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Abstract: Probabilistic roadmaps are an effective tool to compute the connectivity of the collision-free subset of high-dimensional robot configuration
space. This paper extends them to capture the pertinent features of continuous functions over high-dimensional spaces. This extension has several
possible applications, but the focus here is on computing energetically favorable motions of bio-molecules. Many bio-chemical processes essential to
life require certain molecules to adopt different shapes over time. Computational tools predicting such motions can help better understand these
processes and design useful molecules (e.g., new drugs). In this context, a molecule is modeled as an articulated structure moving in an energy field.
The set of all its 3-D placements is the molecule’s conformational space, over which the energy field is defined. A probabilistic conformational
roadmap (PCR) tries to capture the connectivity of the low-energy subset of a conformational space, in the form of a network of weighted local
pathways. The weight of a pathway measures the energetic difficulty for the molecule to move along it. The power of a PCR derives from its ability to
compactly encode a large number of energetically favorable molecular pathways, each defined as a sequence of contiguous local pathways. This paper
describes general techniques to compute and query PCRs, and presents implementations to study ligand-protein binding and protein folding.

1. Introduction and Motivation
An insight from research in biology is that the function of a bio-
molecule follows from its form. For instance, to act as a potent
inhibitor, a drug molecule must bind solidly against a protein’s
cavity (the binding site), which requires that the molecular
surfaces in contact have close steric and coulombic match
[SK93]. In addition, molecules are neither static, nor rigid. In fact,
chemical processes essential to life depend on the ability of
certain molecules to adopt different shapes over time. E.g., a drug
molecule must both move to eventually reach a binding site and
deform to achieve a conformation that fits well and lock into this
site (docking process). Molecular movements occur under the
influence of forces induced by energy fields.[Hai92].

Computational models able to effectively simulate and
predict molecular motions have important potential applications,
notably in drug and protein design. For instance, being able to
reliably simulate the ligand-protein docking process would make
it possible to automatically extract promising drug candidates
(leads) from large existing databases of ligands [LFKL00] and
test the docking abilities of variants of these leads.

Molecules can be modeled as articulated structures made of
spheres (representing atoms) connected by links (bonds between
atoms). The main degrees of freedom (dofs) are torsional dofs
about some links. Consider three consecutive links v1, v2, and v3.
The torsional dof around v2 corresponds to varying the dihedral
angle made by the plane containing v1 and v2 and the plane
containing v2 and v3. The assignment of an angular value to each
dof defines a conformation of the molecule (a concept similar to
that of a configuration in robotics). The set of all conformations is
the molecule’s conformational space, which has as many
dimensions as there are dofs.

While drug molecules typically consist of 10 to 50 atoms,
with 5 to 15 torsional dofs, proteins contain thousands to
hundreds of thousands of atoms, with hundreds to thousands of
dofs. Energy fields are defined over the conformational spaces of
the molecules (or the cross product of several such spaces, if we
consider multiple molecules interacting and deforming

simultaneously).  Molecular movements are described as
continuous pathways in a conformational space.

Many computational models assume that molecules are rigid
structures. Such models may tell us that a ligand fits into a
protein’s active site, but give no indication of the conformational
changes of the ligand and/or the protein that were required to
achieve their final bound state.  In reality, the docking may not
even be possible because it would require a molecule to traverse
high-energy conformations. The transition from static to dynamic
models brings us into molecular dynamics [Hai92]. In theory, the
energy fields causing molecular motions are well understood. But
the precise simulation of these motions over the time periods
during which the phenomena of interest take place is well beyond
the capabilities of today’s fastest computers [DK98]. Indeed,
many dofs often participate in molecular movements, while
energy functions include a huge number of terms usually
involving combinations between all pairs of atoms. To ensure
simulation accuracy, time steps taken by molecular dynamics
techniques are usually on the order of femtoseconds. Taking the
solvent into account further adds to this complexity.

Researchers have developed approximate energy models that
are less expensive to compute, e.g., by using principal component
analysis to detect important dofs and “freeze” the others [TPK00],
ignoring energy terms involving atoms that are some distance
apart, and/or treating groups of atoms (e.g., rings, side-chains, α-
helices) as single units. Simulation techniques connecting local
minima of such models produce plausible pathways at a more
reasonable cost. Some randomness may be introduced into the
computation to account for model imperfection [KBK94].

