SUBMITTED TO
|EEE International Conference on Robotics and
Automation, 2000

Kinodynamic M otion Planning Amidst M oving Obstacles

Robert Kindel* David Hsu'

*Department of Aeronautics& Astronautics

Jean-Claude Latombef

Stephen Rock*
T Department of Computer Science

Sanford University
Stanford, CA 94305, U.SA.

Abstract

This paper presentsarandomized motion planner for kinodynamic
asteroid avoidanceproblems, in which arobot must avoid collision
with moving obstacles under kinematic and dynamic constraints.
Inspired by probabilistic-roadmap (PRM) techniques, the planner
samples the statex time space of arobot by picking control inputs
at random in order to compute aroadmap that capturesthe connec-
tivity of the space. The planner does not precomputearoadmap as
most PRM planners do, since this requires knowledge of obstacle
trajectories well in advance. Instead, for each planning query, it
triesto generateasmall roadmap that connectsthe giveninitial and
goal states. A major differencewith PRM plannersisthat the com-
puted roadmap is a directed graph oriented along the time axis of
the space. To verify the planner’s effectiveness in practice, it was
tested it both in simulated environments containing many moving
obstaclesand on areal robot under strict dynamic constraints.

1 Introduction

In this paper, we consider kinodynamic asteroid avoidance
problems, aclass of motion planning problemsthat takeinto
account both kinematic and dynamic constraints on robots,
aswell as moving obstaclesin the environment. We present
a simple, efficient randomized algorithm for kinodynamic
asteroid avoidance problems and demonstrate its efficiency
in both simulation and hardwareimplementation (Figure 1).

The primary motivation of our work is to control rigid-
body space robots at the task level. Space robots are often
under severe dynamic constraints due to limited actuator
forces and torques. They will perform various tasks, in-
cluding inspection and assembly, amid moving obstacles,
e.g., other robotsand astronauts. Automated means to con-
trol their motion are needed in order to free astronautsfrom
the tedioustask of teleoperating them.

The planner that we propose is nevertheless general and
not limited to space robots. In addition to the experiments
that will be described in Section 3, it has also been applied
to nonholonomic vehicle navigation [9]. Another important
potential application of our planner isthe design and control
of complex, multi-robot manufacturing cells.

Kinodynamic motion planning and asteroid avoidance
have both been separately investigated in the literature:

- Kinodynamic planning [6] refers to planning prob-
lems in which the robot’s dynamics must be taken into

Figure 1. The testbed for our planner. The robot and obstacles float
frictionlessly on agranitetable.

account. One approach divides the solution into two main
steps[4, 18]. Firgt, ignorethe dynamic constraintsand com-
pute a collision-free path. Second, deform this path into a
trgectory that conforms to the dynamic constraints with an
optimization procedure. However, the final trajectory thus
obtained may be far from optimal, a drawback that would
serioudly complicate the extension of the approach to en-
vironments with moving obstacles. Another approach is
to discretize the robot’s state space and search it for atra
jectory directly, using dynamic programming [6]. This ap-
proach offers provabl e performance guarantees, but isonly
applicable to robots with few degrees of freedom (dofs) —
typicaly 2 or 3 — since the size of the discretization grid
grows exponentialy with the number of dofs.

- Asteroid avoidance problems reguire planning trgj ecto-
ries among moving obstacles with known trgjectories [16].
The robot’s velocity and acceleration may or may not be
upper-bounded. Asteroid avoidance problems are provably
hard, even with a small number of dofs [16, 5. Effective
algorithms[7] exist in some specific cases, but they usually
do not consider constraintson the robot’smotion other than
an upper-bound on itsvelocity.

The agorithm proposed in this paper is inspired by the
success of probabilistic roadmap (PRM) techniques for
planning geometric paths of robots with many dofs [1, 10,
12]. A PRM planner computes a path by sampling the

robot’s configuration space at random and connecting the
generated samples, called milestones, by simple canonical
paths (typically, straight-line segments in the configuration
space). Theresultisaundirected graph called aprobabilistic
roadmap. Some PRM planners precompute a roadmap [12]
in order to process planning queries as fast as possible; oth-
ers compute anew roadmap for each new query [10] in order
to deal with changing environments more efficiently. It can
be shown that under reasonable geometric assumptions on
the configuration space, a small number of milestones are
sufficient to capture the connectivity of the space with high
probability [11, 10]. Despitethe success of PRM techniques,
the use of random sampling techniques for nonholonomic
and kinodynamic motion planning has been limited [19] be-
cause PRM planners require appropriate canonical pathsto
connect two given milestones. Constructing such canon-
ical paths in the presence of nonholonomic and dynamic
constraintsis only possible for relatively simple robots.

