
Kinodynamic Motion Planning Amidst Moving Obstacles

Robert Kindel� David Hsuy Jean-Claude Latombey Stephen Rock�

�Department of Aeronautics & Astronautics yDepartment of Computer Science
Stanford University

Stanford, CA 94305, U.S.A.

SUBMITTED TO

IEEE International Conference on Robotics and

Automation, 2000

Abstract

This paper presents a randomized motion planner for kinodynamic
asteroid avoidanceproblems, in which a robot must avoid collision
with moving obstacles under kinematic and dynamic constraints.
Inspired by probabilistic-roadmap (PRM) techniques, the planner
samples the state�time space of a robot by picking control inputs
at random in order to compute a roadmap that captures the connec-
tivity of the space. The planner does not precompute a roadmap as
most PRM planners do, since this requires knowledge of obstacle
trajectories well in advance. Instead, for each planning query, it
tries to generate a small roadmap that connects the given initial and
goal states. A major difference with PRM planners is that the com-
puted roadmap is a directed graph oriented along the time axis of
the space. To verify the planner’s effectiveness in practice, it was
tested it both in simulated environments containing many moving
obstacles and on a real robot under strict dynamic constraints.

1 Introduction

In this paper, we consider kinodynamic asteroid avoidance
problems, a class of motion planning problems that take into
account both kinematic and dynamic constraints on robots,
as well as moving obstacles in the environment. We present
a simple, efficient randomized algorithm for kinodynamic
asteroid avoidance problems and demonstrate its efficiency
in both simulation and hardware implementation (Figure 1).

The primary motivation of our work is to control rigid-
body space robots at the task level. Space robots are often
under severe dynamic constraints due to limited actuator
forces and torques. They will perform various tasks, in-
cluding inspection and assembly, amid moving obstacles,
e.g., other robots and astronauts. Automated means to con-
trol their motion are needed in order to free astronauts from
the tedious task of teleoperating them.

The planner that we propose is nevertheless general and
not limited to space robots. In addition to the experiments
that will be described in Section 3, it has also been applied
to nonholonomic vehicle navigation [9]. Another important
potential application of our planner is the design and control
of complex, multi-robot manufacturing cells.

Kinodynamic motion planning and asteroid avoidance
have both been separately investigated in the literature:

- Kinodynamic planning [6] refers to planning prob-
lems in which the robot’s dynamics must be taken into

Figure 1. The testbed for our planner. The robot and obstacles float
frictionlessly on a granite table.

account. One approach divides the solution into two main
steps [4, 18]. First, ignore the dynamic constraints and com-
pute a collision-free path. Second, deform this path into a
trajectory that conforms to the dynamic constraints with an
optimization procedure. However, the final trajectory thus
obtained may be far from optimal, a drawback that would
seriously complicate the extension of the approach to en-
vironments with moving obstacles. Another approach is
to discretize the robot’s state space and search it for a tra-
jectory directly, using dynamic programming [6]. This ap-
proach offers provable performance guarantees, but is only
applicable to robots with few degrees of freedom (dofs) –
typically 2 or 3 – since the size of the discretization grid
grows exponentially with the number of dofs.

- Asteroid avoidance problems require planning trajecto-
ries among moving obstacles with known trajectories [16].
The robot’s velocity and acceleration may or may not be
upper-bounded. Asteroid avoidance problems are provably
hard, even with a small number of dofs [16, 5]. Effective
algorithms [7] exist in some specific cases, but they usually
do not consider constraints on the robot’s motion other than
an upper-bound on its velocity.

The algorithm proposed in this paper is inspired by the
success of probabilistic roadmap (PRM) techniques for
planning geometric paths of robots with many dofs [1, 10,
12]. A PRM planner computes a path by sampling the

1

robot’s configuration space at random and connecting the
generated samples, called milestones, by simple canonical
paths (typically, straight-line segments in the configuration
space). The result is a undirected graph called a probabilistic
roadmap. Some PRM planners precompute a roadmap [12]
in order to process planning queries as fast as possible; oth-
ers compute a new roadmap for each new query [10] in order
to deal with changing environments more efficiently. It can
be shown that under reasonable geometric assumptions on
the configuration space, a small number of milestones are
sufficient to capture the connectivity of the space with high
probability [11, 10]. Despite the success of PRM techniques,
the use of random sampling techniques for nonholonomic
and kinodynamic motion planning has been limited [19] be-
cause PRM planners require appropriate canonical paths to
connect two given milestones. Constructing such canon-
ical paths in the presence of nonholonomic and dynamic
constraints is only possible for relatively simple robots.

