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Abstract: Automaticmodelconstructionis a core problemin mobile robotics. To

solwe this taskefficiently, we needa motion stratey to guidea robotequippedwith

arangesensorthrougha sequencef “good” obsenations. Sucha stratgy is gen-
eratedby an algorithm that repeatedlycomputeslocationswhere the robot must
performthe next sensingoperation. This is calledthe next-bestview problem. In

practice however, severalotherconsiderationsnustbetakeninto account.Of these,
two standout asdecisize. Oneis the problemof safenavigation givenincomplete
knowledge aboutthe robot surroundings.The secondone is the issueof guaran-
teeingthe alignmentof multiple views, closelyrelatedto the problemof robotself-

localization. The conceptof saferegion proposedn this papermakesit possibleto

simultaneoushaddres$oth problems.

1. Intr oduction

Automaticmodelconstructioris afundamentataskin mobilerobotics[1]. Thebasic
problemis easyto formulate: After beingintroducedinto an unknovn ervironment,
arobot, or a teamof robots, mustperform sensingoperationsat multiple locations
andintegratethe acquireddatainto a representationf the environment. Despitethis
simple formulation, the problemis difficult to solve in practice. First, thereis the
problemof choosinganadequateepresentationf the ervironment— e.g.,topologi-
calmaps[2], polygonallayouts[1], occupang grids[4], 3-D models[12], or feature-
basedmaps[6]. Secondtherepresentatiomustbe extractedfrom imperfectsensor
readings— e.g.,depthreadingsfrom range-sensomnay fluctuatedueto changesn
surfacetextures[3], differentsetsof 3-D scansmustbe zippered[13], and captured
imagesmustbe alignedandregistered11]. Finally, if the systemis truly automatic,
therobotmustdecideon its own the necessarynotionsto constructhe model[5].
Pastresearctin modelconstructiorhasmainly focusedon developingtechniques
for extracting relevant features(e.g., edges,corners)from raw sensordata,and on
integratingtheseinto a single and consistenmodel. Thereis alsoprior researchon
the computationof sensomotions, mostly on finding the next-bestview (NBV) [3,
11]: Whereshouldthe sensorbe placedfor the next sensingoperation? Typically,
a modelis first built by combiningimagestaken from a few distributedviewpoints.
Theresultingmodelusuallycontainsgaps.An NBV techniqueis thenusedto select
additionalviewpointsthatwill providethedataneededo fill theremaininggaps.



TraditionalNBV approachesrenot suitablefor mobile robotics. Onereasornis
thatmostof the existing NBV technique$iave beendesignedor systemghatbuild a
3-D modelof arelatively smallobjectusinga preciserangesensomoving aroundthe
specimen(Collisions,however, arenotamajorissuefor sensorshataremechanically
constrainedo operateoutsidethe corvex hull of the scene.In robotic applications,
by contrastthe sensomavigateswithin the corvex hull of the scene.Therefore safe
navigation considerationsnust always be taken into accountwhen computingthe
next-bestview for arobotmapbuilder.

The secondeasorwhy mostexisting NBV techniquesannotbe appliedto mo-
bile robotsis that very few of the proposedapproachegxplicitly considerimage-
registrationissues(one exceptionis the sensothasedtechniquepresentedn [11]).
Localizationproblemsparticularly affect mobile sensorsandimageregistrationbe-
comegparamountvhenit is themeansy which amobilerobotre-localizestself (this
is theso-callecsimultaneoudocalizationand mapbuilding problem)[9, 7]. Although
mary image-r@istrationtechniqgueganbefoundin theliterature all requirethateach
new imagesignificantlyoverlapswith portionsof the environmentseenby the robot
at previoussensingocations[9].

Thesystempresentedn [5] dealswith thesafenavigationandlocalizationprob-
lemsby applyingthe concepbf saferegionandthe NBV algorithmintroducedn this
paper With saferegions, it is possibleto iteratively build a mapby executingunion
operationsover successie views, and usethis mapfor motion planning. Moreover,
saferegionscanbe usedto estimatethe overlapbetweerfuture views andthe current
globalmap,andto computdocationsthatcould potentiallyseeunexploredareas.