To overcome this difficulty our planner incrementally
builds a new roadmap in the statex time space of a robot
for each planning query. A state encodes both the con-
figuration and the velocity of the robot. To sample a new
milestone, the planner sel ectsacontrol input a random from
the set of admissible controlsand integrates the equati ons of
motion under thiscontrol input from a previously generated
milestone for a short duration of time. By construction, the
trgjectory thus obtained automatically satisfies the motion
constraints. If it does not collide with the obstacles, the
state that it reachesis stored in the roadmap as a milestone.
Thisiterative processyieldsadirected tree-shaped roadmap
rooted at theinitial state and oriented along thetime axis. It
ends when amilestoneis close enough to the goa state (we
will be more precise about thisin Section 2).

The idea of generating a new milestone by selecting a
control input and integrating the equati ons of motion, rather
than directly sampling the configuration (or the state) space
was originally proposed and applied in [3] to solve non-
holonomic planning problems with a deterministic sam-
pling agorithm, and it was recently used in [13] to solve
kinodynamic problemsin static environmentswith random-
sampling techniques. On the other hand, the fact that our
planner produces roadmaps in the form of directed graphs
(trees, to bemoreprecise) oriented along thetimeaxismakes
our planner quite different from previous PRM planners.

We tested the planner’s effectiveness both in ssimulated
environments and on a rea robot. In simulated envi-
ronments, we verified that the planner can solve difficult
motion-planning problems involving many moving obsta-
cles. With area robot, we checked that our planner can
be integrated into a larger system. In our hardware experi-
ments, the obstacles move at constant linear vel ocities and
are detected by a vision system just before planning; the
planner must then return a trajectory in a fixed amount of

time (0.25 5). Inall the experiments presented in this paper,
the robot is modeled as a disc moving in two dimensions.
We aso tested the planner on a 6-dof articulated nonhol o-
nomic robot in static environments [9]. These additional
experiments, as well as previous PRM results with many-
dof robots, lead us to expect that our planner will scale up
well with the number of dofs of the robot.

The rest of the paper is organized as follows. Section 2
describes the planner. Section 3 presents experimenta re-
sultsin simulation. Section 4 describesimplementation and
experimental results of our planner on areal robot. Finaly,
Section 5 discusses current and future research.

2 Description of the Planner

State space formulation We consider arobot whose mo-
tion is described by an equation of the form

(j:f(Qau)a (1)

whereq € C, u € Q, f isasmooth function, and ¢ denotes
the derivative of ¢ with respect to time. The set C isthe
state space of the robot, that is, the set of distinguishable
states that the robot may be in at any given time. The set
2 represents the control space, i.e, the set of admissible
values for the control input. Eq. (1) specifies the rate of
change of the robot’s state over time (¢) as a function of
the the current state ¢ and the control input «. With no loss
of generality, we assume that C and €2 are subsets of R”
and R™, respectively. Eq. (1) is quite general and covers
many robotswith complex dynamics and/or nonholonomic
constraints.

In the version of the planner presented here, the robot is
modeled as a disc with point-mass, non-dissipative dynam-
ics. This robot trandates in the plane among moving and
static obstacles. We let (z1, 25) and («1, #2) denote the
position and velocity of this robot. We define the state of
therobot as ¢ = (x1, 22,21, 22) € R%. The control input
u is the force exerted by the actuators; the magnitude of
this force is bounded, but its orientation is unconstrained.
Let (u1,us) denote the components of thisforce along the
z1 and z- axes, respectively. Assuming a unit-mass robot,
Newton’s law yieldsthe following control equations:

T =g T2 = ug,
where #; and z» are the components of the robot’s accel er-
ation. The bound on the control input leadsto the additional
constraint u? +u3 < M, which defines 2 asasubset of R?.
We could aso bound the robot’ s vel ocity as well.

