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Abstract: This paper studies the motion of a large and highly mobile six-legged lu-
nar vehicle called athlete, developed by the Jet Propulsion Laboratory. This vehicle
rolls on wheels when possible, but can use the wheels as feet to walk when neces-
sary. While gaited walking may suffice for most situations, rough and steep terrain
requires novel sequences of footsteps and postural adjustments that are specifically
adapted to local geometric and physical properties. This paper presents a planner
to compute these motions that combines graph searching techniques to generate a
sequence of candidate footfalls with probabilistic sample-based planning to generate
continuous motions to reach them. The viability of this approach is demonstrated
in simulation on several example terrains, even one that requires rappelling.

1 Introduction

In this paper we describe the design and implementation of a motion planner
for a six-legged lunar vehicle called athlete (All-Terrain Hex-Limbed Extra-
Terrestrial Explorer), shown in Fig 1. This large and highly mobile vehicle
was developed by the Jet Propulsion Laboratory (jpl).3 It can roll rapidly on
rotating wheels over flat smooth terrain and walk carefully on fixed wheels over
irregular and steep terrain. In particular, athlete is designed to scramble
across terrain so rough that a fixed gait (for example, an alternating tripod
gait) may prove insufficient. Such terrain is abundant on the Moon, most of
which is rough, mountainous, and heavily cratered – particularly in the polar
regions, a likely target for future surface operations. These craters can be of
enormous size, filled with scattered rocks and boulders of a few centimeters
to several meters in diameter (Fig. 2). Crater walls are sloped at angles of
between 10-45◦, and sometimes have sharp rims [19].

On this type of terrain, athlete’s walking motion is governed largely by
two interdependent constraints: contact (keep wheels, or feet, at a carefully

3 The views presented in this paper do not reflect those of nasa or jpl.
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Fig. 1. The athlete lunar vehicle (developed by jpl).

Fig. 2. Pictures of lunar terrain from Apollo missions [19].

chosen set of footfalls) and equilibrium (apply forces at these footfalls that
exactly compensate for gravity without causing slip). The range of forces that
may be applied at the footfalls without causing slip depends on their geom-
etry (for example, average slope) and their physical properties (for example,
coefficient of friction), both of which vary across the terrain. So every time
athlete takes a step, it faces a dilemma: it can’t know the constraints on
its subsequent motion until it chooses a footfall, a choice it can’t make until
it knows where it will step next. Direct teleoperation does not help to resolve
this dilemma – on the contrary, teleoperation can be difficult and painfully
slow for robots like athlete [6].

To handle this dilemma in our planner, we make a key design choice (Sec-
tion 3) – to choose footfalls before computing motions. We begin by identifying
a number of potentially useful footfalls across the terrain. Each mapping of
athlete’s feet to a set of footfalls is a stance, associated with a (possibly
empty) set of feasible configurations that satisfy all motion constraints (in-
cluding contact and equilibrium). Athlete can take a step from one stance to
another if they differ by a single footfall and if they share some feasible config-
uration, which we call a transition. Our planner proceeds in two stages: first,
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we generate a candidate sequence of footfalls by finding transitions between
stances; then, we refine this sequence into a feasible, continuous trajectory by
finding paths between subsequent transitions. We do this because athlete’s
motion on irregular and steep terrain is most constrained just as it places a
foot at or removes a foot from a footfall. At this instant, athlete must be
able to reach the footfall (contact) but can not use it to avoid falling (equi-
librium). So footfalls are the “bottleneck” of any motion – if we can find two
subsequent transitions, it is likely we can find a path between them. This
statement has been verified in our experiments.

We implement our planner using an approach similar to [6] and [18] that
combines graph searching techniques to generate a sequence of candidate foot-
falls with probabilistic sample-based planning to generate continuous motions
to reach them. But several key tools embedded in this framework (Section 4)
are tailored specifically to athlete. We need a method of sampling feasible
configurations (from scratch as well as via perturbation) and of connecting
pairs of configurations with local paths, hard since athlete has many degrees
of freedom and many closed-loop chains. We also need a heuristic to generate
footfalls and to guide our search through the collection of stances, hard since
lunar terrain is difficult (so careful selection of footfalls is important) but not
extreme (so the number of candidate stances is enormous). Finally, we need
to smooth athlete’s motion both to look natural when interacting with a
human operator – hard since the robot is not anthropomorphic – and to help
avoid disturbing the ground (for example, by toppling rock).

