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Geometry of Adjoint-Invariant Submanifolds of
SE(3)

Guanfeng Liu, Yisheng Guan*, Yong Yang, Xin Chen

Abstract—This paper aims to extend the theory of
Lie subgroups and symmetric subspaces for studying an
important class of submanifolds of the special Euclidean
group SE(3) whose tangent space at each point on
the submanifold relates to that at the identity by an
adjoint map. These submanifolds, which we call adjoint-
invariant submanifolds in this paper, are known in
the literature as persistent submanifolds, since they
are strictly related to the concept of persistent screw
systems. The difference is that in this paper, just as Lie
subgroups and symmetric subspaces, we put forward
adjoint-invariant submanifolds as independent geomet-
ric objects from mechanisms and their associated local
screw systems. Adjoint invariance relaxes the strict
left and right invariance of Lie subgroups and the re-
flective invariance of symmetric subspaces by allowing
generic moving reference frame in the aforementioned
adjoint map. It turns out such adjoint invariance can
be studied under the framework of distributions on
manifolds, which allows us to explore global geomet-
ric properties of adjoint-invariant submanifolds. We
classify adjoint-invariant submanifolds into reflective-
type and product-type submanifolds, and derive the
conditions for their adjoint invariance. We then propose
geometric methods and algorithms for synthesizing the
kinematic generators for reflective-type submanifolds,
as demonstrated with a number of examples.

Keywords: rigid body motion, adjoint-invariant sub-
manifold, distributions, kinematic generator

I. Introduction
Characterizing the motion pattern (or type) of robot

task space is of vital importance to the analysis and
synthesis of mechanisms [1]–[5]. It not only requires finding
the right subset (usually a Lie subgroup or a submanifold)
of SE(3), but also verifying that the mechanism does
generate the desired motion pattern either locally or glob-
ally. For serial robot the problem is quite straightforward
as their forward kinematics is given by the product of
exponentials (POE) formula [6]. The case of parallel mech-
anisms is much more complex because of the nonlinear
nature of the loop-closure constraints.

Despite the complexity of their topology, significant pro-
gresses have been made toward understanding the motion
pattern of parallel mechanisms. The first major progress
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lies in the mechanisms with Lie subgroup motions [1]–
[5]. Lie subgroups are both left and right invariant which
imply a kind of rigidity about Lie subgroup motion types.
In other words a mechanism exhibiting the instantaneous
degrees of freedom (DoFs) of a Lie subgroup at a given
non-singular configuration will keep the same motion pat-
tern in a neighborhood of this configuration.

In addition to Lie subgroup motion types, submanifolds
of SE(3) have also received lots of interests. Hervé and
his colleagues proposed kinematic bonds as a fundamental
tool for mechanism synthesis [2]. Most of the tradition-
al aTbR parallel mechanisms [7], [8] are not kinematic
generators of Lie subgroups, but of special submanifolds
of SE(3). Although submanifolds of SE(3) lose the left
and right translational symmetry of Lie subgroups, some-
times they still can satisfy so called inversion symmetry.
This leads to the breakthroughs made by Wu and his
colleagues [9], [10]. In a series of works a new type of
submanifold, symmetric subspace is proposed along with a
complete theoretical framework for analysis, classification,
and mechanism synthesis of such motion type. 7 different
classes of symmetric subspaces are identified in [9], and
their corresponding kinematic generators are synthesized
by a novel method in [10] that employs symmetric sub-
chains as well as an interconnection scheme for generating
correct constraints. The motion of constant velocity (CV)
joints and various types of omni-wrists, which used to
be studied using screw theory [11], [12], can now be
completely explained under the framework of symmetric
subspace.