Consider the statextime space C x [0, +o0). Given any
point (g¢,%o) in this space and a fixed control input «, we
can compute the trgjectory followed by the robot over the
time interval ¢ > t,. A planning query is specified by
an initial and a goa statextime, denoted by (¢;,¢;) and

(q4,t4), respectively. A solution to this query is a finite
sequence of fixed control inputs, each applied over adefined
time interval, such that these inputs induce a collision-free
trgjectory from state ¢; at time¢; to state ¢, a time¢,. In
our planner, we set ¢; to be 0 and we constrain ¢, to bein
some given interval [,, meaning that any arrival timet, in
this interval is acceptable as long as no collision occur in
theinterval [0, 1,].

Inamore general version of the planner, the robot’s con-
trol equations would typicaly contain dynamic couplings
among dofs and dissipative terms. The algorithmic prin-
ciples of the planner described below, and most of the
implementation, would remain unchanged. If the motion
equation is not anaytically integrable, we rely on numeric
techniques, instead.

Roadmap construction Our planner processes a plan-
ning query by iteratively expanding atree 7" of milestones
(the roadmap) generated at random, in a way similar to the
geometric path planner presented in [10]. Here, however,
T isbuilt inthe statex time space of the robot, instead of its
configuration space (thus, it isrooted at (¢;,0)). The sam-
pling strategy isaso different to deal with the kinodynamic
constraints.

At each iteration, a new candidate milestone (¢',¢') is
obtained as follows. Both a milestone (¢,¢) aready in T
and an admissible value « of the control input are picked at
random. The robot’s equation of motion isintegrated from
(¢,t) with the input v, over a duration J also selected at
random from a given interval [0, d,,4.]; hence, t' =t 4 4.
The trgjectory between ¢ and ¢’ is checked for collision
using a version of the discretization technique given in [2]
and adapted to deal with moving obstacles. If no collision
isdetected and ¢’ issmaller than the latest arrival timein 7,
(¢’,t') isincluded as a new milestonein 7', with a directed
edge from (q,t) to (¢',t'). The sdlected control vaue u
is associated with thisedge. In thisway, the kinodynamic
congtraints of therobot are naturaly enforced. If acollision
is detected (¢',t') issimply discarded. If thereisno valid
trgjectory from ¢; to ¢,, then the planner would not exit.
Therefore, we place a limit on the number of iterations it
performs, or onits running time.

The above sampling technique does not alow the planner
to precisely achieve the goa state ¢,. We solve thisissue
as follows. Whenever a new milestone (¢',¢') is added to
T', the planner checks that the third-order spline connecting
(¢',t")to(qq,1g), for somet, iny, iscollision-free. If this
isthecase, (¢4,1,) isinserted into T, with an edge pointing
from (¢, ') to (¢4,t,), and the planner exits with success.
Theeffect of considering thissplineconnectionistoenlarge
thegod into arelatively large endgame region that the sam-
pling technique can eventually attain with high probability.
Other endgame connections could be considered, but for our
simple accel eration-bounded robot the third-order splineis

unique (for agiven ¢,) and easily computed.

Another issue is to avoid an oversampling of any region
of the statextime space, especialy around (¢;,0). Ideally
we would like the milestone distribution to progressively
converge toward a uniform distribution. Our planner han-
dles this issue by selecting at each iteration the milestone
(¢,1t) to expand with aprobability inversely proportional to
the number of other milestones aready in 7" within some
predefined distance of (¢,¢). Another technique proposed
in [13] consists of picking a state uniformly at random in
the state space and choosing the milestone in 7" that is the
closest to this state.

In practice, our planner turns out to be fast and able to
find solutions for difficult problems. To perform collision
checking appropriately, the obstacle trajectories are given
to the planner, but in our experiments with areal robot the
obstacles are detected and their linear velocities measured
by avision system at 60 Hz frame rate just before planning.
The planner must then compl ete the computation of atrajec-
tory within 0.25 s (which has been thecasein almost al our
trials) and thus selects ¢; to be the current time augmented
by 0.25 s.

Several heuristics could be used to bias the randomized
congtruction of the tree I". For example, the choice of the
milestone (¢, ¢) to be expanded at each iteration could be
done using a probabilistic distribution that favors the states
that are closer to ¢, and the control input could be chosen to
generateamilestonethat isevencloser tothegoa. However,
the effectiveness of any such heuristicsis likely to depend
on the kind of planning problems submitted to the planner
(for exampl e, the suggested heuristics might not work well
if obstaclesarelong barriersrequiring long detoursto reach
the goa). Our planner uses no biasing heuristics.