Simulation results (Section 5) demonstrate the viability of our approach.
We also show the flexibility of our implementation by adapting it to rappelling
as well as walking motions of athlete.

2 Related work

2.1 Application

Some humanoids are capable of walking over somewhat uneven terrain [28,49].
Other legged robots are capable of walking over rougher terrain, including
quadrupeds [20], hexapods [26,43], parallel walkers [48], and spherically sym-
metric robots [35]. Wheeled robots with active or rocker-bogie suspension can
also traverse rough terrain by changing wheel angles and center of mass posi-
tion [14,23,29]. Careful descent is possible by rappelling as well, using either
legs [3, 21, 46] or wheels [32]. The terrain we consider for athlete is even
more irregular and steep than in most previous applications, although not as
steep as for free-climbing robots [6].

Careful walking also resembles dexterous manipulation. Athlete grasps
the terrain like a hand grasps an object, placing and removing footfalls rather
than finger contacts. Athlete has to remain in equilibrium as it moves (only
the object must remain in equilibrium during manipulation), and uses fewer
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contact modes while walking (no sliding or rolling), but still faces similar chal-
lenges [4, 34]. Manipulation planning, involving the rearrangement of many
objects with a simple manipulator, is another related application. A manipu-
lator takes a sequence of motions with and without a grasped object (different
states of contact) just like athlete takes a sequence of steps [2].

2.2 Planning

In order to walk, athlete must plan both a sequence of footfalls and con-
tinuous motions to reach them. Previous approaches differ primarily in which
part of the problem they consider first:

(a) Motion before footfalls. When it does not matter much where a robot
contacts its environment, it makes sense to compute the robot’s (or object’s)
overall motion first. For example, a manipulation planner might generate a
trajectory for the grasped object ignoring manipulators, then compute manip-
ulator trajectories that achieve necessary re-grasps [25]. Similarly, a humanoid
planner might generate a 2-d collision-free path of a bounding cylinder, then
follow this path with a fixed gait [27,36]. A related strategy is to plan a path
for the center of mass, then to compute footfalls and limb motions that keep
the center of mass stable [13]. These techniques are fast, but do not extend
well to irregular and steep terrain.

(b) Footfalls before motion. When the choice of contact location is critical,
it makes sense to compute a sequence of footfalls first. Most work is based on
the approach to manipulation planning proposed by [2], which expresses con-
nectivity between different states of contact as a graph. For “spider-robots”
walking on horizontal terrain, the exact structure of this graph can be com-
puted quickly using analytical techniques [5]. For more general systems, the
graph can sometimes be simplified by assuming partial gaits, for example re-
stricting the order in which limbs are moved [40] or restricting footsteps to
a discrete set [28]. But when motion is distinctly non-gaited (as in manipu-
lation planning [33,37], free-climbing [6], or for athlete), each step requires
the exploration of configuration space. This motivates the two-stage search
strategy we adopt in Section 3.

2.3 Key tools

Each of the tools embedded in our planner improves and extends previous
techniques to satisfy the specific needs of athlete:

(a) Sampling and local connection. We use a variant of the Probabilistic-
Roadmap (prm) approach (see Chap. 7 of [11]) to generate transitions between
stances (configurations that are feasible at both one stance and another) as
well as paths between transitions. A prm planner samples configurations at
random, retaining feasible ones as milestones and connecting close milestones
if possible with feasible local paths. Its performance depends on fast methods
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of sampling and local connection, either from scratch across all of configu-
ration space [24] or via perturbation by growing trees from existing mile-
stones [1, 22, 30]. Closed kinematic chains (athlete has many) make both
of these operations harder because there is zero probability that an arbitrary
configuration will satisfy the closure constraints. One approach breaks chains
into “active” and “passive” joints, sampling a configuration of the active joints
and using analytical inverse kinematics to solve for the rest [12, 17]. Another
approach uses numerical optimization to move a configuration onto the con-
straint manifold [18,45,47]. We use a combination of these two methods.