To overcome this difficulty our planner incrementally
builds a new roadmap in the state�time space of a robot
for each planning query. A state encodes both the con-
figuration and the velocity of the robot. To sample a new
milestone, the planner selects a control input at random from
the set of admissible controls and integrates the equations of
motion under this control input from a previously generated
milestone for a short duration of time. By construction, the
trajectory thus obtained automatically satisfies the motion
constraints. If it does not collide with the obstacles, the
state that it reaches is stored in the roadmap as a milestone.
This iterative process yields a directed tree-shaped roadmap
rooted at the initial state and oriented along the time axis. It
ends when a milestone is close enough to the goal state (we
will be more precise about this in Section 2).

The idea of generating a new milestone by selecting a
control input and integrating the equations of motion, rather
than directly sampling the configuration (or the state) space
was originally proposed and applied in [3] to solve non-
holonomic planning problems with a deterministic sam-
pling algorithm, and it was recently used in [13] to solve
kinodynamic problems in static environments with random-
sampling techniques. On the other hand, the fact that our
planner produces roadmaps in the form of directed graphs
(trees, to be more precise) oriented along the time axis makes
our planner quite different from previous PRM planners.

We tested the planner’s effectiveness both in simulated
environments and on a real robot. In simulated envi-
ronments, we verified that the planner can solve difficult
motion-planning problems involving many moving obsta-
cles. With a real robot, we checked that our planner can
be integrated into a larger system. In our hardware experi-
ments, the obstacles move at constant linear velocities and
are detected by a vision system just before planning; the
planner must then return a trajectory in a fixed amount of

time (0.25 s). In all the experiments presented in this paper,
the robot is modeled as a disc moving in two dimensions.
We also tested the planner on a 6-dof articulated nonholo-
nomic robot in static environments [9]. These additional
experiments, as well as previous PRM results with many-
dof robots, lead us to expect that our planner will scale up
well with the number of dofs of the robot.

The rest of the paper is organized as follows. Section 2
describes the planner. Section 3 presents experimental re-
sults in simulation. Section 4 describes implementation and
experimental results of our planner on a real robot. Finally,
Section 5 discusses current and future research.

2 Description of the Planner

State space formulation We consider a robot whose mo-
tion is described by an equation of the form

_q = f(q; u); (1)

where q 2 C, u 2
, f is a smooth function, and _q denotes
the derivative of q with respect to time. The set C is the
state space of the robot, that is, the set of distinguishable
states that the robot may be in at any given time. The set

 represents the control space, i.e., the set of admissible
values for the control input. Eq. (1) specifies the rate of
change of the robot’s state over time (_q) as a function of
the the current state q and the control input u. With no loss
of generality, we assume that C and
 are subsets of Rn

and Rm, respectively. Eq. (1) is quite general and covers
many robots with complex dynamics and/or nonholonomic
constraints.

In the version of the planner presented here, the robot is
modeled as a disc with point-mass, non-dissipative dynam-
ics. This robot translates in the plane among moving and
static obstacles. We let (x1; x2) and (_x1; _x2) denote the
position and velocity of this robot. We define the state of
the robot as q = (x1; x2; _x1; _x2) 2 R4. The control input
u is the force exerted by the actuators; the magnitude of
this force is bounded, but its orientation is unconstrained.
Let (u1; u2) denote the components of this force along the
x1 and x2 axes, respectively. Assuming a unit-mass robot,
Newton’s law yields the following control equations:

�x1 = u1 �x2 = u2;

where �x1 and �x2 are the components of the robot’s acceler-
ation. The bound on the control input leads to the additional
constraint u2

1
+u2

2
�M , which defines
 as a subset of R2.