Thework in [5] is mainly aboutsystemintegrationandproof of concept.nstead,
this paperfocuseson the formal definition of a saferegion (Section2), anddescribes
how to computesuchregion from sensomata(Section3). An NBV algorithmbased
on saferegionsis outlinedin Section5, and Section6 describesan experimentalrun
usingour system.

2. Definition of SafeRegions

Supposehattherobotis equippedwith a polarrangesensomeasuringhe distance
from thesensors centerto objectslying in ahorizontalplanelocatedatheighth above
thefloor. Becausall visual sensorsarelimited in range,we assumehatobjectscan
only be detectedwithin adistancedy . In addition,mostrange-findergannotreliably
detectsurfacesorientedat grazingangleswith respecto the sensar Hence we also
assumehatsurfacepointsthatdo not satisfythe sensors incidenceconstraintcannot
bereliably detectedy the sensorFormally, our visibility modelis thefollowing:
Definition 2.1 (Visibility under Incidenceand RangeConstraints) Let the open
subset? C R? describethe workspacelayout. Let 8%V be the boundaryW. A
pointw € 8V is saidto bevisible fromg € W if thefollowing conditionsare true:

1. Line of sightconstraint Theseggmentfromgq to w doesnt intersectoW.

2. Rangeconstraint d(g, w) < dw, wheee d(g, w) is the Euclideandistancebe-
tweeng andw, anddy > 0 is aninput constant.

3. Incidenceconstraint Z(n,v) < 7, whele n is a vectorperpendiculartto OV at
w, v is orientedfromw to ¢, andr € [0, /2] is aninputconstant.
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Figurel. Effectof incidenceon saferegions.

Withoutary lossof generalitywe assumehe sensolis locatedat the origin (the

workspaceanalwaysbere-mappedo areferencdramecenterednthesensor) The
sensors outputis assumedo beasfollows:
Definition 2.2 (RangeSensorOutput) Theoutputof a range sensoris an ordered
list II, representingthe sectionsof OW visible from the origin under Definition 2.1.
Everyr(6; a,b) € Il is a polar functiondescribinga sectionof 9}V, andsuc function
is continuousy 8 € (a, b) andundefinectlsavhele. II containsat mostonefunction
definedfor any§ € (—m, ] (i.e., no two functionsoverlap), and the list is ordered
counterclokwise

Givenan obsenation II madeby the robot at a location ¢, we definethe local
saferegion s| atq asthelargestregion guaranteedtb befree of obstaclesWhile range
restrictionshave an obviousimpacton s, the effect of incidenceis more subtle. In
Figure1(a), a sensordetectsthe surfacecontourshavn in black. A naive approach
may constructheregionin light color (yellow) by joining the detectedsurfaceswith
theperimetedimit of thesensorandconsidethisregionfreefrom obstaclesBecause
the sensoris unableto detectsurfacesorientedat grazingangles this region may be
not be safe,asshawvn in (b). A true saferegion is shavn in (¢), for anincidence
constrainof 7 = 70 deg.

3. Computing SafeRegions
The region s, is boundedby solid and free curves. A solid curve representsan
obsered sectionof W, andis containedin the list II. Given two solid curves
{r1(6;a1,b1),7m2(8;a2,b2)} C II, 5 is said to succeedr; if no otherelementin
IT is definedin theinterval [b1 , a2]. A curve f(6; by, az) joining apair (1, r2) of suc-
cessve sectionss calledafreecurveif: (1) noundetecteabstaclds containedn the
polarregionb; < 6 < ax boundeddy f; and(2) thisregionis thelargestpossible.

The main goal of this sectionis to find the free curvesthatjoin eachsuccessie
pairin IT in orderto boundtheregion s;. It turnsoutthatthe complexity of f is O(1).
In fact,afreecurve f canbedescribedisingno morethan3 function primitives:
Theorem 3.1 (FreeCurves) Suppose(0; as, ba) succeeds; (6; a1, b;) in the out-
putlist II. If W is continuouslydifferentiable thenthefreecurve f(8; b1, a2) con-
nectingry to ro consistsof at mostthreepieces.Eac pieceis eitheraline sggmenta
circular arc, or a sectionof a logarithmicspiral.