Classical simulation techniques lead to generating individual
pathways such as the one shown in Figure 1. However, the
number of pathways that can be computed in practice is rather
small. Instead, our goal is to capture the relevant characteristics of
the “energy landscape” over the conformational space by a
network of pathways. This  network, called a probabilistic
conformational roadmap (PCR), is a graph whose nodes and
edges are respectively low-energy conformations and short
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weighted pathways. The weight of a pathway estimates the
energetic difficulty for the molecule(s) to move between the two
conformations. By combining a large number of short paths, a
PCR compactly encodes a large number of energetically plausible
paths. It thus has the ability to represent the pertinent energy
landscape over the conformational space in a form that is more
directly exploitable than the original energy function. Once
computed, a PCR may be queried in a variety of ways.

Probabilistic techniques (combined with optimization and
clustering) have been used to sample conformational spaces of
ligands and identify their low-energy conformations [FHK96].
But they do not attempt to connect the sampled conformations
into a network. PCRs are a rather direct extension of the
probabilistic roadmaps introduced in [KSLO96]. However, while
robot configurations are admissible (e.g., collision-free), or not, a
conformational space is the domain of a continuous energy
function, where lower-energy conformations are more favorable.
Therefore, while a classical probabilistic roadmap tries to capture
the landscape of a binary function, a PCR has a similar goal, but
with a more complex function. The method in [KB99], which
constructs a roadmap connecting local minima of a potential
function, has some resemblance with ours. But it connects local
minima using an up-hill search technique to climb out of local
minima towards saddle points. This operation, which requires
many evaluations of the potential function, would be too
expensive in our case.  The concept of a PCR was first introduced
in [SLB99], along with its application to ligand-protein binding.
The present paper extends this concept, provides new results for
ligand-protein binding, and explores the application of PCRs to
protein folding. Other ongoing research aimed at applying PCRs
to ligand-protein binding and protein folding is reported in
[BSA00, SA00].

The problem of capturing functional landscapes over
complex spaces is one of general interest. For example, outdoor
mobile robots must compute motion plans that take the
navigability of the local terrain into account (e.g., muddy and
steep areas are more difficult to traverse than flat hard terrain).
The navigability of a terrain often depends on the heading of the
robot and is best defined over the robot’s configuration space.
Algorithms have been proposed to compute paths with acceptable
or optimal characteristics [MM97]. Roadmaps similar to PCRs
could better capture the pertinent properties of the navigability
function over the configuration spaces. Another application is
minimally-invasive surgical planning, where one must plan the
paths of surgical instruments (e.g., scalpels, endoscopes) to
minimize damage on healthy tissue, with some tissues (e.g., blood
vessels) being more critical than others (e.g., fat).

Section 2 outlines the basic PCR framework. Sections 3 and 4
apply this framework to two problems, ligand-protein binding and
protein folding.

2. Probabilistic Conformational Roadmap

2.1. Classical Probabilistic Roadmap
A classical probabilistic roadmap R is created over a robot’s
configuration space C [KSLO96]. R is a graph whose nodes are
points of C (called milestones) and edges are short simple paths
(local paths) between milestones. The local paths are usually
straight-line segments. Points in C are either admissible (e.g.,
collision-free), or non-admissible. R should lie in the admissible
subset CA of C and capture the connectivity of CA as well as
possible. Ideally, there should be a one-to-one correspondence
between the connected components of R and those of CA, and
every point in CA should be connectable to a milestone by a
simple path [HLMK99].

The roadmap R is computed as follows. The range of each
dof parameter is normalized so that C = [0,1]n, where n is the
number of dofs. Points are picked at random in [0,1]n and the
admissible ones are retained as milestones. Next, pairs of
milestones that are sufficiently close to one another are
considered and for each pair a local path connecting the two
milestones is tested for admissibility. If this path lies in CA, an
edge of R is created between the two corresponding milestones.
This basic scheme admits many variants. Points may be picked
from [0,1]n uniformly, or using more sophisticated probabilistic
distributions.

Theoretical analysis shows that under reasonable
assumptions the probability that a probabilistic roadmap made of
s milestones fails to correctly capture the connectivity of a given
space CA converges toward 0 as e-s. In practice, probabilistic
roadmaps have been used successfully to solve motion-planning
problems in high-dimensional spaces and/or in the presence of
complex admissibility constraints.