We could also bound the robot’s velocity as well.
Consider the state�time space C � [0;+1). Given any

point (q; t0) in this space and a fixed control input u, we
can compute the trajectory followed by the robot over the
time interval t � t0. A planning query is specified by
an initial and a goal state�time, denoted by (qi; ti) and

2

(qg; tg), respectively. A solution to this query is a finite
sequence of fixed control inputs, each applied over a defined
time interval, such that these inputs induce a collision-free
trajectory from state qi at time ti to state qg at time tg . In
our planner, we set ti to be 0 and we constrain tg to be in
some given interval Ig, meaning that any arrival time tg in
this interval is acceptable as long as no collision occur in
the interval [0; tg].

In a more general version of the planner, the robot’s con-
trol equations would typically contain dynamic couplings
among dofs and dissipative terms. The algorithmic prin-
ciples of the planner described below, and most of the
implementation, would remain unchanged. If the motion
equation is not analytically integrable, we rely on numeric
techniques, instead.

Roadmap construction Our planner processes a plan-
ning query by iteratively expanding a tree T of milestones
(the roadmap) generated at random, in a way similar to the
geometric path planner presented in [10]. Here, however,
T is built in the state�time space of the robot, instead of its
configuration space (thus, it is rooted at (qi; 0)). The sam-
pling strategy is also different to deal with the kinodynamic
constraints.

At each iteration, a new candidate milestone (q0; t0) is
obtained as follows. Both a milestone (q; t) already in T
and an admissible value u of the control input are picked at
random. The robot’s equation of motion is integrated from
(q; t) with the input u, over a duration � also selected at
random from a given interval [0; �max]; hence, t0 = t + �.
The trajectory between q and q0 is checked for collision
using a version of the discretization technique given in [2]
and adapted to deal with moving obstacles. If no collision
is detected and t0 is smaller than the latest arrival time in Ig,
(q0; t0) is included as a new milestone in T , with a directed
edge from (q; t) to (q0; t0). The selected control value u
is associated with this edge. In this way, the kinodynamic
constraints of the robot are naturally enforced. If a collision
is detected (q0; t0) is simply discarded. If there is no valid
trajectory from qi to qg, then the planner would not exit.
Therefore, we place a limit on the number of iterations it
performs, or on its running time.

The above sampling technique does not allow the planner
to precisely achieve the goal state qg. We solve this issue
as follows. Whenever a new milestone (q0; t0) is added to
T , the planner checks that the third-order spline connecting
(q0; t0) to (qg; tg), for some tg in Ig , is collision-free. If this
is the case, (qg; tg) is inserted into T , with an edge pointing
from (q0; t0) to (qg; tg), and the planner exits with success.
The effect of considering this spline connection is to enlarge
the goal into a relatively large endgame region that the sam-
pling technique can eventually attain with high probability.
Other endgame connections could be considered, but for our
simple acceleration-bounded robot the third-order spline is

unique (for a given tg) and easily computed.
Another issue is to avoid an oversampling of any region

of the state�time space, especially around (qi; 0). Ideally
we would like the milestone distribution to progressively
converge toward a uniform distribution. Our planner han-
dles this issue by selecting at each iteration the milestone
(q; t) to expand with a probability inversely proportional to
the number of other milestones already in T within some
predefined distance of (q; t). Another technique proposed
in [13] consists of picking a state uniformly at random in
the state space and choosing the milestone in T that is the
closest to this state.

In practice, our planner turns out to be fast and able to
find solutions for difficult problems. To perform collision
checking appropriately, the obstacle trajectories are given
to the planner, but in our experiments with a real robot the
obstacles are detected and their linear velocities measured
by a vision system at 60 Hz frame rate just before planning.
The planner must then complete the computation of a trajec-
tory within 0.25 s (which has been the case in almost all our
trials) and thus selects ti to be the current time augmented
by 0.25 s.

Several heuristics could be used to bias the randomized
construction of the tree T . For example, the choice of the
milestone (q; t) to be expanded at each iteration could be
done using a probabilistic distribution that favors the states
that are closer to qg and the control input could be chosen to
generate a milestone that is even closer to the goal. However,
the effectiveness of any such heuristics is likely to depend
on the kind of planning problems submitted to the planner
(for example, the suggested heuristics might not work well
if obstacles are long barriers requiring long detours to reach
the goal). Our planner uses no biasing heuristics.