Therestof this sectionprovesthis claim. But first we needthefollowing lemma:



Lemma 3.2 Letry(6;a1,b1) succeeds(6;az, bs) in thelist II. Let C' be someob-
stacle and supposehat neitherr, nor ry are part of the boundaryof C (i.e., C' is
disjointfromr, andrz). If OW is continuouslydifferentiable thenno portion of C
lieswithin a distancedy fromtheorigin in thepolarintervalb; < 6 < as.
Proof: Supposéhelemmais nottrue— thatis, thereis aportionof C within dy of the
origin insidethe polarintenal (b1, a2). Let p bethe closestpoint to the origin in the
boundaryof C'. Becaus&®V is differentiable the normalof 8)V atp pointstoward
the origin. Therefore,p andits vicinity shouldhave beenobsened. The vicinity of
p mustthenbe part of anelementof II. But this contradictsour assumptiorthat
succeeds; andthatC' is disjointfrom r; andr,. O

Fromhereon,let 8 = as — by, p1 = r1(b1) andpy = r2(az); andletl; andl,
denotetheraysjoining the origin with p; = (p1, b1) andpy = (ps2, az), respectiely.

Eachendpointof a curvein II representeneof the following events:the sensor
line-of-sightwas occluded(denotedas case{o}), therangeconstraintwasexceeded
(case{e}), or theincidenceconstraintwas exceededcase{v}). To join p; with po
thereareatotal of 6 distinctcases:{v,v}, {v,0}, {v,e}, {e,&, {0,0} and{e,0}. The
casedo,e}, {o,v} and{e,v} aremirror imagesof othercases.
Case{v,v}: Theincidenceconstraintwasexceededatd = b; andd = a,. There-
fore, the normalto 0V immediatelyafterr,, andimmediatelybeforer,, is oriented
atagrazinganglewith respecto thesensorSupposehatd)y continuesafterr; with
its surfacenormalconstantlyorientedat exactly anangler with respecto thesensors
line-of-sight. This curvein polarcoordinatesatisfieghefollowing relations:

n = -—rdfé, +oregp, (1)
14r
r 66
Hence the curve’s equationis r = r, exp [£A(8 — 6,)], with r, = p; andé, = b;.
Theequatiomow definestwo spirals:aspirals;” growing counterclockwisefrom p;
(or shrinkingclockwise),anda secondspirals;” shrinkingcounterclockwisefrom p;
(or growing clockwise).0W mustcontinuecounterclockwisefrom p; either“above”
sT or“below” s;; otherwisetheincidenceconstrainwould not have beenviolated.
Similarly, for the oppositeendps, let r, = py and@, = as. The solutionto
equation(2) now definesaspirals; growing clockwisefrom p, (or shrinkingcounter
clockwise),anda secondspiral s§ shrinkingclockwisefrom p, (or growing counter
clockwise).0WW mustcontinueclockwisefrom p, either“above” s; or “below” s .
Remark 1. 9)V cannotcontinuebelow s; whenp; exp(—AB) < pa. In other
words, 0 cannotcontinuebelow s; if this spiral curve cutsi, below the point ps
(Figure2(a)). To shaw this,supposéW continueselow s;, whichimpliesthatoWy
bendstoward the sensoimmediatelyafterr;. We know that 9V doesnot crossthe
origin, elsenothingis visible underDefinition 2.1 andIl would beempty Hence OW
would have to bendoutwardsbeforecuttingtheray i, otherwiser, will beoccluded.
SincedW is differentiable theremustthenbe a point p wherethe normalto oW
pointstowardsthe origin. Becausef Lemma3.2, this point p is not occludedby ary
othersectionof )V thatis disjointedfrom r, andrs. Thereforethevicinity of pisa
visible portionof 9W. This violatesour assumptiorthatr, succeeds;. Thus,when
p1exp(—AB) < po, thefirst sectionof thecurve f joining r; to 7, coincideswith s;".

n-(—ré,) = rln|cos(t) = = £, with XA = tan(7). 2



Figure2. Exampleof a free-cune construction:(a) this situationis impossible;(b)
in this casethefree curveis composeaf the segmentjoining p; with p andthespiral
s, joining p with po; (c) herethefree curve is composedf the spiral s} joining p;
with p andthe spiral s, joining p with p, (unlessp is beyondrange,in which casea
circulararcof radiusdy, is added).