(b) Heuristics for footfall selection. A variety of heuristics have been pro-
posed for estimating the usefulness of a footfall. Most are geometric criteria
that determine how flat a footfall is [9,10,31]. On irregular and steep terrain,
however, the usefulness of a footfall also depends on its location with respect
to other footfalls – in particular, on how these footfalls are combined in each
stance. We use these heuristics to guide the search for a candidate sequence
of stances to reach a goal position, similar to [10,41].

(c) Path smoothing. Paths generated by a prm planner are feasible, but
not necessarily optimal. A number of methods have been suggested to im-
prove the result, including “short-cut” heuristics [24,42] and gradient descent
algorithms [15, 44]. We use a similar approach. But in addition to being safe
and efficient, athlete’s motions must also “look good” to human operators.

3 Design of the motion planner

3.1 Motion constraints

A configuration of athlete, denoted q, is a parameterization of the robot’s
placement in 3-d space. In the following, q consists of 6 parameters defining
the position and orientation of the robot’s hexagonal chassis and a list of 36
joint angles (each leg has six actuated, revolute joints). The set of all such q
is the configuration space, denoted Q, of dimensionality 42.

When athlete is walking, a brake is applied to each wheel so it can not
roll. In this case, we call each wheel a foot. Whenever a foot is placed in contact
with the terrain, we call this placement (the fixed position and orientation of
a wheel in 3-d space) a footfall. Since all feet are identical, potentially any foot
could be placed at any footfall. We call a specific mapping of feet to footfalls a
stance. Consider a stance σ with 3 ≤ N ≤ 6 footfalls (in general, at least three
are required to achieve statically stable equilibrium). The feasible space Fσ is
the set of all feasible configurations of the robot at stance σ. To be in Fσ, a
configuration q must satisfy several constraints:

(a) Contact. The N legs whose feet are in contact with the ground form a
linkage with multiple closed-loop chains. So, q must satisfy inverse kinematic
equations. Let Qσ ⊂ Q be the set of all configurations q that satisfy these
equations. This set Qσ is a sub-manifold of Q of dimensionality 42− 6N ,



6 Kris Hauser, Timothy Bretl, Jean-Claude Latombe, and Brian Wilcox

which we call the stance manifold. This manifold is empty if it is impossible
for the robot to achieve the contacts specified by σ, for example if two contact
points are farther apart than the maximum span of two legs.

(b) Static equilibrium. To remain balanced, athlete must be able to apply
forces with its feet on the terrain that compensate for gravity without slip-
ping. A necessary condition is that athlete’s center of mass (cm) lie above a
support polygon. But on irregular and steep terrain, the support polygon does
not always correspond to the base of athlete’s feet. For example, athlete
will slip off a flat and featureless slope that is too steep, regardless of its cm
position. To compute the support polygon, we model the contact interface at
each footfall as a frictional point. Let r1, . . . , rN ∈ R3 be the position, νi ∈ R3

be the normal vector, µi be the static coefficient of friction, and fi ∈ R3 be the
reaction force acting on the robot at each point. We decompose each force fi

into a component νT
i fiνi normal to the terrain surface (in the direction νi)

and a component (I − νiν
T
i )fi tangential to the surface. Let c ∈ R3 be the

position of athlete’s cm (which varies with its configuration). Assume ath-
lete has mass m, and the acceleration due to gravity is g ∈ R3. All vectors
are defined with respect to a global coordinate system with axes e1, e2, e3,
where g = −‖g‖e3. Then athlete is in static equilibrium if

N∑
i=1

fi + mg = 0 (force balance) (1)

N∑
i=1

ri × fi + c×mg = 0 (torque balance) (2)

‖(I − νiν
T
i )fi‖2 ≤ µiν

T
i fi for all i = 1, . . . , N. (friction cones) (3)

These constraints are jointly convex in f1, . . . , fN and c. In particular, (1)-(2)
are linear and (3) is a second-order cone constraint. In practice we approxi-
mate (3) by a polyhedral cone, so the set of jointly feasible contact forces and
cm positions is a high-dimensional polyhedron [6–8]. Finally, since

c×mg = m‖g‖

−c · e2

c · e1

0


then (1)-(2) do not depend on c · e3 (the cm coordinate parallel to gravity),
so the support polygon is the projection of this polyhedron onto the coordi-
nates e1, e2. There are many ways to compute this projection and to test the
membership of c. An approach that works well for our application is [7].