2.2.Probabilistic Conformational Roadmaps
Let C be the conformational space of a molecule or a group of
interacting molecules. If we study protein folding, C may be the
conformational space of the protein of interest. But for practical
reasons, C may only encode a subset of the protein’s dofs, e.g., by
considering every amino-acid side-chain as a rigid unit. If we
study ligand-protein binding, C may encode dofs of both the
ligand and the protein, or it may only be the ligand’s
conformational space if we assume that the protein does not
deform significantly during the docking process.
       Let E: C → R be a potential energy field over C. E may
combine terms that express a molecule’s own potential energy
and terms that relate to the interaction between molecules To
illustrate, Figure 2a shows an imaginary function E over a two-
dimensional space C = [0,1]2. E varies between -47 and +52.5.
        We need a metric over C, such as the maximal distance
between two corresponding atoms. But others would do as well.

A PCR is constructed by picking points from C uniformly at
random. This is done by assigning random values to each
coordinate of C, within its given range of possible values. For
each point q we compute E(q) and we accept q as a milestone of
the PCR at random with the following probability distribution:

Figure 1. Ligand docking against a protein
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• 0 if E(q) > Emax

• (Emax – E(q))/(Emax – Emin) if Emax ≥ E(q) ≥ Emin

• 1 if Emin > E(q)
The resulting milestone distribution is denser in low-energy

regions of C.
Let s be the number of milestones selected as above. The next

step is to connect every milestone by local paths to at most k other
milestones, where k is selected roughly equal to the number of
dimensions of C, so that the resulting PCR has size linear in s.
The connection algorithm is the following:

For i  = 1, 2, …, s-1

1. Set Q to be the queue of the K milestones mj (j > i) that are
closest to mi, sorted according to their distance to mi

2. While the number of edges at mi is less than k and Q is not
empty

a. m ← extract(Q)
b. If the straight-line segment (local path) between m and
mi lies in a low-energy region, then connect m and mi by an
edge

We implement Step 2.b by discretizing the segment into a series
of points spaced by some small distance ε. An edge is generated if
all these points have energy less than a given threshold. Hence,
local paths that traverse a high-energy barrier are discarded. Step
2.b is potentially expensive, as it requires computing the energy
function at multiple points. So, we bound the number of times it is
executed by K for each milestone. K is set to 3 to 5 times k.

Figure 2b shows the projection of a PCR computed by this
algorithm for the landscape of Figure 2a, with k = 4, K = 12, Emin =
-40 and Emax = 20. The metric used here is the Euclidean distance
in R2.

Finally, for every pair of connected milestones m and m’, we
estimate the likelihood of the molecule(s) to transit along the local
path τ  joining them.  Let p be the number of discretized points
generated at resolution ε along τ and E1, …, Ep be the values of E
already computed at these points. For any three successive points
qi-1, qi, and qi+1 we use the following equation to estimate the
probability of moving from qi to qi+1:

Pr[qi,qi+1] = 
)/kTE(Ee)/kTE(Ee

)/kTE(Ee
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We compute the weight of τ as: w =  - Σi=1 to p log(Pr[qi,qi+1]).

Local paths through higher-energy conformations have
higher weights than those lying entirely in a low-energy area. A
term proportional to the path length is added to w. As the total
weight is not the same in both directions. We compute and store
both weights. During query processing, we select the weight
corresponding to the direction in which the path is traversed.

The construction of a PCR requires choosing several
parameters: s, k, K, Emin, Emax, and ε. The most difficult to select
is the number s of milestones. We do not know how big should s
be for the PCR to effectively capture the landscape of C. An
exponential rate of convergence has been formally established for
classical probabilistic roadmaps [HLMK99], but no such result
has been proven yet for PCRs.

2.3. Querying a PCR
It is important to note that the information contained in R cannot
be better than the energy function E used to construct it.
Furthermore, one could obtain individual pathways reflecting the
energy function more precisely, by tracking the values of E at a
fine resolution in the conformational space, rather than by
sequencing local pathways contained in the PCR. The main
advantage of a PCR is that it encodes a large number of paths
scattered across the energetically favorable regions of C. Hence,
though E is imperfect and milestones provide relatively low-
resolution sampling of C, one may get significant and reliable
information by collecting invariants and statistics from subsets of
paths contained in the PCR. Query processing should take
advantage of this strength, instead of relying on individual paths .