Implementation details Some additional details need to
be specified to compl ete the description of the planner.
Robot and workspace. The workspace is a rectangle of
3 m by 4 m. The robot is modeled as a circular disc with
aradius of 25 cm. Obstacles are dso circular discs with
varied radii, mostly between 10 and 15 cm. The obstacles
move at different, but fixed linear velocities. The velocity
of an obstacle ranges between 0 and 0.2 1/ s.

Control selection. The control input « is a constant accel-
eration of magnitude in [0, 0.036] m/s* and direction in
[0, 27]. At each iteration the magnitude and the direction of
u are selected at random from their respective intervals, in-
dependently and uniformly. The maximal integration time
Omazr 1ISSEEtODE 6.0 5.

Milestone selection. A simple weighting function is used
to avoid oversampling any region of the statex time space,
while avoiding the cost of computing the density of mile-
stones around each milestone. The two-dimensional con-
figuration space of the robot is partitioned into an array of
square bins of equal size. Whenever a new milestone is

inserted in 7', the planner determines the bin to which it
belongs. At each iteration, the planner selects the milestone
(¢,t) to expand by successively picking a bin at random
and a milestone from within this bin. This corresponds
approximatively to selecting a milestone with a probability
inversely proportional tothelocal density of milestones, but
it is much faster to compute. We could have set the binsin
the higher dimensional statex time space, but this was not
determined to be useful for our implementation.

Endgame connection. The connection of each milestone
inserted in 7" to the god state is tested for a maximum of
K different arrival times randomly selected in Z,,. Inall the
experiments reported below, K was set to 10.

Software. The planner is written in C. It runs both on
a Pentium-111 computer (simulation) and on a Sun Sparc
Ultral0 (connected to real robot).

Guarantees of performance In[11, 10] it is shown that
under reasonable geometric assumptions on the free space
F (collision-free subset of the robot’s configuration space),
a PRM path planner generating milestones distributed uni-
formly at random over F' can find a collision-free path with
high probability, whenever one exists. More precisely,
the geometric assumptions are that each configuration in
F' “sees’ a gignificant portion of F (a property called e-
goodness) and that no two regions of & communicate by
a narrow passage (a property called expansiveness). Un-
der those two assumptions, the probability that the PRM
planner fails to find a path between two free configurations
lying in the same connected component of 7 decreases ex-
ponentially toward O with the number of milestonesin the
roadmap.

We have extended this result to our planner in [9]. This
extension requires re-defining e-goodness and expansive-
nessin therobot’s statex time space, by taking into account
that visibility between pointsin that space isnolonger sym-
metrical. But the intuition behind the new definitions and
results remains the same as for geometric path planning.
For lack of space, we refer the reader to [9] for a complete
presentation.

The exponentia convergence of the planner requires a
uniformdistributionof themilestones. Thisiswhy theplan-
ner must avoid oversampling any region in the statex time
space.

3 Experimentsin Simulation

Wenow present experimental resultsobtai ned with our plan-
ner insimulated environments. Asprevioudly indicated, our
main goa was to verify the planner’s ahility to efficiently
solve tricky problems in the presence of a substantial num-
ber of obstacles. Such problems would have been quasi-
impossible to set up within the physical limitations of our
real robot testbed. The simulation problems were crafted
by hand to require delicate maneuvers by the robot. Each

Table 1. Running time and the number of milestones (including endgame
connections) for computed examples.

Example time milestones
mean | std [mean | std
1 0.249 | 0.264 | 2008 | 2229
2 0.270 | 0.285 | 1946 | 2134
3 0.002 | 0.005 22 25

Figure 2. The configurationx time space for Example 2.

obstacle moves at constant linear velocity. Collisions be-
tween obstacles are ignored, meaning that two obstacles
may temporarily overlap without changing their respective
courses. When an obstacle reaches the boundary of the
robot’s workspace, it just leaves the workspace and is no
longer athreat to the robot. The planner is given the obsta-
cle trgjectories, and unlike in the experiments with the real
robot, planning time is not limited. (Thisis eguivaent to
assuming that the obstacles wait for the planner to return
atraectory before moving; when the planner returns atra-
jectory, the time is set to 0, and both the obstacles and the
robot start moving.)