Remark 2. By symmetry when p, exp(—A\3) < p1 (i.e.,s3 cutsl; below py),
thelastsectionof thecurve f coincideswith s, (which grows clockwisefrom ps).

Thepointp, maylie belov theintersectiorof s; with I, above theintersection
of sf with Iy, or betweenboth intersections.Lik ewise, the point p; may lie belon
theintersectionof s§~ with /;, above the intersectionof s, with [y, or betweenboth
intersectionsTherearetotal of 9 combinationf eventsfor case{v,v}, but only 3 of
themareindependent:

(a) s7 cutsly above pa. Thus,p; exp(—AB3) > p2, andthisis equivalentto

p2exp(AB) < p1. Thatis, s5 cutsl; below p;.

(b) s7 cutsly below ps. Thus,p; exp(A\8) < p2, andthisis equivalentto
p2 exp(—AB) > p1. Thatis, s§ cutsl; abovep;.

(¢) s; cutsly belov p, ands;™ cutsly, above p,. Thus, py exp(—=AB) <
p2 < prexp(A\B), andthis is equivalentto ps exp(—A8) < p1 <
p2 exp(AB3). Thatis, sd cutsl; below p; ands, cutsl; abovep;.

Let us analyzethe first situation. p;exp(—A\3) > po is equialent to
p2exp(AB) < p1, which in turn implies that p; exp(—AB) < p1. In otherwords,
boththe clockwise-graving s, andthe clockwise-shrinkings$ cutl;, below p; (see
Figure2(b)). FromRemark2, thelastsectionof the free curve f coincideswith s .
Let p betheintersectiorbetweens, andl;. Thefreecurve f joining ry to r» is thus
composedf the sggmentjoining p; with p andthespirals, joining p with ps.

A symmetricagumentappliesto the secondsituation,whenps exp(—AS8) > p1
(i.e.,s§ cutsl; abovep,), exceptthatRemarkl is usedin this case.

Theonly remainingsituationis (¢): p1 exp(—Af8) < p2 andps exp(—Af8) < p1.
From Remarksl and 2, theseinequalitiesimply thatthe first sectionof f coincides
with s while thelastsectionof f coincideswith s, . Let p betheintersectiorof s;
andsj . If p is within dy , then f is composedf the spiral s} joining p; with p and
the spiral s; joining p with p, (Figure2(c)). Otherwisep is beyondrange,and f is
composedf asectionof i, acirculararcof radiusdy , anda sectionof s; .
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Figure3. Dealingwith corners:(a) thenormalto 8V atacorneris generalizedsthe

averageof n andn—; (b) if weassumehatacornerhas‘thickness”,andis therefore
detectabldy the sensorthenary wedge-shapedbjectis visible if 7 > 45 deg.

Case{v,0}: Asinthepreviouscasethecurver; wasinterruptedatd = b, because
the incidenceconstraintwas exceeded. The curve r2, however, was interruptedat
0 = a2 becausaportionof 0)V blockedthesensorsline-of-sight.In orderto produce
the occlusion,dWW mustbetangentto I, at somepoint p; below p.. We know from
Lemma3.2thatthe portionof 9V producingthe occlusioncannotbe disjointedfrom
r1. Thus,p; is partof thesamecurve asr; .

OW cannotcontinuefrom r; below s7. To show this, suppos&®W continues
below s7". Thisimpliesthatd)V bendstowardthe sensoiimmediatelyafterr;. But
to causethe occlusion,0W hasto bendoutwardsbeforeit reacheghe tangentpoint
pe. SincedW is differentiable theremustbe a point wherethe normalto 0V points
towardsthe origin. But we alreadyknow that this violatesour assumptiorthat ro
succeeds;. Therefore YV mustcontinueabove si".

For case{v,0}, it is awaystruethats; cutstherayl, belov p, atsomepoint p.
Otherwisejt will beimpossibleto produceheocclusionatp;, becausé&)V continues
from r, above s{. Thus, f is composedf the spiral s} joining p; with p, andthe
segmentjoining p with ps.

Case{v,e}: As beforetheincidenceconstraintvasexceededatf = by, butr, was
interruptedbecauséeherangeconstraintvasexceededtf = a,. Thatis, p2 = dyv .