The most straightforward query is to determine if
energetically favorable paths exist between two input
conformations. Defining the weight of a pathway to be the sum of
the weights of the local paths it contains, a search algorithm finds
N best paths in the PCR between the two input conformations (for
some given N). These paths can be visualized and statistics can be
computed (e.g., number of milestones, average weight, energy
profile). To avoid showing many similar results, the paths can be
grouped into clusters using a similarity metric and only one path
in each cluster may be output. If the same milestone m lies on
several such paths, m may be considered as a likely intermediate,
hence a potentially relevant biological structure.

Another query is to find N best paths that enter an input goal
conformation, and display the milestones that are contained in
those paths. Again, similar paths can be grouped into clusters, and
milestones that lie on several distinct paths can be identified as
likely intermediates. The average weight of these paths can be
compared to the average path weight for other possible end

(a)

(b)

Figure 2: Fictitious energy function and computed PCR
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conformations, in order to provide insight on why an end
conformation is more likely to be attained than another.

One may use a PCR to perform stochastic simulations.
Starting at some initial conformation, a simulation run proceeds
step by step. At each step, it decides at random to either stay at
the current milestone or transit to an adjacent, using a probability
distribution based on the weights of the local paths. This type of
simulation corresponds well to the modeled biological process
since the molecules do not have the prior knowledge of their final
conformations. Multiple simulation runs can be performed and
statistics can be collected about the traversed milestones. Further
analysis may also help discover funnels of attraction steering a
molecule toward an end conformation.

2.4.Computational Enhancements
The cost of computing a PCR dominates that of performing many
queries. It is therefore desirable to develop techniques that can
produce good PCRs faster. One technique, which was
successfully applied to classical roadmap [KSLO96], is to
construct a roadmap in two stages. A first roadmap R1 is created
with s1 < s milestones. Then, s2 = s–s1 milestones (and  the
corresponding connections) are added to R1 to form the final
roadmap R. The new milestones are picked at random around
milestones of R1 that are the least connected to other milestones
(e.g., the number of connections is less than k). Another technique
is to evaluate the energy function at a few conformations around
every low-energy milestone m and, if important energy variations
are detected, to pick new milestones around m. This may help
build denser PCRs around important states.

One may use multiple energy models of different complexity.
Suppose that a function E’ is available, which approximates the
energy function E, but at a fraction of the computational cost of E.
Let H(E) and H(E’) designate the respective subsets of C over
which E and E’ take high values. We would like H(E’) ⊆ H(E)
and the difference between the two subsets to be rather small.
Since a molecular energy function such as E contains many terms,
it is often possible to build E’ by ignoring a large number of
relatively small terms. We can use E’ to build a roadmap R’ of
size s’ much greater than s. Next, we re-consider the milestones
and connections in R’ and accept/reject them using E to produce
the final roadmap R. If E’ costs one or two orders of magnitude
less time to evaluate than E, we can obtain a PCR of given size s
in much less time than by generating it using the only function E.

Each time a point is picked at random in C, a gradient
technique could track the steepest descent of E and generate a
point of lower energy. This new point would then be the actual
milestone candidate. Obviously, the cost of generating each
milestone would be greater, and this cost would have to be
weighted against that of generating more milestones (without
local optimization). Local paths could also be improved by
iteratively deforming them into curved ones in order to minimize
their weights. Other improvements may use prior knowledge
about the molecules and/or the molecular process. For instance,
atomic symmetries that cause some torsional angles to have
preferred values may be detected. Milestones can then be
generated by selecting these angles using non-uniform
distributions with peaks at the preferred values. If one knows in
advance critical low-energy conformations, such as a ligand’s
binding conformation or a protein’s folded state, these
conformations can be input as milestones. A greater density of

additional milestones may be generated around them since they
often lie in convoluted low-energy passageways [LGH97], which
may be difficult to capture by a standard sampling technique
[HKL98].