We present three examples. In each example, we ran the
planner 100 timesfor the same query with different seeds of
therandom number generator, and weobtai ned 100 different
trajectories. Table1 liststhemean and standard deviation of
theplanning time, aswell asthemean and standard deviation
of the number of milestones needed for each example. The
planning times are for the planner running on a Pentium-I11
computer at 550 MHz. In every run, the planner successfully
returned atragjectory.

Example 1. Therobot (grey disc) must move from thelower
edge of the workspace to the upper edge in the presence of
10 moving obstacles (black discs). The path computed for
therobotisshowninsolidline, and the paths of the obstacle,
in dashed lines Figure 3.

Example 2. The five moving obstaclesin thisexample offer
asinglesmall openingfor the robot to escape collisionwith
the obstacles that al converge toward the initia position
of the robot (Figure 4). Figure 2 shows the corresponding
configurationxtime space. The robot maps into this space

T=11.2 secs

T =22.4 secs

T =33.7 secs T =44.9 secs

Figure 3. A robot movesamong many moving obstacles. The grey disc indicatesthe robot. Black discsindicate obstacles. The solid and dotted linesindicate

the trajectories of the robot and obstacles respectively.

T =0.0 secs T =9.0 secs

T =20.0 secs

T =30.0 secs T =45.5 secs

Figure 4. A robot movesamong “hostile” obstacles.

T =8.0 secs

T =16.1 secs

T =24.1secs T =32.1secs

Figure 5. An representative environment for space robotic missions.

asapoint (z1, z2,t); the obstacles are grown by therobot’s
radius and are extended into cylindersaong their linear tra-
jectories. The acceleration constraint makes it impossible
for the robot to move through most of the free space and
forces any feasible trgjectory (oneis shown in thefigure) to
pass through the small gap between cylinders to attain the
other side of the free space. The environment is consider-
ably more*hostile” than that expected in most applications.

Example 3. Thisexample (Figureb5), ismore representative
of theenvironmentsthat are expected to occur during typical
space robotic missions. There are two stationary obstacles
near the middl eof theworkspaceand threemoving obstacles
that are aimed not to collide with any other obstacle. The
very small average planning time (.002 s), confirmsthat in
the absence of narrow passages randomized motion planners
are extremely efficient.

4 Experimentson a Real Robot

Testbed description Weconnected our planner tothecon-
troller of the “free-flying” robot testbed in the Stanford
Aerospace Robotics Laboratory. This testbed provides a
frictionless 2D environment for testing robotics technolo-
giesfor space applications. It consistsof a3 m x4 m granite
table providing a flat workspace upon which a robot and a
number of obstacles moving frictionlessly on an air-bearing
(see Figure 1). Previous work with this testbed includes
multi ple-robot assembly [17] and kinodynamic motion plan-
ning in stationary environments [14).

The robot is roughly cylindrical in shape. It is unteth-
ered, carrying al of itsvital systems on-board. Compressed
air is used both to maintain the air-bearing and to provide
propulsion. Eight horizontal thrusters are located in pairs
around the circumference of the robot providing omnidirec-

tiona thrusting capability. Robot control is performed at
60 Hz by a Motorola ppc2604 red-time computer. Com-
munications with the vision system, the planner and user
interface are done over radio ethernet. On-board batteries
provide power for about 30 minutes of full actuation with-
out recharging. The gas tanks provide enough air for half
an hour of station-keeping maneuvers or about 5 minutes of
path following.

The obstacles have no thrusters. They are initidly pro-
pelled by hand from various locations, and then move at
constant speed until they reach the boundary of the table,
where they stop.

Position sensing is performed by an overhead vision sys-
tem. The positiondata output by thissystem are accurate to
0.005 m. The update rate is 60 Hz. VVelocity estimates are
derived from thisposition datato provide vel ocity estimates
with a standard deviation of 0.005 1/ s.

Planning is performed off-board on a Sun Sparc 10 run-
ning at 333 MHz with 128 MB of memory.

Integration of the planner Running the planner on the
hardware testbed raised additional challenges:

Delays. A number of delays exist in any robot system.
Therobot and obstacl e state data arrive asynchronously and
incur a delay of up to 1/30 s each. The execution of the
planner then takes an uncertain amount of time, and the
transmission of the path to the robot takes up to another
1/60 s. If these delays are not taken into account the robot
would thus start out about 0.25 s behind the plan it is at-
tempting to execute. With acceleration limitson thevehicle
it might not be possible to catch up with the planned path
before collision occurs. To eiminatethisproblem, the plan-
ner starts planning assuming the robot will start executing
the yet-to-be-computed trgjectory 0.25 s into the future and
extrapolatestherobot’sinitial positionif itscurrent velocity
isnon-zero. If the total delay ends up being less than that,
then the robot controller will wait until the delay period is
over before moving a ong the planned trgjectory. The delay
of 0.25 s is quite conservetive for the experiments we can
carry in the testbed; we expect that it can be reduced well
below 0.1 s in the future.