Implementation details Some additional details need to
be specified to complete the description of the planner.
Robot and workspace. The workspace is a rectangle of
3 m by 4 m. The robot is modeled as a circular disc with
a radius of 25 cm. Obstacles are also circular discs with
varied radii, mostly between 10 and 15 cm. The obstacles
move at different, but fixed linear velocities. The velocity
of an obstacle ranges between 0 and 0.2 m=s.
Control selection. The control input u is a constant accel-
eration of magnitude in [0; 0:036] m=s2 and direction in
[0; 2�]. At each iteration the magnitude and the direction of
u are selected at random from their respective intervals, in-
dependently and uniformly. The maximal integration time
�max is set to be 6.0 s.
Milestone selection. A simple weighting function is used
to avoid oversampling any region of the state�time space,
while avoiding the cost of computing the density of mile-
stones around each milestone. The two-dimensional con-
figuration space of the robot is partitioned into an array of
square bins of equal size. Whenever a new milestone is

3

inserted in T , the planner determines the bin to which it
belongs. At each iteration, the planner selects the milestone
(q; t) to expand by successively picking a bin at random
and a milestone from within this bin. This corresponds
approximatively to selecting a milestone with a probability
inversely proportional to the local density of milestones, but
it is much faster to compute. We could have set the bins in
the higher dimensional state�time space, but this was not
determined to be useful for our implementation.
Endgame connection. The connection of each milestone
inserted in T to the goal state is tested for a maximum of
K different arrival times randomly selected in Ig . In all the
experiments reported below, K was set to 10.
Software. The planner is written in C. It runs both on
a Pentium-III computer (simulation) and on a Sun Sparc
Ultra10 (connected to real robot).

Guarantees of performance In [11, 10] it is shown that
under reasonable geometric assumptions on the free space
F (collision-free subset of the robot’s configuration space),
a PRM path planner generating milestones distributed uni-
formly at random over F can find a collision-free path with
high probability, whenever one exists. More precisely,
the geometric assumptions are that each configuration in
F “sees” a significant portion of F (a property called �-
goodness) and that no two regions of F communicate by
a narrow passage (a property called expansiveness). Un-
der those two assumptions, the probability that the PRM
planner fails to find a path between two free configurations
lying in the same connected component of F decreases ex-
ponentially toward 0 with the number of milestones in the
roadmap.

We have extended this result to our planner in [9]. This
extension requires re-defining �-goodness and expansive-
ness in the robot’s state�time space, by taking into account
that visibilitybetween points in that space is no longer sym-
metrical. But the intuition behind the new definitions and
results remains the same as for geometric path planning.
For lack of space, we refer the reader to [9] for a complete
presentation.

The exponential convergence of the planner requires a
uniform distributionof the milestones. This is why the plan-
ner must avoid oversampling any region in the state�time
space.

3 Experiments in Simulation

We now present experimental results obtained with our plan-
ner in simulated environments. As previously indicated, our
main goal was to verify the planner’s ability to efficiently
solve tricky problems in the presence of a substantial num-
ber of obstacles. Such problems would have been quasi-
impossible to set up within the physical limitations of our
real robot testbed. The simulation problems were crafted
by hand to require delicate maneuvers by the robot. Each

Table 1. Running time and the number of milestones (including endgame
connections) for computed examples.

Example time milestones
mean std mean std

1 0.249 0.264 2008 2229
2 0.270 0.285 1946 2134
3 0.002 0.005 22 25

t

x1

x2

Figure 2. The configuration�time space for Example 2.

obstacle moves at constant linear velocity. Collisions be-
tween obstacles are ignored, meaning that two obstacles
may temporarily overlap without changing their respective
courses. When an obstacle reaches the boundary of the
robot’s workspace, it just leaves the workspace and is no
longer a threat to the robot. The planner is given the obsta-
cle trajectories, and unlike in the experiments with the real
robot, planning time is not limited. (This is equivalent to
assuming that the obstacles wait for the planner to return
a trajectory before moving; when the planner returns a tra-
jectory, the time is set to 0, and both the obstacles and the
robot start moving.)