3. Ligand-Protein Binding

3.1. Problem Statement
Biomolecular interactions, such as molecular binding, are critical
to the process of life. Ligand-protein binding involves a small
molecule (10-100 atoms) – the ligand -- binding to a specific site
on a larger receptor protein. Ligands are used for signaling and
regulation in virtually all cellular pathways. Most drug molecules
are ligands that inhibit or enhance the activity taking place at the
protein sites where they bind.  For instance, it was discovered that
a specific enzyme (protein) -- the HIV-1 protease -- cleaves the
amino-acid chains produced by the HIV virus, hence playing an
essential role in the life cycle of this virus.  Drugs have been
designed which bind to the active site of the HIV-1 protease and
thus physically block the amino-acid chains produced by the HIV
virus from entering this site.

Most techniques to predict ligand-protein binding attempt to
compute the final conformation of the ligand by maximizing an
energy score and do not explicitly study the dynamic or kinetic
properties of the binding process. To study such properties,
researchers have relied on Molecular dynamics, Brownian
Dynamics and Monte Carlo simulation techniques. However,
these techniques are computationally intensive, especially for
ligands with many dofs, and provide, at best, a small number of
plausible ligand’s pathways.

3.2. Application of PCR
PCRs offer a novel approach to studying the dynamics and
kinetics of the ligand-protein docking process by sampling from
the space of all possible paths that a ligand may follow as it binds
to the receptor protein.  Hence, instead of simulating the docking
process, we use a PCR to effectively guess several possible
intermediate conformations of the ligand and obtain a distribution
of energetically favorable paths to the binding site via these
intermediate conformations.

In the following, we assume that the protein is rigid. This
assumption allows us to generate PCRs in the ligand’s
conformation space. There are cases where deformations of the
protein could not be ignored [TPK00]. In those cases, one must
consider a conformation space encoding both the ligand’s dofs
and some protein’s dofs.

We model the ligand as an articulated linkage made of
spheres (atoms) connected by straight links (bonds). An
arbitrarily chosen terminal atom is given 5 dofs, 3 specifying its
center’s coordinates and 2 specifying the orientation of its only
bond.  Each other dof is a torsional dof around a bond between
two non-terminal atoms. As angles between two successive bonds
and bond lengths usually undergo very small variations, we
assume they are constant. Atomic rings are modeled as rigid units,
which is true in most organic molecules.  Terminal hydrogen
atoms are not explicitly modeled, but are accounted for by
increasing the radius of the atoms they are bonded to. The 5 dofs
of the root atom and the torsional dofs define the conformational
space C.



5

Our energy model over C consists of two components:  the
energy of interaction of the ligand with the receptor and the
internal energy of the ligand.  For a given point in C, the energy
of interaction is computed by first calculating the coordinates of
the ligand atoms in a fixed coordinate system.  The energy
contributions of each ligand atom are computed based on the
potential field created by the protein at the atom’s coordinates.
This field is calculated from the atom coordinates and charge
distribution of the protein.  It consists of the van der Waals
potential and the electrostatic potential. The van der Waals
potential represents the steric constraints on atomic interactions
and is modeled using the following Lennard-Jones 12-6 function:
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where r is the distance between two atoms, r0 is the distance at
which the energy is minimum, and ε is the well depth, i.e., –ν(r0),
usually about 0.2 kcal/mol.

Since the standard Coulombic equation of electrostatic
interaction is valid only for an infinite medium of uniform
dielectric, it cannot be used here. The dielectric discontinuity
between protein and solvent generates induced or reflected
charges that can play a significant role in the binding process.
Hence, we model electrostatics using the following Poisson-
Boltzmann equation, which is a widely accepted model of
electrostatic interactions in solution:

0/)(4)](sinh[)()]( [ 2 =+−⋅∇⋅∇ kTrrr(r)rö(r) fπρφκεε

where φ is the electrostatic potential in units of kT/q, k is the
Boltzmann constant, T is the absolute temperature, q is the charge
on a proton, ε is the dielectric constant, and ρf is the fixed charge
density.  We use the Delphi program [SH90] to solve the equation
on a 3-D grid at a resolution of 0.5Å.  The van der Waals
potentials are computed at the same grid resolution by calculating
for each grid point the potential contribution of all receptor atoms
within a threshold distance of 10Å.