Thepointp, iswithin range hencep; exp(—AB) < p2 becausg, = du . Thisis
exactly the situationdescribedn Remarkl of case{v,v}. Thus,0WW cannotcontinue
below s, , andthefirst sectionof f coincideswith s; .

If s{ cutstherayl, below p, at somepointp, then f is composedf the spiral
s7 joining p; with p, andthe segmentjoining p with p». Otherwisep is beyondrange,
andf is composeaf asectionof si” anda circulararcof radiusdy .

Case{e,g}: Thiscasestrivial. Thefreecurveis acirculararcjoining p; to p.

Cases{o,0} and {e,0}: Thereadermay verify thatthesecasesareimpossibleby
following the sameline of reasoningusedthroughoutthis proof. We skip the details
for lack of space.

We have accountedll possiblecasesThis concludeur proof of Theorem3.1.

4. Extracting SafeRegionsfrom Real SensorData
Themainpracticalproblemwith the theoreticakesultsof the previous sectionis that
the sensoroutputis usually a list of points, not a list of curves. Therefore,a pre-
processingtageis neededo corverttheraw datainto the outputlist II.



Let L bethelist of pointsacquiredby the sensorat ¢q. L is transformednto a
collectionII of polygonallines called polylines The polyline extraction algorithm
operatesn two steps:(1) groupdatainto clustersand(2) fit apolylineto eachcluster
Thegoalof clusteringis to grouppointsthatcanbetracedbackto the sameobjectin
W. Clusteringis doneusingthresholdsselectechccordingto the sensors accurag.

The pointsin eachclusterarefitted with a polyline sothatevery datapoint lies
within a distancee from a line sggment,while minimizing the numberof verticesin
the polyline. The computationtakes advantageof the factthatthe datadeliveredby
polarsensorsatisfyanorderingconstraintalongthe noise-fregf-coordinateaxis. By
applyingthe mappingu = cosé/sinf,v = 1/(rsin §), the problemis transformed
into a linear fit of the form v = a + bu (which mapsto bz + ay = 1 in Cartesian
(z,y)-space). Several algorithmsexist to find polylinesin (u,v)-space.We useda
divide-and-conquealgorithm.Examplef our polyline-fit techniquewith realsensor
datacanbefoundin [5].

4.1. Corners

Cornersposea problemeven underidealizedconditions. Supposehe robot is sur
roundedby oneor severalwedge-shapedalls orientedtowardthe sensor Thesensor
is thenunableto seeary of thesewedgesandthe saferegionis empty Thisis nota
failure of our mathematicahnalysis put a physicallimitation of thesensorThis limi-
tationwasnottakeninto accounby Definition 2.1,alongwith severalothers(e.g. that
somesurfacescould be perfectmirrors). We canonly assumehatthe anglebetween
ary pair of incidentwalls is large enoughsuchthatat leastone sectionat eitherside
of the corneris visible to the sensor Or thatthe corneritself is not sharpenoughto
remainundetectedby the sensof(i.e., the cornerhas“thickness”).

Underthe above assumptionswe generalizehe conceptof a surfacenormalto
include corners. The normaln to 8V at a corneris the averageof n™ andn—,
wherent andn~ arethe normalsto 8V immediatelyafter and beforethe corner
(Figure3(a)). Thecorneris visibleif the conditionsof Definition 2.1 aresatisfiedfor
this generalizedh. Thatis, a cornerbehaeslike ary otherpointin 9V, aslong as
our hypothesesboutd)V holdtrue.

The systemdescribedn [5] expectscornersto have thickness andthereforeto
bedetectabldoy thesensorUnderthis suppositionit is easyto verify thatarny wedge-
shapedbjectwithin rangeis visible if 7 > 45 deg (Figure3(b)).