It should be noted that SE(3) has infinite number of
submanifolds. For most of these submanifolds the nature
of their DoFs is hard to justify globally as it might
change along with the task configuration. It is impor-
tant to identify and classify submanifolds whose features
have global meaning, while taking into account the non-
commutative nature between rotational and translational
DoFs. Carricato and his coauthors [13], [14] were among
the first ones to explore mechanisms whose screw systems
at different configurations are related by an adjoint map.
In [13], mechanisms with such a nice property are said to
have a persistent screw system (PSS) of the end-effector,
since the end-effector screw system remains invariant up
to a rigid displacement under arbitrary finite motions
away from special configurations, namely it is adjoint-
invariant. In [14], the submanifold of SE(3) “enveloped” by
a persistent twist system was generally called a persistent
manifold. It is important to emphasize that the notions
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of persistent manifolds and adjoint-invariant manifold-
s coincide, though the latter name is preferred in this
paper. Selig and Carricato [14] showed that the concept
of 1-dimensional persistent (or adjojnt-invariant) motion
is a slight generalization of a class of motions (called
Ribaucour motions) that were already studied by Study
[15]. In [16]–[18], Carricato and coauthors classified all
persistent submanifolds of dimension smaller than 5 that
can be generated by serial kinematic chains, namely that
are products of Lie subgroups. The notion of persistence
or adjoint-invariance applies to general chains generat-
ing submanifolds of SE(3) with distinct geometries. In
this paper, we study adjoint-invariant submanifolds as a
generalization of Lie subgroups and symmetric subspaces.
We employ the framework of distributions on manifolds
for studying the global geometric properties of adjoint-
invariant submanifolds, from which we propose algorithms
for synthesizing the kinematic generators for some adjoint-
invariant submanifolds. Our theory is demonstrated with
a number of examples, among which some mechanisms, to
the best of our knowledge, are first proposed.

This paper is organized as follows. In Section II, we
propose the concept of adjoint-invariant submanifolds and
analyze their geometric properties using the theory of dis-
tributions on manifolds. In Section III and IV, we classify
adjoint-invariant submanifolds into two subcategories and
deduce the conditions for their adjoint invariance . In Sec-
tion V, we propose tools and algorithms for synthesizing
the kinematic generators along with a number of examples.
We conclude our paper in Section VI.

II. Adjoint-Invariant Submanifolds of SE(3)
In this section we study an important class of subman-

ifolds of the special Euclidean group SE(3) which possess
invariant properties. Throughout this paper we adopt the
notations in [6], [9], [10], which are summarized in Table
I .

A. Definition
Let Q ⊂ SE(3) be an n-dimensional submanifold of

SE(3) passing through the identity e. The instantaneous
spatial velocity space VgQ at g ∈ Q is given by the
following right translation map

VgQ = Rg−1⋆TgQ, (1)

where TgQ is the tangent space of Q at g ∈ Q. Q
is called locally adjoint-invariant if there exists an open
neighborhood Ue of e on Q such that ∀g ∈ Ue ⊂ Q there
exists g1(g) ∈ SE(3) satisfying

VgQ = Adg1(g)TeQ. (2)

Intuitively Eqn. (2) means that VgQ is invariant with
respect to a reference frame that is given by shifting the
world frame through a rigid body motion g1(g). This ref-
erence frame is a moving frame as g1(g) might depend on
g. Q is globally adjoint-invariant (or persistent according
to [13], [14]) if Eqn. (2) holds for all g ∈ Q.

TABLE I
List of notations used in this paper

Notation Explanation
SE(3) special Euclidean group

se(3), TeSE(3) Lie algebra of SE(3)
Rn n-dimensional real vector space

R(z), R(P, ω) group of a revolute joint
T (z), T (ω) group of a prismatic joint

Hp(z), Hp(P, ω) group of a helical joint with pitch p

T2(z), T2(ω) 2-D translational group
PL(z), PL(ω) planar group

Yp(z), Yp(P, ω) planar group with pitch p

X (ω) Schönflies group
Mn, Mp

nA, MnB n-D symmetric subspace
mn, mp

nA, mnB basis of symmetric subspaces
ξ̂i, ξi, η, ηi, ζ, ζi twists in se(3)

Q, Qi submanifold of SE(3)
TgQ Tangent space of Q at g

VgQ spatial velocity space of Q at g

∆ distribution on SE(3)
Rg , Rg⋆ right translation map on SE(3)
EXP, e exponential map on SE(3)