We present three examples. In each example, we ran the
planner 100 times for the same query with different seeds of
the random number generator, and we obtained 100 different
trajectories. Table 1 lists the mean and standard deviation of
the planning time, as well as the mean and standard deviation
of the number of milestones needed for each example. The
planning times are for the planner running on a Pentium-III
computer at 550 MHz. In every run, the planner successfully
returned a trajectory.
Example 1. The robot (grey disc) must move from the lower
edge of the workspace to the upper edge in the presence of
10 moving obstacles (black discs). The path computed for
the robot is shown in solid line, and the paths of the obstacle,
in dashed lines Figure 3.
Example 2. The five moving obstacles in this example offer
a single small opening for the robot to escape collision with
the obstacles that all converge toward the initial position
of the robot (Figure 4). Figure 2 shows the corresponding
configuration�time space. The robot maps into this space

4

T = 0.0 secs T = 11.2 secs T = 22.4 secs T = 33.7 secs T = 44.9 secs

Figure 3. A robot moves among many moving obstacles. The grey disc indicates the robot. Black discs indicate obstacles. The solid and dotted lines indicate
the trajectories of the robot and obstacles respectively.

T = 0.0 secs T = 9.0 secs T = 20.0 secs T = 30.0 secs T = 45.5 secs

Figure 4. A robot moves among “hostile” obstacles.

T = 0.0 secs T = 8.0 secs T = 16.1 secs T = 24.1 secs T = 32.1 secs

Figure 5. An representative environment for space robotic missions.

as a point (x1; x2; t); the obstacles are grown by the robot’s
radius and are extended into cylinders along their linear tra-
jectories. The acceleration constraint makes it impossible
for the robot to move through most of the free space and
forces any feasible trajectory (one is shown in the figure) to
pass through the small gap between cylinders to attain the
other side of the free space. The environment is consider-
ably more “hostile” than that expected in most applications.

Example 3. This example (Figure 5), is more representative
of the environments that are expected to occur during typical
space robotic missions. There are two stationary obstacles
near the middle of the workspace and three moving obstacles
that are aimed not to collide with any other obstacle. The
very small average planning time (.002 s), confirms that in
the absence of narrow passages randomized motion planners
are extremely efficient.

4 Experiments on a Real Robot

Testbed description We connected our planner to the con-
troller of the “free-flying” robot testbed in the Stanford
Aerospace Robotics Laboratory. This testbed provides a
frictionless 2D environment for testing robotics technolo-
gies for space applications. It consists of a 3m�4m granite
table providing a flat workspace upon which a robot and a
number of obstacles moving frictionlessly on an air-bearing
(see Figure 1). Previous work with this testbed includes
multiple-robot assembly [17] and kinodynamic motion plan-
ning in stationary environments [14].

The robot is roughly cylindrical in shape. It is unteth-
ered, carrying all of its vital systems on-board. Compressed
air is used both to maintain the air-bearing and to provide
propulsion. Eight horizontal thrusters are located in pairs
around the circumference of the robot providing omnidirec-

5

tional thrusting capability. Robot control is performed at
60 Hz by a Motorola ppc2604 real-time computer. Com-
munications with the vision system, the planner and user
interface are done over radio ethernet. On-board batteries
provide power for about 30 minutes of full actuation with-
out recharging. The gas tanks provide enough air for half
an hour of station-keeping maneuvers or about 5 minutes of
path following.

The obstacles have no thrusters. They are initially pro-
pelled by hand from various locations, and then move at
constant speed until they reach the boundary of the table,
where they stop.

Position sensing is performed by an overhead vision sys-
tem. The position data output by this system are accurate to
0:005m. The update rate is 60 Hz. Velocity estimates are
derived from this position data to provide velocity estimates
with a standard deviation of 0.005 m=s.

Planning is performed off-board on a Sun Sparc 10 run-
ning at 333 MHz with 128 MB of memory.