(c) Joint torque limits. The above equilibrium test assumes athlete is
a rigid body, “frozen” at configuration q. In reality, to maintain q each joint
must exert a torque, which in turn must not exceed a given bound. Let τ be
the vector of all joint torques exerted by the robot, and let ‖·‖ be a weighted
L∞ norm where ‖τ‖ < 1 implies that each joint torque is within bounds. Then
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we check joint torque limits by computing τ that achieves equilibrium with
minimum ‖τ‖ (a linear program), and verify ‖τ‖ < 1.

(d) Collision. In addition to satisfying joint angle limits, the robot must
avoid collision with the environment (except at contact points) and with itself.
We use techniques based on bounding volume hierarchies to perform collision
checking, as in [16,39].

3.2 Two-stage search

To walk from once place to another, athlete has to take a sequence of
steps. Formally, we define a step as any continuous motion at a fixed stance
that terminates by either placing or removing a foot. In particular, let σ and
σ′ be the stances before and after a step, respectively. Then this step is a
continuous path from the robot’s current configuration qinitial ∈ Fσ to some
configuration qfinal ∈ Fσ ∩ Fσ′ that we call a transition. During this step,
athlete may move all legs simultaneously, but we assume that no two feet
are placed or removed simultaneously. Therefore, σ and σ′ differ only by a
single footfall, which is present in only one of the two stances.

We encode the connectivity among stances as a stance graph. Each node of
this graph is a stance. Two nodes σ and σ′ are connected by an edge if there
is a transition between Fσ and Fσ′ . So the existence of an edge in the stance
graph is a necessary condition for athlete to take a step from one stance
to another. Both necessary and sufficient conditions are provided by a transi-
tion graph. Each node of this graph is a transition. Two nodes q ∈ Fσ ∩ Fσ′

and q′ ∈ Fσ ∩ Fσ′′ are connected by an edge if there is a continuous path be-
tween them in Fσ. The stance and transition graphs represent the connectivity
of athlete’s configuration space at coarse and fine resolutions, respectively.

Our planner interweaves exploration of the stance graph and the transition
graph, based on the method of [6]. The algorithm Explore-StanceGraph
searches the stance graph (Fig. 3). It maintains a priority queue Q of nodes to
explore. When it unstacks σfinal, it computes a candidate sequence of nodes
and edges from σinitial. The algorithm Explore-TransitionGraph verifies
that this candidate sequence corresponds to a feasible motion by searching a
subset of the transition graph (Fig. 3). It explores a transition q ∈ Fσ ∩ Fσ′

only if (σ, σ′) is an edge along the candidate sequence, and a path be-
tween q, q′ ∈ Fσ only if σ is a node along this sequence. We say that Explore-
TransitionGraph has reached a stance σi if some transition q ∈ Fσi−1 ∩ Fσi

is connected to qinitial in the transition graph. The algorithm returns the in-
dex i of the farthest stance reached along the candidate sequence. If this is
not σfinal, then the edge (σi, σi+1) is removed from the stance graph, and
Explore-StanceGraph resumes exploration.

The effect of this two-stage search strategy is to postpone the generation
of one-step paths (a costly computation) until after generating transitions.
It works well because, as we mentioned in Section 1, athlete’s motion on
irregular and steep terrain is most constrained just as it places or removes a
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Explore-StanceGraph(qinitial, σinitial, σfinal)

1 Q← {σinitial}
2 while Q is nonempty do
3 unstack a node σ from Q
4 if σ = σfinal then
5 construct a path [σ1, . . . , σn] from σinitial to σfinal

6 i← Explore-TransitionGraph(σ1, . . . , σn, qinitial)
7 if i = n then
8 return the multi-step motion
9 else