We compute the energy of interaction of every ligand atom
with the protein by indexing the atom’s center to the nearest grid
point and retrieving the van der Waals and electrostatic potentials
at this point.  The total energy of interaction is computed by
summing the contributions of each atom.  The ligand’s internal
energy is computed by applying the standard van der Waals and
Coulombic equations to each non-bonded pair of ligand atoms.
(Since a ligand is small and flexible, we assume that its surface is
not well defined and hence use the standard Coulombic equation,
with a dielectric constant between 60-80.)

Milestones are generated as described in Section 2.2.  In
addition, extra milestones are generated by iteratively over-
sampling regions of lowest energy in C.  The final bound state of
the ligand is also entered into the roadmap as a milestone.

3.3. Experimental Results
We have constructed PCRs for various ligand-protein complexes.
Initial tests were performed on three complexes identified as
1ldm, 4ts1, and 1stp in the Protein Data Bank (PDB,
http://www.rcsb.org). Further tests were carried out on complexes
that appear to be mediated primarily by electrostatic effects (e.g.,
superoxide dismutase and acetylcholine esterase).  The PCRs
were constructed with 5,000 to 100,000 milestones.   On a 195-
MHz MIPS R10000 processor, the average PCR construction

time ranged from 3-8 minutes for smaller roadmaps to 0.5-3 hours
for larger ones.  In all runs, our software generated PCRs
containing 2 to 5 connected components.  As voids and narrow
cavities do occur within a protein structure or on its surface, some
milestones may be picked in these regions, thus yielding more
than one connected component.  In each run, over 98% of the
milestones were in a single component also containing the bound
state.

We studied if our software was able to distinguish the active
site from other low-energy sites.  The two attributes we used to
distinguish between the active and other predicted binding
conformations were the ligand’s absolute energy and the average
weight of the paths entering and leaving the conformation.  The
average weight was computed by generating many paths from
randomly selected conformations to the final conformation.

We observed that the absolute energy of the ligand was not a
strong discriminating factor between the active site and other
predicted sites.  In two of our three test cases (1ldm and 1stp) the
algorithm found ligand conformations outside the active site with
energies equal to or even slightly lower than the ligand’s energy
in its active site conformation. Instead, using the average path
weight, our software was able to distinguish between the active
site and other predicted sites.  The average weight of all paths
entering and leaving the active site was on average 30% higher
than the weights for all other low-energy sites.  Therefore, while
it is significantly more difficult for the ligand to leave the active
site than the other low-energy binding sites, it is also more
difficult for the ligand to enter the active site. We believe that this
result indicates the presence of an energy barrier around the active
site that traps the ligand within the site. Figure 3 shows a
schematic of a possible energy contour that could yield a similar
result.  Our experiments also show that the average weight of
paths entering the active site is of the same order as the weight of
paths leaving the predicted sites (a result reflected in Figure 3).
Hence, the difficulty of entering the active site is approximately
equal to the difficulty of leaving the other binding sites.

Other tests have focused on analyzing the role of the
electrostatic energy in binding.  In one series of experiments, we
have selectively eliminated one or more of the charges on the
protein.  When all charges are turned off, the results show that
the energy barrier we previously detected is largely eliminated.
Hence, not only do the energy minima in the binding site
increase, but the energy barrier surrounding the binding site also
seem to decrease, hence flattening the curve in Figure 3. These
results indicate that the barriers to ligand docking are mainly of
electrostatic nature, and not caused by van der Waals potentials.
In addition, we have stochastically simulated the motion of the
ligand in a PCR by selecting paths from each milestone based on
the distribution of outbound local path weights.  Initial results
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Figure 3: Illustration of energy barriers around an active site
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indicate that electrostatics steering is detectable by the PCR, but
only at short distances from the molecular surface (5-7Å).

4. Protein Folding

4.1. Problem Statement
A protein is a sequence of amino acids that folds to generate a
compact 3-D structure. This structure performs many functions,
from building larger assemblies such as muscle fibers to
providing specific binding sites for other molecules. The position
of the atoms in a folded protein is referred to as the protein’s
tertiary structure. The primary structure is the amino-acid
sequence, while the secondary structure refers to specific local
arrangements of a few to a few dozen amino acids. There are two
main types of secondary structure elements (SSE): α-helices and
β-strands. These SSEs have regular structures, with repeating
torsion angles and a constant pattern of hydrogen bonds. They are
usually connected by loops, which have irregular shapes. An α-
helix has a corkscrew shape, with the atoms on the backbone
closely packed and the side-chains extended in a helical array. A
β-strand is an almost fully extended series of 5 to 10 amino acids.
Two or more β-strands often align side-by-side into a β-sheet held
together by hydrogen bonds. Most folded proteins are a sequence
of α-helices and β-strands connected by loops. Figure 4 shows the
secondary structure of the ribonuclease A (a digestive enzyme).
Note how intricately and compactly the SSEs are interwoven.