{ei}, {êi} canonical basis of se(3)
S, Sh reflection map

G, Gi, H Lie subgroup of SE(3)
[·, ·] Lie bracket
Ig conjugate map

Adg adjoint matrix of g ∈ SE(3)
adX adjoint representation of a twist X

Ue, U0, UQ open neighborhood
θ,θi, αi, βi joint angles

Θ, α joint angle vector
g,ga, gb, g0, h, h0 element of SE(3)

g1(g) ∈ SE(3) a function of g

gi, g, h Lie algebra
x,y,z canonical basis of the Cartesian space

v1,v2,vi 3-D vectors in the Cartesian space

Under the changing of the world frame through a rigid
body motion g0, a given adjoint-invariant submanifold Q
turns into another adjoint-invariant submanifold Ig0(Q) as
VIg0 (g)(Ig0(Q)) = Adg0VgQ = Adg0g1(g)g−1

0
(Adg0TeQ) =

AdIg0 (g1(g))(Te(Ig0(Q))). Ig0(Q) and Q belong to the same
conjugate class, which are similar to the cases of Lie
subgroups and symmetric subspaces. Therefore adjoint
invariance of a submanifold of SE(3) is coordinate-free,
i.e., independent of the chosen world and tool frames.

B. Geometric Properties
In this subsection we derive basic geometric properties

of adjoint-invariant submanifolds along with examples.

Lemma 1. If Q ⊂ SE(3) is a locally or globally non-trivial
(i.e. not Lie subgroups) adjoint-invariant submanifold,
then g1(g) cannot be e or g.

Proof: If g1(g) = e, then TgQ = Rg⋆TeQ; and if
g1(g) = g, then TgQ = Lg⋆TeQ. Therefore ∪g∈QTgQ
(or ∪g∈UeTgQ) forms a right-invariant or left-invariant
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distribution. Q is either a Lie subgroup or non-integrable
based upon whether or not TeQ is a Lie subalgbera of
se(3).

Conversely, to construct or enumerate feasible adjoint-
invariant submanifolds one might start with a subspace
∆(e) = {ξ̂j | j = 1, · · · , n} ⊂ se(3) and a function
g1(g) : SE(3) → SE(3), g → g1(g), and then to each
configuration g ∈ SE(3) we assign a subspace

∆(g) = Rg⋆Adg1(g)∆(e) ⊂ TgSE(3). (3)

This yields a distribution ∆ = ∪g∆(g) on SE(3). We
refer to ∆ as an adjoint-invariant distribution because it
satisfies Eqn. (3). By comparing Eqn. (3) with Eqn. (2) it is
easy to conclude that if ∆ is integrable, then its integration
manifold Q is an adjoint-invariant submanifold of SE(3).
Notice that a basis of ∆ is given by {g1(g)ξ̂ig

−1
1 (g)g | i =

1, · · · , n}.

Proposition 1. If ∆ is involutive, i.e., ∀i, j ∈ (1, · · · , n),
we have [

g1(g)ξ̂ig
−1
1 (g)g, g1(g)ξ̂jg

−1
1 (g)g

]
∈ (4)

span{g1(g)ξ̂1g
−1
1 (g)g, · · · , g1(g)ξ̂ng

−1
1 (g)g}, (5)

then ∆ is integrable, and the corresponding integration
manifold Q is adjoint-invariant.

Appendix A provides the calculation results about the
Lie bracket

[
g1(g)ξ̂ig

−1
1 (g)g, g1(g)ξ̂jg

−1
1 (g)g

]
. Moreover, it

is possible to show that both Lie subgroups and symmetric
subspaces are adjoint-invariant submanifolds (as proven in
[9], [13], respectively).

