orderto reachthegoal.Yetplanning timeremainsmuchunderonesecond.The
fact that theplannernever failed in 100 runstestifiesto its reliability. To point out thedifficulty
of thesequeries,we show in Figure 11 the configuration� time spacefor example ���F� . In the
configuration� time space,the robot mapsto a point �sVX�]Y^����� . Sincethe obstaclesare assumed
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� ¯ �
Figure10: Computedexamplesfor theair-cushionedrobot.

to move with constantlinear velocity, they map into cylinders. The velocity and acceleration
constraintsrequireeverysolution trajectoryto passthroughasmallgapbetweenthecylinders.

Example � ¯ � is muchsimpler. Therearetwo stationaryobstaclesobstructing themiddle of the
workspaceandthreemoving obstacles.Planningtime is well below 0.01second,with anaverage
of 0.002second.Thenumberof milestonesis alsosmall,confirmingtheresultof Theorem1 that
whenthespaceis expansive,Algorithm1 is veryefficient. As in theexperimentsonnonholonomic
robot carts,the runningtime distribution of the plannertendsto have a long andthin tail dueto
longexecutiontime in asmallnumberof runs,but overall theplanneris very fast.
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Figure11: Configuration� spacefor theexamplein Figure10� .

7 Experimentswith the real robot

To furthertesttheperformanceof theplanner, we connectedtheplannerdescribedin theprevious
sectionto the air-cushionedrobot in Figure1. In thesetests,we examinedthe behavior of Al-
gorithm1 runningin real-timemodeon a systemintegrating controlandsensingmodulesover a
distributedarchitectureandoperatingin aphysicalenvironmentwith uncertaintiesandtimedelays.

7.1 Testbeddescription

Therobotshown in Figure1 is untetheredandmovesfrictionlessly onanair bearingona3 m � 4 m
table. Gastanksprovide compressedair for both theair-bearingandthrusters.An onboardMo-
torola ppc2604computer performsmotion control at 60 Hz. Obstaclesarealsoon air-bearings,
but have no thrusters.They areinitially propelledby handfrom variouslocationsandthenmove
frictionlessly on the tableat roughly constantspeeduntil they reachthe boundaryof the table,
wherethey stopdueto thelackof air bearing.

An overheadvision systemestimatesthepositionsof therobotandtheobstaclesat 60 Hz by
detectingLEDs placedon the moving objects. The measurementis accurateto 5 mm. Velocity
estimatesarederivedfrom position data.

Our plannerrunsoffboardon a 333Mhz SunSparc10. Theplanner, therobot,andthevision
modulecommunicateover theradioEthernet.

7.2 Systemintegration

Implementing theplanneron thehardwaretestbedraisesseveralnew challenges.

Time delaysVariouscomputationsanddataexchangesoccurringat differentpartsof thesystem
leadto delaysbetweenthe instantwhenthevision modulemeasuresthemotion of the robotand
theobstaclesandtheinstantwhentherobotstartsexecutingtheplannedtrajectory. Thesedelays,
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if ignored,would causethe robot to begin executingtheplannedtrajectorybehindthestarttime
assumedby theplanner. The robotmaynot thenbe ableto catchup with theplannedtrajectory
beforea collisionoccurs.To dealwith this issue,theplannercomputesa trajectoryassuming that
therobotwill startexecutingit 0.4secondinto thefuture.It alsoassumesthattheobstaclesmoveat
constantvelocities,asmeasuredby thevision module,andextrapolatestheirpositionsaccordingly.
The0.4 secondincludesall thedelaysin thesystem,in particular, the time neededfor planning.
This time couldbefurtherreducedby implementingtheplannermorecarefullyandrunningit on
amachinefasterthantherelatively slow SunSparc10currentlybeingused.

Sensingerrors Althoughtheplannerassumesthattheobstaclesmove alongstraightlinesat con-
stantvelocitiesmeasuredby the vision module, the actualtrajectoriesareslightly differentdue
to asymmetryin air-bearingsandinaccuracy in the measurements.The plannerdealswith these
errorsby growing theobstacles.As time elapses,theradiusof eachmoving obstacleis increased
by ��� � , where � is a fixedconstant,� is themeasuredvelocity of theobstacle,and � is thetime.
Sotheplannercanavoid erroneouslyassertingthata state� time point is collision-freewhenit is
actuallynot.