10 delete the edge (σi, σi+1) from the stance graph
11 else
12 for each unexplored stance σ′ adjacent to σ do
13 if Find-Transition(σ, σ′) then
14 add a node σ′ and an edge (σ, σ′)
15 stack σ′ in Q
16 return “failure”

Explore-TransitionGraph(σi, . . . , σn, q)

1 imax ← i
2 for q′ ← Find-Transition(σi, σi+1) in each component of Fσi ∩ Fσi+1 do
3 if Find-Path(σi, q, q

′) then
4 icur ← Explore-TransitionGraph(σi+1, . . . , σn, q′)
5 if icur = n then
6 return n
7 elseif icur > imax then
8 imax = icur

9 return imax

Fig. 3. Algorithms to explore the stance graph and the transition graph.

foot. In our experiments we have observed that if we can find q ∈ Fσ ∩ Fσ′

and q′ ∈ Fσ ∩ Fσ′′ , then a path between q and q′ likely exists in Fσ.
A number of tools are embedded in this framework (the subroutines Find-

Transition and Find-Path, a heuristic for ordering Q, and a method of
smoothing the resulting motion) that we discuss in the following section.

4 Tools to support the motion planner

4.1 Generating transitions

Both Explore-StanceGraph and Explore-TransitionGraph require
the subroutine Find-Transition to generate transitions q ∈ Fσ ∩ Fσ′ be-
tween pairs of stances σ and σ′. To implement Find-Transition, we use
a sample-based approach. The basic idea is to sample configurations ran-
domly in q ∈ Q and reject them if they are not in Fσ ∩ Fσ′ . But since Qσ
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has zero measure in Q, this approach will never generate a feasible transition.
So like [12,45,47], we spend more time trying to generate configurations that
satisfy the contact constraint at σ (hence, at σ′ if σ′ ⊂ σ) before rejecting
those that do not satisfy other constraints. Like [18], we do this in two steps:

(a) Create a candidate configuration that is close to Qσ. First, we create a
nominal position and orientation of the chassis: (1) given a stance σ, we fit a
plane to the footfalls in a least-squares sense; (2) we place the chassis in this
plane, minimizing the distance from each hip to its corresponding footfall;
(3) we move the chassis a nominal distance parallel to the plane-fit and away
from the terrain. Then, we sample a position and orientation of the chassis in a
Gaussian distribution about this nominal placement. Finally, we compute the
set of joint angles that either reach or come closest to reaching each footfall.
Note that a footfall fixes the intersection of the ankle pitch and ankle roll
joints relative to the chassis (Fig. 1). The hip yaw, hip pitch, and knee pitch
joints determine this position. There are up to four inverse kinematic solutions
for these joints – or, if no solutions exist, there are two configurations that
are closest (straight-knee and completely bent-knee). The knee roll, ankle roll,
and ankle pitch determine the orientation of the foot, for which there are two
inverse kinematic solutions. We select a configuration that satisfies joint-limit
constraints; if none exists, we reject the sample and repeat.

(b) Repair the candidate configuration using numerical inverse kinematics.
We move the candidate configuration to a point in Qσ using an iterative
Newton-Raphson method. We represent the error in position and orientation
of each foot i as a differentiable function fi(q) of the configuration q. Let

g(q) =

 f1(q)
...

fN (q)


so we can write the contact constraint as the equality g(q) = 0. Assume we
are given a candidate configuration q1. Then at each iteration k, we transform
this configuration by taking the step

qk+1 = qk − αk∇g(qk)−†g(qk),

where ∇g(qk)−† is the pseudo-inverse of the gradient of the error function,
and αk is the step size (computed using backtracking line search). The al-
gorithm terminates with success if at some iteration ‖g(qk)‖ < ε for some
tolerance ε, or with failure if a maximum number of iterations is exceeded.

The first step rarely generates configurations in Qσ, but it quickly gen-
erates configurations that are close to Qσ. Conversely, the primary cost of
the second step is in computing ∇g(qk)−† at every iteration, but if candidate
configurations are sufficiently close to Qσ then few iterations are necessary.
So, it is the combination of these two methods that makes our sampler fast.