Example 1. Lie subgroups and symmetric sub-
spaces are adjoint-invariant submanifolds
Lie subgroups are obtained by integrating the distribu-

tion ∆(g) = Rg⋆∆(e), g ∈ SE(3), with ∆(e) ⊂ se(3)
a Lie subalgebra. ∆ satisfies Eqn. (3) with g1(g) =
e. Then

[
g1(g)ξ̂ig

−1
1 (g)g, g1(g)ξ̂jg

−1
1 (g)g

]
=

[
ξ̂j , ξ̂i

]
g =

g1(g)
[
ξ̂j , ξ̂i

]
g−1

1 (g)g. Because ∆(e) is a Lie subalgebra,
∆ satisfies the involutive condition (5). So Lie subgroups
are globally adjoint-invariant submanifolds [13].

Symmetric subspaces are in fact the integration mani-
fold of the distribution ∆(g) = Rg⋆Adg1/2∆(e), g ∈ SE(3)
with ∆(e) a Lie triple system (i.e. closed under double Lie
brackets) [9]. ∆ satisfies Eqn. (3) with g1(g) = g1/2. The
integrability of ∆ can be verified by applying the general
result of Appendix A. We have[

g1(g)ξ̂ig
−1
1 (g)g, g1(g)ξ̂jg

−1
1 (g)g

]
=

g1(g)(Ad
g

−1/2
1 (g)

[
ζ̂i, ζ̂j

]
−Ad

g
1/2
1 (g)

[
ζ̂i, ζ̂j

]
)g1(g)

where ζ̂i, ζ̂j ∈ ∆(e). By expanding the formula we see that
it only contains terms which are double Lie brackets of
the elements in ∆(e). Therefore ∆ satisfies the involutive
condition, and its integration manifold is adjoint-invariant
[9]. Symmetric subspaces have been classified in [19] (see
Table II).

TABLE II
7 Symmetric subspaces and their basis [9], [10]

Symmetric subspaces TeQ

M5 m5 , {e1, e2, e3, e4, e5}
M4 m4 , {e1, e2, e4, e5}

M3B m3B , {e3, e4, e5}
M3A m3A , {e1, e3, e4}
M2B m2B , {e4, e5}
M2A m2A , {e3, e4}
Mp

2A mp
2A , {e3, pe1 + e4}

It is expected that adjoint-invariant submanifolds of
SE(3) might exist in great abundance. We have the fol-
lowing existence and uniqueness result given a ∆ satisfying
(3).

Proposition 2. Let ∆ be the distribution constructed
from a given function g1(g) and ∆(e) ⊂ se(3) based upon
(3). If ∆ is involutive, then there exists a unique adjoint-
invariant integration manifold Q which is simply connected
and maximal.

Proposition 2 implies that the solution manifolds in
Example 1 are unique.

Example 2. Distributions whose integration mani-
fold has the product structure
Let g1 be the Lie subalgebras of an m-D Lie subgroup G1

(m < 6), and W be a different subspace of se(3) such that
W ∩ g1 = ∅. Suppose ∆(e) = g1 ⊕ W is an n-D subspace
of se(3) with n < 6. Any g ∈ SE(3) can be written as
gag̃, where ga ∈ G1 and g̃ = g−1

a g. Now construct the
distribution ∆ on SE(3) as ∆(g) = Rg⋆Adga∆(e), i.e.
g1(g) = ga. We check the integrability of ∆. The basis
for ∆ is given by span{gaξ̂ig̃ | i = 1, · · · , n}, where ξ̂i

is the basis of ∆(e). Then it is easy to verify that (see
Appendix A)[

gaξ̂ig̃, gaξ̂j g̃
]

= ga(
[
ξ̂1

i , ξ̂
1
j

]
+

[
ξ̂2

j , ξ̂
2
i

]
)g̃

where ξ̂1
i (resp. ξ̂1

j ) is the projection of ξ̂i (resp. ξ̂j) to the
subspace g1, while ξ̂2

i and ξ̂2
j are the projections of ξ̂i and

ξ̂j onto W . As g1 is a Lie subalgbera,
[
ξ̂1

i , ξ̂
1
j

]
∈ g1 ⊂ ∆(e).