Integration of the planner Running the planner on the
hardware testbed raised additional challenges:
Delays. A number of delays exist in any robot system.
The robot and obstacle state data arrive asynchronously and
incur a delay of up to 1/30 s each. The execution of the
planner then takes an uncertain amount of time, and the
transmission of the path to the robot takes up to another
1/60 s. If these delays are not taken into account the robot
would thus start out about 0.25 s behind the plan it is at-
tempting to execute. With acceleration limits on the vehicle
it might not be possible to catch up with the planned path
before collision occurs. To eliminate this problem, the plan-
ner starts planning assuming the robot will start executing
the yet-to-be-computed trajectory 0.25 s into the future and
extrapolates the robot’s initial position if its current velocity
is non-zero. If the total delay ends up being less than that,
then the robot controller will wait until the delay period is
over before moving along the planned trajectory. The delay
of 0.25 s is quite conservative for the experiments we can
carry in the testbed; we expect that it can be reduced well
below 0.1 s in the future.
Sensor errors. The planner assumes perfect prior knowl-
edge of the obstacle trajectories in order to compute the
robot trajectory. The trajectories of our uncontrolled mov-
ing obstacles are assumed to be straight lines at constant
velocities. But inaccuracy in the measurement of the ve-
locities by the vision sensor, asymmetry in the air-bearing,
and tiny collisions with dust particles on the table all cause
the actual obstacles trajectories to be slightly different from
the predicted ones. To correct for these errors, the planner
increases the radius of each moving obstacle as a function of
time and velocity assuming a constant velocity error term.
In this way the apparent footprint of the obstacle grows
approximately as its uncertainty in position grows.

Trajectory following. The trajectory received by the robot
contains the desired position, velocity and accelerations for
the motion. A PD-controller with feedforward is used to
track the trajectory. A simple thrust-mapper is used to acti-
vate and deactivate the bang-bang thrusters to approximate a
linear plant. Tracking errors average approximately 0.02 m
with a maximum of 0:05m. The size of the disc modeling
the robot was increased by the maximum tracking error to
ensure safe collision-checking operations.

Results The planner was able to maneuver the free-flying
robot successfully among static and moving obstacles on
the granite table. In almost all trials, the trajectories were
computed within the 0.25 s planning constraint. Tests were
performed for a number of different environments. Figure 6
shows snapshots of the robot motion during one of the tests.

The planner was tested in canonical situations to observe
the robot’s behavior. The robot avoided obstacles moving
directly toward it, as well as obstacles moving perpendicular
to the line connecting the initial to the goal position. It also
showed the ability to wait for an opening when confronted
with moving obstacles in the desired direction of movement
and to move through openings that were less than 10 cm
larger than the robot.

The major constraints on testing were the size of the gran-
ite table relative to that of the robot and the obstacles, the
rigorous limit on the robot’s acceleration, the requirements
that obstacles not collide, and the relatively high uncer-
tainty on their movements. These constraints limited the
complexity of the planning queries and the robot motions
which could be tested.

We expect to bring several improvements in the future.
In particular, because of the extremely short planning times
provided by the planner, we could use the overhead vision
system to detect unexpected variations in the environment
and replan to accommodate them. We believe that it will be
quite feasible to run the planner at 10 Hz, or faster, and to
integrate it into the control loop of the robot. This would
make it possible to replan after a collision between two
obstacles. It would also allow us to use less conservative
error bounds on the obstacle trajectories, which would result
into smaller obstacle discs and increased free space for the
robot to maneuver.

5 Conclusion

We have presented a simple, efficient randomized planner
for kinodynamic motion planning in the presence of mov-
ing obstacles. This planner was successfully tested both in
simulated environments and on a hardware testbed devel-
oped to study robotics technology for space applications.
The planner was also tested on an articulated nonholonomic
vehicle with six dofs. For lack of space, the experiments
with this robot have not been reported here, but the re-
sults can be found in [9]. This planner demonstrates that

6

Figure 6. Snapshots of a robot executing a trajectory on the hardware testbed.

random-sampling techniques extend well to motion plan-
ning problems beyond pure geometric path planning.

In the future, we plan to extend our planner to objects with
complex geometry in three-dimensional environments and
test the planner with many-dof robots amid moving obsta-
cles. Our previous experience with PRM planners indicates
that the random-sampling planning approach scales up well
with both complex geometry and many dofs. Geometric
complexity essentially increases the cost of collision check-
ing, but hierarchical techniques (e.g., [8, 15]) deal with this
issue well. We have successfully applied a randomized path
planner to environments with up to 200,000 triangles [10].

Another important future direction of research is to inte-
grate the planner with the controller and the sensing modules
that detect moving obstacles. The efficiency of the planner
should make it possible to directly include it in the control
loop.