Trajectory tracking The robot receivesfrom theplannera trajectorythat specifiesthe position,
velocity, andacceleration of the robot at all times. A PD-controllerwith feedforward is usedto
track this trajectory. The maximumtrackingerrorsfor the position andvelocity are0.05m and
0.02m/s,respectively. As a result,we increasethesizeof thediscmodeling therobotby 0.05m
duringtheplanningto guaranteethatthecomputedtrajectoryis collision-free.

Trajectory optimization Sincethe planneris very efficient in general,the 0.4 secondallocated
is often morethanwhat is neededfor finding a first solution. So the plannerexploits the extra
time to generateadditionalmilestonesandkeepstrackof thebesttrajectoryfoundsofar. Thecost
function for comparingtrajectoriesis �LI2 ( � �q� 2 �ð�F� ± 2 , where 0 is the numberof segmentsin the
trajectory, � 2 is the magnitudeof the force exertedby the thrustersalongthe 7 th segment, � is a
fixedconstant,and ± 2 is thedurationof the 7 th segment.Thecostfunctiontakesinto accountboth
fuel consumption andexecution time. A larger � yieldsfastermotion, while asmaller� yieldsless
fuel consumption. In ourexperiments, thecostof trajectorieswasreduced,ontheaverage,by 14%
with thissimple improvement.

Safe-modeplanning If theplannerfailstofind atrajectoryto thegoalwithin theallocatedtime,we
foundit usefulto computeanescapetrajectory. Theendgameregion G������ for theescapetrajectory
consistsof all the reachable,collision-freestates�@���F���?��� with �&��þ ������� for sometime ������� . An
escapetrajectorycorrespondsto any acceleration-bounded,collision-freemotionin theworkspace
for a smalldurationof time. In general,G������ is very large,andsogeneratinganescapetrajectory
oftentakeslittl etime. To ensurecollision-freemotionbeyond �S����� , anew escapetrajectorymustbe
computedlongbeforetheendof thecurrentescapetrajectorysothattherobotcanescapecollision
despitetheacceleration constraints.Wemodifiedtheplannerto computesimultaneouslyanormal
andanescapetrajectory. Themodificationincreasedtherunningtime of theplannerby about2%
in ourexperiments,but it leadsto asystemthatis muchmoreusefulpractically.
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Figure12: Snapshotsof therobotexecutinga trajectory.

7.3 Experimental results

Theplannersuccessfullyproducedcomplex maneuversof therobotamongstaticandmoving ob-
staclesin varioussituations, includingobstaclesmoving directly towardtherobotor perpendicular
to the line connectingits initial andgoalpositions. The testsalsodemonstratedtheability of the
systemto wait for anopeningto occurwhenconfrontedwith moving obstaclesin therobot’s de-
sireddirectionof movement and to passthroughopeningsthat are lessthan10 cm larger than
therobot. In almostall thetrials, a trajectorywascomputedwithin theallocatedtime. Figure12
shows snapshots of therobotduringoneof the trials, in which therobotmaneuversamongthree
incomingobstaclesto reachthegoalat thefront cornerof thetable.

Severalproblemslimited thecomplexity of theplanningproblemswhich we couldtry in this
testbed.Two arerelatedto the testbeditself. First the accelerationsprovided by the robot’s air
thrustersarequite limited. Secondthesizeof the tableis small relative thatof therobotandthe
obstacles,which limits the availablespacefor the robot to maneuver. The third problemresults
from thedesignof oursystem. Theplannerassumesthatobstaclesmoveat constantlinearveloci-
tiesanddonotcollidewith oneother, anassumptionwhich is likely to fail in practice.To address
this lastandimportantissue,we introduceon-the-flyreplanning.

7.4 On-the-fly replanning

An obstaclemaydeviatefrom its predictedtrajectory, becauseeithertheerrorin themeasurements
is larger thanexpected,or theobstacle’s directionof motionhassuddenly changeddueto a col-
lision with otherobstacles.Whenever the vision module detectsthis, it alertsthe planner. The
plannerthenrecomputesa trajectoryon thefly within thesameallocatedtime limit , by projecting
thestateof theworld 0.4secondinto thefuture.On-the-flyreplanningallowsmuchmorecomplex
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Figure13: A computedexamplewith replanningin asimulatedenvironment.

experimentsto beperformed.Weshow two examplesbelow, onein simulationandoneon thereal
robot.

In theexampleshows in Figure13,eightreplanningoperationsoccurredover theentirecourse
(75seconds)of theexperiment.Initially therobotmovesto theleft to reachthegoalat thebottom
middle(snapshot1). Thentheupper-left obstaclechangesits motionandblockstherobot’s way,
resultingin a replan(snapshot2). Soonafter, themotionof theupper-right obstaclealsochanges,
forcingtherobotto reversethedirectionandapproachthegoalfromtheothersideof theworkspace
(snapshot3). In theremainingtime,new changesin obstaclemotioncausetherobotto pause(see
thesharpturn in snapshot5) until adirectapproachto thegoalis possible (snapshot6).