So as long as
[
ξ̂2

j , ξ̂
2
i

]
∈ ∆(e), then ∆ is involutive. One

solution is that W = g2, the Lie subalgebra of another Lie
subgroup G2. The integration manifold of ∆ is G1 ·G2. A
more generic solution is that W is the tangent space of a
symmetric subspace M , whose completion algebra is con-
tained in ∆(e). This leads to the integration submanifold
G1 ·M . The same results are rederived in Section IV with
a different method.

The integration manifold depends on both ∆(e) and
g1(g). Moreover, although finding integrable distributions
∆ satifying Eqn. (3) provides a general method for con-
structing adjoint-invariant submanifolds, it tends to be
harder to check the involutive condition of the distribution
∆ in Eqn. (3) as the function g1(g) becomes more and
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more complex. In what follows we explore the methods
that directly construct globally or locally adjoint-invariant
submanifolds from the basic building blocks, Lie subgroups
and symmetric subspaces. Through analytic extension of
the tangent bundle TQ = ∪gTgQ of these adjoint-invariant
submanifolds Q, we obtain their corresponding integrable
adjoint-invariant distribution ∆ on SE(3).

III. Reflective-type submanifolds
Let

Sh : SE(3) → SE(3), h0 → hh−1
0 h (6)

be the inversion map on SE(3). Sh has been extensively
studied in [9], [10] for classifying and synthesizing sym-
metric subspace motions. Here we extend the inversion
map in (6) to define the inversion of a submanifold about
a second one. Let Qi, i = 1, 2, be ni-dimensional sub-
manifolds of SE(3) such that TeQ1 ∩ TeQ2 = ∅. Define
SQ1(Q2) , {Sga(gb) | ga ∈ Q1, gb ∈ Q2}. Under suitable
conditions SQ1(Q2) could be a local or global regular
adjoint-invariant submanifold of SE(3).

A. Conditions for adjoint invariance
We have the following result for the adjoint invariance

of SQ1(Q2).

Proposition 3. Suppose Qi ̸= Mp
2A are symmetric sub-

spaces (including Lie subgroups as special cases). SQ1(Q2)
is a globally adjoint-invariant submanifold if ∀ga ∈
Q1, gb ∈ Q2, we have

(Ad
g

−1/2
b

g
−1/2
a

+Ad
g

1/2
b

g
1/2
a

)TeQ1 + TeQ2 = TeQ1 + TeQ2. (7)

Under the same condition it is only locally adjoint-
invariant if one of Qi is Mp

2A.

Proof: See Appendix B. �

The condition (7) can be replaced by a simplified con-
dition.

Corollary 1. Suppose Qi, i = 1, 2, are ni-dimensional
symmetric subspaces. If ∀ξi ∈ TeQi, i = 1, 2, and ∀η ∈
[TeQ1, TeQ1] ,

adξ2η ∈ TeQ1 + TeQ2 (8)
ad2

ξ2
ξ1 ∈ TeQ1 + TeQ2, (9)

then SQ1(Q2) is a locally adjoint-invariant submanifold
after excision out the region of singularities of measure
0, i.e. there exists an open neighborhood Ue ∈ SE(3), such
that Ue ∩ SQ1(Q2) is an (n1 + n2)-dimensional adjoint-
invariant submanifold.

Proof: See Appendix C. �

B. Two Important Sub-categories
We derive two important cases that satisfy Eqn. (8) and

(9).

1) Case 1: Q1 is a sub-6 DoF Lie subgroup: Obviously
Q1 cannot be SO(3) for which [TeQ1, TeQ1] = so(3)
as there exists only empty-set TeQ2 which satisfies both
TeQ2 + TeQ1 ̸= se(3) and Eqn. (8). For other Lie sub-
groups, [TeQ1, TeQ1] = ∅ or {e1, e2} up to the adjoint map.
The only non-trivial cases (i.e. neither Lie subgroups nor
symmetric subspaces) which satisfy both Eqn. (8) and (9)
are SC(x)(R(y)) and SC(x)(Ieẑπ/2(M2A)).