Acknowledgments This work is supported by ARO MURI
grant DAAH04-96-1-007, NASA TRIWG Coop-Agreement
NCC2-333, Real-Time Innovations, and the NIST ATP program.
Robert Kindel is a recipient of the NSF Graduate Fellowship.
David Hsu is a recipient of the Microsoft Graduate Fellowship.

References

[1] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and
D. Vallejo. OBPRM: An obstacle-based PRM for 3D
workspaces. In Robotics: The Algorithmic Perspective:
1998 Workshop on the Algorithmic Foundations of Robotics,
pages 155–168, 1998.

[2] J. Barraquand, L. Kavraki, J. C. Latombe, T.-Y. Li, R. Mot-
wani, and P. Raghavan. A random sampling scheme for
path planning. International Journal of Robotics Research,
16(6):759–774, 1997.

[3] J. Barraquand and J. C. Latombe. Nonholonomic multibody
mobile robots: Controllability and motion planning in the
presenceof obstacles. Algorithmica, 10(2-4):121–155,1993.

[4] J. E. Bobrow, S. Dubowsky, and J. Gibson. Time-optimal
control of robotic manipulators along specified paths. Inter-
national Journal of Robotics Research, 4(3):3–17, 1985.

[5] J. F. Canny. Some algebraic and geometric computations in
pspace. In Proc. IEEE Symp. on Foundations of Computer
Science, pages 460–467, 1988.

[6] B. Donald, P. Xavier, J. Canny, and J. Reif. Kinodynamic
motion planning. Journal of the ACM, 40(5):1048–1066,
1993.

[7] K. Fujimura. Time-minimum routes in time-dependent net-
works. IEEE Trans.on Robotics and Automation, 11(3):343–
351, 1995.

[8] S. Gottschalk, M. Lin, and D. Manocha. OBB-Tree: A
hierarchical structure for rapid interference detection. In
Computer Graphics (SIGGRAPH ’96 Proceedings), pages
171–180, 1996.

[9] D. Hsu, R. Kindel, J. C. Latombe, and S. Rock. Control-
based randomized motion planning for dynamic environ-
ments. To appear in Workshop on the Algorithmic Foun-
dations of Robotics, 2000.

[10] D. Hsu, J. C. Latombe, and R. Motwani. Path planning in
expansive configuration spaces. In Proc. IEEE Int. Conf. on
Robotics and Automation, pages 2719–2726, 1997.

[11] L. Kavraki, J. C. Latombe, R. Motwani, and P. Raghavan.
Randomized query processing in robot path planning. In
ACM Symp. on Theory of Computing, pages 353–362, 1995.

[12] L. Kavraki, P. Švestka, J. C. Latombe, and M. H. Over-
mars. Probabilistic roadmaps for path planning in high-
dimensional configuration space. IEEE Trans. on Robotics
and Automation, 12(4):566–580, 1996.

[13] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic
planning. In Proc. IEEE Int. Conf. on Robotics and Automa-
tion, pages 473–479, 1999.

[14] D. W. Miles. Real-Time Dynamic Trajectory Optimization
with Application to Free-Flying Space Robots. PhD thesis,
Stanford University, Stanford, CA, 1997.

[15] S. Quinlan. Efficient distance computation between non-
convex objects. In Proc. IEEE Int. Conf. on Robotics and
Automation, pages 3324–3329, 1994.

[16] J. Reif and M. Sharir. Motion planning in the presence of
moving obstacles. In Proc. IEEE Symp. on Foundations of
Computer Science, pages 144–154, 1985.

[17] J. Russakow, S. Rock, and O. Khatib. An operational space
formulation for a free-flying, multi-arm space robot. In Proc.
Int. Symp. on Experimental Robotics, pages 448–457, 1995.

[18] Z. Shiller and S. Dubowsky. On computing the global
time-optimal motions of robotic manipulators in the pres-
ence of obstacles. IEEE Trans. on Robotics and Automation,
7(6):785–797, 1991.

[19] P. Švestka and M. H. Overmars. Motion planning for car-
like robots using a probabilistic learning approach. Technical
Report RUU-CS-94-33, Dept. of Computer Science, Utrecht
University, Utrecht, The Netherlands, 1994.

7