5. A Next-BestView Algorithm

In a staticervironment,a saferegion remainssafeunderthe unionoperation.Hence,
the layout model can be expandediteratively. A first partial layout— a local safe
region— is constructedrom thedataacquiredy therangesensoattherobot'sinitial
positiongy. At eachiteration,the algorithmupdateghe layout modelby computing
the union of the saferegion build so far with the local saferegion generatedat the
new positiong;. The new saferegion is thenusedto selectthe next sensingposition
gr+1- TO computethis next-best-viev position,the procedurdirst generates setof
potentialcandidatesNext, it evaluatessachcandidateaccordingto boththe expected
gainof informationthatwill be sensedt this position,andthe motion costrequired
to movethere.Thesestepsaredescribedelow.
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Figure4. Next-bestview computationafter 5 sensingoperationshave alreadytaken
place:(a) candidategeneration(b) evaluationof onecandidate.

5.1. Model Alignment and Merging

Let (IIg(gr—1),Sg(gr—1)) be the partial global model built at g;_;. The term
Sy(gr—1) is the union of all local saferegionsup to stagek — 1. The boundaryof
Sy(gr—1) is composedf free andsolid curves, the latter representinghysicalsec-
tionsof OW. LetIIy(gr—1) bethelist of solid curvesin the boundaryof Sy(gx—1).

The robot performsa sensingoperationonceit movesinto a new location gy.
Fromthe local measuremer, (g ), we computea local saferegion si(gx) usingthe
techniquesrom Section3. Let (II(gx), si(gx)) bethelocal modelat gy,

Supposehere exists an algorithm ALIGN that computesthe transformation?’
aligning the line segmentsin II; (gx) with thosein IIg(gx—1). We will not assume
thatthistechniqueis perfect:ALIGN computesa correct’ only whenthereis enough
overlapbetweerlI, (g) andIlg(gx—1).

OnceT is calculatedthenew globalsaferegion Sy(gx) is computedastheunion
of T'(Sy(gr—1)) andsi(gx). Thenew model(Ilg(gx), Sg(gr)) is representeth a co-
ordinateframecenteredvertherobotatits currentpositiongy,.

5.2. Candidate Generation

Thenext locationgx4+1 mustbe containednside Sy(gx). Otherwiseg,4: would not
bereachabldrom the currentpositiongy,.!

We generateat randoma numberof possibleNBV candidatesn Sq(gs) within
thevicinity of thefree curvesboundingSy(gx) (Figure4(a)). For eachpossiblecan-
didateg, we computethe total length {(Sq(gx), ¢) of the non-freecurves bounding
Sy(gr) thatarevisible from g underDefinition 2.1 (this operatioris doneusingaline-
sweeptechniqug10]). ¢ is themeasuref the expectedoverlapbetweeranewx image
IT;(¢) andthecurrentlist of solid curvesIIg(gx). If ((Sq(gr),q) is greatethansome
thresholdtheng is actuallyselectecasanNBV candidate Thisfiltering stageensures
thatthefunctionALIGN will successfullyfind atransformT.

1 Strictly speaking Sg(q ) mustfirst beshrunkby theradiusof therobotbeforecomputinga saferoute.



5.3. Evaluation of candidates
To decidewhetherapositiong in Sy(gx) isagoodcandidatdor g1 wemustestimate
how much new information aboutthe workspacewe expectto obtainatg — i.e., ¢
shouldpotentiallyseelarge unexploredareashroughthe free boundaryof Sy(gx ).
The score of every NBV candidateq is given by the function g(q) =
A(q) exp(—AL(q, gr)), where\ is a positive constant,L(q, gx,) is the length of the
shortestpathconnectingg, with ¢, and A(q) is a measureof the unexploredareaof
the ervironmentthat may be visible from ¢ (seenext paragraph)g.1 is selectedas
the sampleg thatmaximizesthe function g(q). Thefactor A weightstherelative cost
of motionwith respecto visibility gains. A = 0 impliesthatthe mapbuilderincurs
no costwhile moving, andthe NBV planneris allowedto selectnew locationsexclu-
sively in termsof their potentialvisibility gain. A > 0 impliesthatmotionis socostly
thatlocationscloseto g, are preferredover distantones,aslong asthey producea
maminal gainin visibility.
Computation of A(q) We measurehe potentialvisibility gain of eachcandidate
g asafunction of the areaA(q) outsidethe currentsaferegion that may be visible
throughthe freecurvesboundingSy(gx) (Figure4(b)). For polygonalmodels,A(q)
canbe computedby the sameray-sweemlgorithmusedto computeclassicvisibility
regions[10], with thefollowing modifications:

1. The sweepingray may crossan arbitrary numberof free edgesbeforehitting a
solid one. Therefore the computation-timeof the ray-sweepalgorithmbecomes
O(nlog(n) + n kt), Wherek; is thenumberof freeedgesoundingSy(gx)-

2. The resultantvisible region is croppedto satisfy the rangerestrictionsof the
sensorThis operationcanbedonein O(n k).

5.4. Termination Condition

If Sq(gr) containmofreecurvesthe2-D layoutis assumedio becompleteptherwise,
Sq(gr) is passedo the next iterationof the mappingprocess.A wealer termination
testis employedin practice:thelengthof any remainingfree curve is smallerthana
specifiedthreshold.

5.5. Iterati ve Next-BestView Algorithm
Theiterative NBV algorithmis summarizedelow:

Algorithm Iterative Next-BestView

Input: A new sensingpositiong; andthelocal measuremerff (qy)
An imagealignmentfunctionT = ALIGN(II (g ), IIg(gr—1))
Thenumberof samplesn, andaweightingconstant\ > 0

Output: A next-bestview positiong41

1. Computethelocal saferegion s|(gk). Setthelist of samplesVsam= 0.

2. Computel’ = ALIGN(IL|(gx ), g(gr—1)), andtheunion Sy(gx) =

s1(2) U T(Sg(ge-1))-
3. Repeauntil thesizeof Msamis greateror equalthanm:

(a) Randomlygenerate € Sg(gx) in thevicinity thefreecurvesboundingSg(gx).
(b) If ¢(Sy(grk), q) is below therequirementsf ALIGN, discardy andrepeatStep3.
(c) ComputeA(q) andL(q, gx). Add q to NsamandrepeatStep3.

4. Selectgi+1 € NsammaximizingA(q) exp(—AL(q, qx)) asthe next-bestview.
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Figure5. A run aroundthe RoboticsLab. at StanfordUniversity.

6. Experiments

The map-huilding systemwas implementedon a Nomadic SuperScoutobot. The
on-boardcomputeris a Pentium233 MMX, connectedo the local-areanetwork via
2 Mbs radio-Ethernet. The robot is equippedwith a laserrangesensorfrom Sick
Optic Electronicwhich usesa time-of-flight techniqueto measuredistances. The
NBV plannerrunsoff-boardin a Pentiumll 450 MHz Dell computer The software
waswrittenin C++andusesgeometricfunctionsfrom the LEDA library [8].

Thesensomlcquires360pointsin asingle180-dey scanrequestA 360-dey view
is obtainedby taking 3 scans. The sensorreadingswhere obsened to be reliable
within arangeof 6.5mts, at grazinganglesnot exceedingr = 85 deg. For the NBV
planner A = 20 cm~1, avaluethatpreventstherobotfrom oscillatingbackandforth
betweerregionswith similar visibility gains.

An experimentalrun is shovn in Figure5. The robot mappeda sectionof the
RoboticsLab. at StanfordU. Thefirst 6 iterationsareshowvn in (a). At the corridor
intersectionthe robot facesthreechoices,including going into an office. Neverthe-
less,theplanneroptedto continuemoving alonga corridor, all theway into theupper
hall (b). Glassis transparento the sensors laser so the robot failed to detectthe
glassdoorindicatedin (b). At this point, the operatoroverrodethe decisionof the
NBV planner who interpretedthe vicinity of the glassdoor asthe thresholdof an
unexploredopenarea. Finally, in (c¢), the robot moved down the secondhall until it
reachedhe lab’s lounge. The plannerdecidedthento sendthe robotto explore this
newly detectedarea.



7. Conclusion

Motion planningfor modelbuilding applicationshasreceved little attentionso far
despiteits potentialto improve the efficiency of autonomousnapping.In this paper
we introducedthe concepbf saferegion,anddescribechow it canbeusedto produce
collision-freemotionsandnext-bestview locationsunderimage-alignmentonsides

ations. Our researclcombinestheoreticalinvestigationof planning problemswith

simplified visibility modelsto producealgorithmsthat reacha compromisebetween
algorithmicrigor andsystempractice.Theresultis a systemableto constructmodels
of realisticscenes.
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