Recent advances in X-ray crystallography and NMR imaging
have made it possible to elucidate the folded conformations of a
rapidly increasing number of proteins. However, little is known
today about the folding pathways that transform an extended
string of amino acids into a compact and stable structure. So far it
has only been possible to identify approximate intermediate
conformations for few proteins. Some biological experiments
track a particular property of the protein during folding, but they
provide a limited way of following the folding pathway. The
ability to predict pathways would help design proteins with
desirable properties [KL99]. It could also help determine why
relatively small alterations in amino acids may result in dramatic
changes of a protein’s folded state. Several diseases such as
Cretzfeldt-Jakob’s, Alzheimer’s, and cystic fibrosis are believed
to be the result of protein misfolding.

4.2. Application of PCR
The application of PCRs to protein folding is made complex by
the large number of dofs. To simplify, we assume here that the
SSEs of the protein have already formed and are given as inputs.
This assumption loosely corresponds to studying the folding
process after the protein has acquired the so-called “molten

globule” state, an observed intermediate for some proteins
[PR97]. This state has nearly the same secondary structure as the
final fold, but the tertiary structure is not as compact. The
pathways provided by a PCR based on this assumption could help
understand how α-helices and β-sheets interweave into a compact
geometric arrangement.

In a similar way to [SB97], we represent the protein as a
sequence of vectors, each representing an SSE (Figure 5). We
consider the following dofs (Figure 6):
• A revolute dof is located at the extremity of each vector,
except the last one. The corresponding parameter is the angle
made by the vectors ending and starting at this point.
• A dihedral dof is associated to every three consecutive
vectors. The parameter is the angle made by the plane containing
the first two vectors and the plane containing the last two.
• A twist dof is associated to every α-helix and β-strand. A
coordinate frame is attached to this SSE with its z axis aligned
with the element vector. The dof parameter is the angle between
the x axis of this frame and the orientation of the first amino acid
on that vector. The twist of an α-helix or β-strand about its own
axis does not affect the positions and orientations of other SSEs.
• A prismatic dof is associated with each loop. The
parameter is the length of the loop vector, which is allowed to
vary within a range that is a function of the number of amino
acids in the loop.

Our potential function is taken from [STD95]. It has a
hydrophobic-interaction and an excluded-volume part. Amino
acids are categorized into two groups, hydrophobic (H) and
hydrophilic (or polar, P). H-H contacts are favorable, whereas H-
P or P-P contacts do not contribute to the energy. The exclusion
term ensures that no two atoms are too close. There are also terms
of a third type for β-sheets, which account for hydrogen bonding.
These terms are a function of the distances between side-chain
centroids. This model assumes that hydrophobic interactions drive
the folding process and that the specific identity of the side-chains
is only responsible for the fine-tuning of the fold. It is argued in
[STD95] that the level of success of their function is comparable
to that of functions with hundreds to thousands of parameters.

We generate each milestone of a PCR by sampling each dof
of the protein’s model at random. We explicitly input the folded
state as a milestone. Lower energy conformations have a higher
probability of being accepted. We only compare the exclusion
energy component, rather than the total energy, in accepting a
conformation. The reason for this is that H-H interactions may
counterbalance the contribution of mutually close side-chains to

Figure 4. Secondary structure of the
ribonuclease A

Figure 5: Representation of a protein

Figure 6: Degrees of freedom in our protein model
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the energy, thus resulting in self-colliding conformations. We set
the exclusion energy threshold to prevent any two side-chains
from coming closer than 3.8Å. We also take extra samples around
the given folded state.