Note that Explore-TransitionGraph additionally requires that we
sample a single transition in each connected component of Fσ ∩ Fσ′ . Our
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Free-Path(q, q′)

1 if the distance from q to q′ is less than ε then
2 return true
3 qmid ← (q + q′)/2
4 if Newton-Raphson from qmid results in qmid ∈ Qσ then
5 if qmid ∈ Fσ then
6 return (Free-Path(q, qmid) & Free-Path(qmid, q′))
7 else
8 return false
9 else

10 return false

Fig. 4. Algorithm to connect close configurations with a local path.

approach is not guaranteed to do this, but the probability that it samples at
least one in each component increases with the number of samples.

4.2 Generating paths between transitions

Explore-TransitionGraph requires the subroutine Find-Path to gener-
ate paths in Fσ between pairs of transitions q ∈ Fσ ∩ Fσ′ and q′ ∈ Fσ ∩ Fσ′′ .
We use a variant of the probabilistic roadmap approach called sbl that is bi-
directional (growing trees from both q and q′) and lazy (delaying the creation
of local paths until a candidate sequence of milestones is found) [38].

To sample configurations in Fσ, we face the same challenge discussed in the
previous section (that a random configuration has zero probability of being
in Qσ), and so we use a similar approach. However, in this case we can focus
our search on a small part of feasible space, near existing milestones in each
tree of the roadmap. Rather than sample a candidate configuration q ∈ Q at
random, we sample it in a neighborhood of an existing configuration q0. Close
to q0, the shape of Qσ is approximated well by the hyperplane

{ p ∈ Q | ∇g(q0)T p = ∇g(q0)T q0 }.

So before applying the iterative method to repair the sampled configuration,
we first project it onto this hyperplane (as in [47]).

To connect milestones with local paths, we face a similar challenge, since
the straight-line path between any two configurations q and q′ will not (in
general) lie in Qσ. So, we deform this straight-line path into Qσ using the
bisection method Free-Path (Fig. 4). At each iteration, Free-Path first
applies Newton-Raphson (see Section 4.1) to the midpoint of q and q′ to
generate qmid ∈ Qσ, then it checks that qmid ∈ Fσ. If both steps succeed, the
algorithm continues to recurse until a desired resolution has been reached;
otherwise, the algorithm returns failure. The advantage of this approach is
that it does not require a direct local parameterization of Qσ, as it may be
difficult to compute such a parameterization that covers both q and q′.
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4.3 Ordering the graph search

Our two-stage search strategy can be improved by ordering the stances in Q
according to a heuristic cost function g(σ) + h(σ) in Explore-StanceGraph,
where stances with lower cost are given higher priority. We define g(σ) as the
minimum number of steps required to reach σ from σinitial in the stance graph.
We define h(σ) as a weighted sum of several criteria:
• Planning time. We increase the cost of σ proportional to the amount of

time spent trying to sample a transition q ∈ Fσ′ ∩ Fσ to reach it [33].
• Distance to goal. We increase the cost of σ proportional to the distance

between the centroid of its footfalls and those of the goal stance σfinal.
• Footfall distribution. We increase the cost of σ proportional to the differ-

ence (in a least-squares sense) between its footfalls and those of a nominal
stance on flat ground (with footfalls directly under each hip).

• Equilibrium criteria. We increase the cost of σ inversely proportional to
the area of its support polygon.

This heuristic reduces planning time and improves the resulting motion. It
also allows us to relax an implicit assumption – that Find-Transition
and Find-Path always return “failure” correctly. Because we implement these
subroutines using a probabilistic, sample-based approach, we are unable to
distinguish between impossible and difficult queries. So on failure of Find-
Transition in Explore-StanceGraph, we still add σ to the stance graph
but give σ a high cost. Likewise, rather than delete (σ, σ′) on failure of Find-
Path, we increase the cost of σ and σ′.