The efficacy of the replanningprocedureon the real robot is demonstratedby the example
in Figure 14. The robot’s goal is to move from the back left of the table to the front middle.
Initially the obstaclein the middle is stationary, andthe other two obstaclesaremoving toward
the robot (snapshot1). The robot dodgesthe faster-moving obstaclefrom the left andproceeds
towardthegoal(snapshot2). Theobstacleis thenredirectedtwice (in snapshots 3 and5) to block
thetrajectoryof therobot,causingit to slow down andstaybehindtheobstacleto avoid collision
(snapshots3–6).Rightbeforesnapshot7, therightmost obstacleis directedbacktowardtherobot.
Therobotwaitsfor theobstacleto pass(snapshot8) andfinally attainsthegoal(snapshot9). The
entiremotionlastsabout40seconds.Throughout thisexperiment, otherreplanningoperations(not
shown) occurredasa resultof errorsin themeasurementof theobstaclemotions. However, none
resultedin amajorredirectionof therobot.
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Figure14: An example with therealrobotusingon-the-flyreplanning.

8 Conclusion

Wehavepresentedasimple,efficient randomizedplannerfor kinodynamicmotionplanning in the
presenceof moving obstacles.Our algorithmrepresentsthemotionconstraintsby anequationof
theform

��S�°���@�9�]�p� andconstructsa roadmapof sampledmilestonesin thestate� time spaceof
a robot. It samplesnew milestonesby first picking at randoma point in thespaceof admissible
control functionsandthenmappingthe point into thestatespaceby integratingthe equationsof
motion. Thusthemotionconstraintsarenaturallyenforcedduringtheconstructionof theroadmap.
Thealgorithmis generalandcanbeappliedto awideclassof systems,includingonesthatarenot
locally controllable.Theperformanceof thealgorithmhasbeenevaluatedthroughboththeoretical
analysisandextensiveexperiments.

We have generalizedthe notion of expansiveness,originally proposedin [HLM97] for (geo-
metric) pathplanning. The main purposeof the generalizationis to addressthe complications
introducedby kinematicanddynamicconstraints.Using the expansivenessto characterizethe
complexity of thestate� space,we have proven that,undersuitable assumptions,thefailureprob-
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ability of theplannerconvergeto 0 at anexponential rate,whena solution exists. This resultalso
holdsfor robotsthatarenot locally controllable.

Experimentallythe plannerhasdemonstratedits effectivenessboth in simulation and on a
real robot. Theexperimentson thereal robot indicatesthat theplannerworkswell despitemany
adversarialconditions, including (i) severedynamicconstraintson the motion of the robot, (ii)
moving obstacles,and(iii) varioustime delaysanduncertaintiesinherentto an integratedsystem
operatingin a physical environment. In particular, they demonstratethat the efficiency of the
plannerenablesit to beusedin realtimewhenobstaclestrajectoriesarenotknown in advance.

In thefuture,we planto apply theplannerto environmentswith morecomplex geometryand
robotswith higherdofs. Geometricalcomplexity increasesthe costof collision checking,but as
discussedin Section2.4, hierarchicalalgorithmscandealwith this issueeffectively. In fact, a
similar, but simplerplannerhasbeenusedsuccessfullyto computegeometricdisassembly paths
with CAD modelshaving up to 200,000triangles[HLM99] .

We arealsointerestedin reducingthestandarddeviationof runningtimesfor our randomized
planner. Quitepossibly, the thin andlong tail of the runningtime distribution shown in Figure9
is typical of all PRM plannersdeveloped so far. However, it is more important to reduceit for
single-queryplanners,becausethey are intendedto be usedinteractively or in real time. Large
standarddeviationsin thesesettingsareclearlyundesirable.

More importantly, we needto further develop tools to analyzethe efficiency of randomized
motionplanners.Thenotionof expansivenessis astepforwardin thatdirection.However, thepa-
rameterscharacterizinganexpansivespacecannotbeeasilydetermined,andsowecannotdecide,
in advance,thenumberof milestonesneededfor agiven query. It is importantto continuelooking
for new analysistools; if we cannotmeasurethe performanceof thesealgorithms quantitatively,
wewill notbeableto compare,improve, andthusadvanceourunderstandingof them.
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