Sensor errors. The planner assumes perfect prior knowl-
edge of the obstacle trgjectories in order to compute the
robot trgjectory. The trgjectories of our uncontrolled mov-
ing obstacles are assumed to be straight lines at constant
velocities. But inaccuracy in the measurement of the ve-
locities by the vision sensor, asymmetry in the air-bearing,
and tiny collisionswith dust particles on thetable al cause
the actual obstaclestrajectoriesto be slightly different from
the predicted ones. To correct for these errors, the planner
increases theradius of each moving obstacle asafunction of
time and velocity assuming a constant velocity error term.
In this way the apparent footprint of the obstacle grows
approximately as its uncertainty in position grows.

Trajectory following. The trgjectory received by the robot
contains the desired position, velocity and accel erations for
the motion. A PD-controller with feedforward is used to
track thetrgjectory. A simple thrust-mapper is used to acti-
vate and deactivate the bang-bang thrustersto approximatea
linear plant. Tracking errors average approximately 0.02 m
with a maximum of 0.05 m. The size of the disc modeling
the robot was increased by the maximum tracking error to
ensure safe collision-checking operations.

Results The planner was able to maneuver thefree-flying
robot successfully among static and moving obstacles on
the granite table. In amost al trials, the trajectories were
computed within the 0.25 s planning constraint. Tests were
performed for anumber of different environments. Figure6
shows snapshots of the robot motion during one of the tests.

The planner wastested in canonical situationsto observe
the robot’s behavior. The robot avoided obstacles moving
directly towardit, aswell as obstacl esmoving perpendicul ar
to the line connecting theinitial to the goa position. It also
showed the ability to wait for an opening when confronted
with moving obstaclesin the desired direction of movement
and to move through openings that were less than 10 ¢m
larger than the robot.

Themgjor constraintsontesting were the size of thegran-
ite table relative to that of the robot and the obstacles, the
rigorous limit on the robot’s accel eration, the requirements
that obstacles not collide, and the relatively high uncer-
tainty on their movements. These constraints limited the
complexity of the planning queries and the robot motions
which could be tested.

We expect to bring severa improvements in the future.
In particular, because of the extremely short planning times
provided by the planner, we could use the overhead vision
system to detect unexpected variations in the environment
and replan to accommodate them. We believethat it will be
quite feasible to run the planner at 10 Hz, or faster, and to
integrate it into the control loop of the robot. This would
make it possible to replan after a collision between two
obstacles. It would also alow us to use less conservetive
error bounds onthe obstacl e trajectories, which would result
into smaller obstacle discs and increased free space for the
robot to maneuver.

5 Conclusion

We have presented a simple, efficient randomized planner
for kinodynamic motion planning in the presence of mov-
ing obstacles. This planner was successfully tested both in
simulated environments and on a hardware testbed devel-
oped to study robotics technology for space applications.
The planner was al so tested on an articulated nonholonomic
vehicle with six dofs. For lack of space, the experiments
with this robot have not been reported here, but the re-
sults can be found in [9]. This planner demonstrates that

Figure 6. Snapshots of arobot executing a trajectory on the hardware testbed.

random-sampling techniques extend well to motion plan-
ning problems beyond pure geometric path planning.

Inthefuture, weplanto extend our planner to objectswith
complex geometry in three-dimensiona environments and
test the planner with many-dof robots amid moving obsta-
cles. Our previousexperience with PRM plannersindicates
that the random-sampling planning approach scales up well
with both complex geometry and many dofs. Geometric
complexity essentially increases the cost of collision check-
ing, but hierarchical techniques (e.g., [8, 15]) ded with this
issuewell. We have successfully applied arandomized path
planner to environmentswith up to 200,000 triangles [10].

Another important future direction of research isto inte-
gratethe planner with thecontroller and the sensing modul es
that detect moving obstacles. The efficiency of the planner
should make it possibleto directly includeit in the control
loop.