Each milestone is then connected to at most k milestones
among the nearest ones, where k is the number of dof in our
protein’s model. The nearest neighbors of a milestone are found
using ANN [AM93], with the Euclidean distance over the
conformational space, after normalizing each dof parameter to lie
between 0 and 1. We also tried the RMSD metric, but it was
slower and did not give significantly different results. To
discretize a local path (and eventually decide if it is part of the
PCR, or not), we break the path into segments of equal length,
such that the variation of every angular dof is less than π/12 and
that of every length dof is smaller than 0.5Å. The path weights are
assigned as described in subsection 2.2.

4.3. Experimental Results
After generating PCRs, we performed the following queries:

1) Compute the minimum-weight path between an arbitrary
start conformation and the folded conformation.

2) Compute M near-optimal paths between the same start
conformation and the folded conformation.
 For 2), we computed 199 near-optimal paths between the start
and goal conformations using the algorithm in  [NB94]. For each
milestone m in the best path, we computed the number of near-
optimal paths that contain m or a milestone close to m.

We considered two proteins previously analyzed in [STD95]:
1hdd and 1le2. We obtained the description of the secondary
structure from DSSP [KS83]. We took extra samples around the
folded structure. The PCRs were constructed with 1500 to 5,000
milestones. On a 400-MHz Pentium II processor, the average
PCR construction time ranged from 7 minutes for smaller
roadmaps to 10 hours for larger ones. In all runs, the largest
connected component contained more than 95% of all the nodes.

In the initial random sampling, each prismatic dof was
uniformly assigned values between 0.5 and 6Å per amino acid on
the loop. Each revolute dof was uniformly distributed in [0,π] and
each dihedral and twist dof was uniformly distributed in [-π,π]. To
generate extra samples around a given milestone, each angle was
picked within ±π/6 of the corresponding angle in the milestone and
each length was picked within ±0.5Å of the corresponding length.
Figure 7 show the results for 1hdd. Energy vs. RMSD distribution is
shown in (a); energy profile, rmsd profile, and the ratio of the
number of times the milestones on the best path are also visited in
the near-optimal paths.are shown in (b) and (c) For (a), red points
correspond to samples taken around the native structure, whereas
blue points are regularly sampled milestones.

For 1hdd, Figure 7 shows that there are milestones of lower
energy than the folded state. This may be due to the various
approximations made in the energy model. In (b), the energy
profile shows a barrier just before reaching the folded state,
similar to the profiles in [SA00]. But several runs led different
plots, and (c) shows another profile, for a different PCR of the
same size and for another random starting configuration. No
barrier is observed before reaching the folded state and no node is
visited extensively in the 200 best paths.

For 1le2, our PCR found a configuration which is visited in
all 200 best paths. This configuration is displayed in Figure 8,

along with the folded structure. Only the backbone atoms are
shown. The solid vectors stand for α−helices, whereas the dashed
vectors stand for loops. Both structures have the same topology,
but the folded state is slightly more compact.

5. Current Research
We are pursuing our work on applying PCRs to ligand-protein
binding and to protein folding. The kinematic and energetic
models of the molecules need to be improved, especially for
protein folding. Sampling techniques incorporating domain-
specific heuristics must also be developed to take advantage of
the most recent knowledge about biomolecular interactions.
Concurrently, we are investigating new general techniques to
produce pertinent roadmaps more quickly. Indeed, it is clear from
our current work that large PCRs made of several 100,000
milestones, or more, will eventually have to be computed.
Moreover, we believe that capturing function landscapes over
high-dimensional spaces is a problem arising in several
applications and that probabilistic roadmaps similar to PCR are a
promising tool to do it. Hence, any general improvement in

(a)

(b)

(c)

Figure 7: Results for 1hdd
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computing PCRs can have a significant impact both in
computational biology and beyond.

A remaining challenge in applying probabilistic roadmaps to
robot motion planning is the so-called “narrow passage” issue
[HKL98]. This issue also arises in protein folding, but with much
greater acuity. The low-energy subset of the protein’s
conformation space tends to form a maze of very narrow passages
[LGH97], with the (possibly unknown) folded conformation lying
in one of them and the initial, extended conformation lying
outside the maze. The technique proposed in [HKL98] for robot
motion planning is to widen the narrow passages by allowing a
small penetration of the robot into the obstacles In protein
folding, using an energy function E’ approximating the function E
with a smaller domain of high values (see Subsection 2.4) has a
similar effect. Investigating narrow passages for protein folding
may eventually benefit robot motion planning.
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