4.4 Path smoothing

Because we use probabilistic sample-based methods to sample transitions and
plan paths between them, the motions we generate are feasible (given an accu-
rate terrain model) but not necessarily high-quality. To improve the result, we
apply a method of smoothing similar to [15,44], which uses gradient descent to
achieve criteria like minimum path length and maximum clearance (or safety
margin). However, we modify this approach in two ways. First, athlete’s
motion consists of a sequence of short paths (steps) through separate feasible
spaces rather than a single path through one feasible space. We consider this
entire sequence of paths at once (deforming transitions as well as paths) rather
than each one individually. So during the optimization, different parts of ath-
lete’s motion are subject to different constraints. Second, because athlete
is expected to interact with humans, we try to make its motion “look good”
to human operators. We do this by allowing the operator to select, ahead of
time, a small set of nominal configurations (for example, standing on six legs,
standing on three legs, or crouching). Then, in addition to minimizing path
length and maximizing clearance, we also minimize deviation from any point q
along the path to the closest nominal configuration q′. Even a small number
of iterations (taking about 10 minutes on a 2GHz pc) makes a noticeable
difference in motion quality.
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5 Implementation and results

We tested our planner in simulation on several example terrains. Each terrain
is a height-map of the form z = f(x, y), created using a fractal generation
method and represented by a triangular mesh consisting of 32768 triangles,
each about the size of one of athlete’s wheels. Currently, we randomly sam-
ple 200 footfalls in each terrain to use in our planner, relying on our graph
search heuristic (Section 4.3) to identify which of these footfalls are useful. We
are working on ways to better refine our selection of footfalls (for example,
during incremental sensing), but right now the benefit is marginal.

First, we show that our planner enables athlete to walk across varied
terrain. Fig. 5 shows motion on smooth, undulating ground (where all contacts
are modeled with the same coefficient of friction). The initial and final stances
are at a distance of about twice the radius of athlete’s chassis. The resulting
motion consisted of 66 steps. Total computation time was 14 minutes. Fig. 6
shows motion on irregular and steep ground. The resulting motion consisted
of 84 steps. Total computation time was 26 minutes. For comparison, Fig. 7
shows the result of applying a common fixed gait (an alternating-tripod) to
both of these terrains. On smooth ground, the gait works well – it is simpler to
plan, and results in more efficient motion (Fig. 7(a)). On irregular and steep
ground, however, the gait does not work at all – it causes athlete to lose
balance or exceed torque limits at several locations (Fig. 7(b)).

Our results also demonstrate that the planner is flexible enough to handle
different robot morphologies. Fig. 8 shows motion to descend irregular and
steep terrain at an average angle of about 60◦. In this example, athlete is
rappelling, using a tether (anchored at the top of the cliff) to help maintain
equilibrium. We included the tether with no modification to our planner, treat-
ing it as an additional leg with a different kinematic structure. The resulting
motion consisted of 32 steps. Total computation time was 16 minutes.

6 Conclusion

In this paper we described the design and implementation of a motion plan-
ner for a six-legged lunar vehicle called athlete, developed by jpl. This
vehicle has wheels on the end of each leg, but can fix these wheels to walk
carefully over terrain so rough that a fixed gait is insufficient. We made a key
design choice in our planner – to choose footfalls before computing motions –
because on this type of terrain, athlete’s motion is most constrained just
as it places or removes a foot. We presented several tools embedded in our
planner (for sampling, local connection, search heuristics, and path smooth-
ing) that extend previous techniques to satisfy the specific needs of athlete.
We demonstrated the flexibility of our planner with simulation results that
included both walking and rappelling motions on several example terrains.

There are many opportunities for future work. For example, our planner
takes a reasonable amount of time for off-line computation (less than one
hour), so it may help human pilots at jpl design difficult motions more quickly.
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Fig. 5. Walking on smooth, undulating terrain with no fixed gait.

Fig. 6. Walking on steep, uneven terrain with no fixed gait.

(a) (b)

Fig. 7. Walking with an alternating tripod gait is (a) feasible on smooth terrain
but (b) infeasible on uneven terrain. Infeasible configurations are highlighted red.
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Fig. 8. Rappelling down an irregular 60◦ slope with no fixed gait.

A similar approach was used to plan motions for the recent Mars rovers.
However, our planner is still too slow to be used on-the-fly (which may require
computation times of less than five minutes). We are working to derive motion
strategies or other methods of model reduction to address this problem. Other
important issues include incremental sensing and a consideration of dynamics.

Acknowledgments. This work was supported by the rtlsm grant from
nasa-jpl, specifically for the athlete project.
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