Acknowledgments This work is supported by ARO MURI
grant DAAHO04-96-1-007, NASA TRIWG Coop-Agreement
NCC2-333, Real-Time Innovations, and the NIST ATP program.
Robert Kindel is a recipient of the NSF Graduate Fellowship.
David Hsu is arecipient of the Microsoft Graduate Fellowship.

References

[1] N. M. Amato, O. B. Bayazit, L. K. Dae, C. Jones, and
D. Valejo. OBPRM: An obstacle-based PRM for 3D
workspaces. In Robotics: The Algorithmic Perspective:
1998 Wor kshop on the Algorithmic Foundations of Robotics,
pages 155168, 1998.

[2] J. Barraguand, L. Kavraki, J. C. Latombe, T.-Y. Li, R. Mot-
wani, and P. Raghavan. A random sampling scheme for
path planning. International Journal of Robotics Research,
16(6):759-774, 1997.

[3] J. Barraguand and J. C. Latombe. Nonholonomic multibody
mobile robots: Controllability and motion planning in the
presenceof obstacles. Algorithmica, 10(2-4):121-155, 1993.

[4] J. E. Bobrow, S. Dubowsky, and J. Gibson. Time-optimal
control of robotic manipulators along specified paths. Inter-
national Journal of Robotics Research, 4(3):3-17, 1985.

[5] J. F. Canny. Some algebraic and geometric computationsin
pspace. In Proc. IEEE Symp. on Foundations of Computer
Science, pages 460467, 1988.

[6] B. Donald, P. Xavier, J. Canny, and J. Reif. Kinodynamic
motion planning. Journal of the ACM, 40(5):1048-1066,
1993.

[7] K. Fujimura. Time-minimum routes in time-dependent net-
works. IEEE Trans. on Roboticsand Automation, 11(3):343—
351, 1995.

[8] S. Gottschalk, M. Lin, and D. Manocha. OBB-Tree: A
hierarchical structure for rapid interference detection. In
Computer Graphics (SGGRAPH '96 Proceedings), pages
171-180, 1996.

[9] D. Hsu, R. Kindel, J. C. Latombe, and S. Rock. Control-
based randomized motion planning for dynamic environ-
ments. To appear in Workshop on the Algorithmic Foun-
dations of Robotics, 2000.

[10] D. Hsu, J. C. Latombe, and R. Motwani. Path planning in
expansive configuration spaces. In Proc. |[EEE Int. Conf. on
Robotics and Automation, pages 27192726, 1997.

[11] L. Kavraki, J. C. Latombe, R. Motwani, and P. Raghavan.
Randomized query processing in robot path planning. In
ACM Symp. on Theory of Computing, pages 353362, 1995.

[12] L. Kavraki, P. Svestka, J. C. Latombe, and M. H. Over-
mars. Probabilistic roadmaps for path planning in high-
dimensional configuration space. |EEE Trans. on Robotics
and Automation, 12(4):566-580, 1996.

[13] S. M. Lavaleand J. J. Kuffner. Randomized kinodynamic
planning. In Proc. |IEEE Int. Conf. on Robotics and Automa-
tion, pages 473-479, 1999.

[14] D. W. Miles. Real-Time Dynamic Trajectory Optimization
with Application to Free-Flying Space Robots. PhD thesis,
Stanford University, Stanford, CA, 1997.

[15] S. Quinlan. Efficient distance computation between non-
convex objects. In Proc. IEEE Int. Conf. on Robotics and
Automation, pages 3324—-3329, 1994.

[16] J. Reif and M. Sharir. Motion planning in the presence of
moving obstacles. In Proc. |IEEE Symp. on Foundations of
Computer Science, pages 144-154, 1985.

[17] J. Russakow, S. Rock, and O. Khatib. An operational space
formulation for afree-flying, multi-arm spacerobot. In Proc.
Int. Symp. on Experimental Robotics, pages448-457, 1995.

[18] Z. Shiller and S. Dubowsky. On computing the global
time-optimal motions of robotic manipulators in the pres-
ence of obstacles. IEEE Trans. on Robotics and Automation,
7(6):785-797, 1991.

[19] P. Svestka and M. H. Overmars. Mation planning for car-
like robotsusing aprobabilistic learning approach. Technical
Report RUU-CS-94-33, Dept. of Computer Science, Utrecht
University, Utrecht, The Netherlands, 1994.