2) Case 2: Q1 is a symmetric subspace but not a Lie
subgroup: In this case [TeQ1, TeQ1] is the Lie subalgebra
h of an isotropy group H of Q1, and g , TeQ1 + h is
the completion Lie algebra of TeQ1. Notice [h, h] ⊂ h and
[h, [h, TeQ1]] ⊂ [h, TeQ1] ⊂ TeQ1 based upon the relation
between TeQ1 and the Lie subalgebra h [9]. We could chose
TeQ2 as a subspace of h (which already satisfies (9)) such
that

adηTeQ2 ⊂ TeQ2, ∀η ∈ h (10)

for satisfying (8), or choose TeQ2 ⊂ g⊥ that satisfies both
(8) and (9). Finally, we obtain SM4(R(z)), SM4(Hp(z)),
SM3A(R(y)), and SMp

2A
(R(y)).

Example 3. SM4(R(z)) is locally adjoint-invariant

Let g1/2
a =

[
Rxy (Rxy + I)Pxy

0 1

]
∈ M4, and g

1/2
b =[

Rz 0
0 1

]
∈ R(z), where Rz = eẑθ, θ ∈ R, Rxy =

ex̂θ1+ŷθ2 , θ1, θ2 ∈ R, and Pxy = γ1x + γ2y, γi ∈ R. We
calculate (Ad

g
−1/2
b

g
−1/2
a

+Ad
g

1/2
b

g
1/2
a

)TeQ1 as

{

[
(RT

z R
T
xy +RzRxy)x

0

]
,

[
(RT

z R
T
xy +RzRxy)y

0

]
,[

v1

(RT
z R

T
xy +RzRxy)x

]
,

[
v2

(RT
z R

T
xy +RzRxy)y

]
}

where it is easy to check that both (RT
z R

T
xy + RzRxy)x ∥

{x, y} and (RT
z R

T
xy + RzRxy)y ∥ {x, y}, so do v1, v2.

So Eqn. (7) holds at least in an open neighborhood of
e without singularities.

The list of non-trivial reflective-type adjoint-invariant
submanifolds is given in Table III. They are sub-6 dimen-
sional adjoint-invariant submanifolds, which, to the best
of our knowledge, have not been studied in the previous
literatures.

TABLE III
Non-trivial reflective-type adjoint-invariant submanifolds

Submanifolds TeQ

SM4 (R(z)) {e1, e2, e4, e5, e6}
SM4 (Hp(z)) {e1, e2, e4, e5, pe3 + e6}

SC(x)(Ieẑπ/2 (M2A)) {e1, e3, e4, e5}
SM3A

(R(y))
SC(x)(R(y)) {e1, e4, e5}
SM

p
2A

(R(y)) {e3, e4 + pe1, e5}
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IV. Product-type submanifolds
In this section we study product-type submanifolds of

the form Q = Q1 ·Q2, where Qi are symmetric subspaces
(including Lie subgroups as special cases). The cases where
both Qi are Lie subgroups have already been studied by
[13], and therefore are considered trivial here.

Proposition 4. If Qi are ni-dimensional symmetric sub-
space, TeQ1 ∩ TeQ2 = ∅, and ∀ga ∈ Q1, gb ∈ Q2 we have

Adga
−1/2TeQ1 +Adgb

1/2TeQ2 = TeQ, (11)

then Q is a globally (n1+n2)-dimensional adjoint-invariant
submanifold.

Proof: Following the proof of Proposition
3 by using the fact that Vgagb

(Q1 · Q2) =
Adga(Ad

g
−1/2
a

TeQ1 +Ad
g

1/2
b

TeQ2). �

A simpler sufficient condition for Eqn. (11) is given by

Corollary 2. Given two symmetric subspaces Qi with
TeQ1 ∩TeQ2 = ∅. Let gi be the completion algebra of TeQi

such that gi = TeQi + [TeQi, TeQi]. If

gi ⊂ TeQ1 + TeQ2, i = 1, 2, (12)

then Q is a globally (n1+n2)-dimensional adjoint-invariant
submanifold after excision out the region of singularities of
measure 0.

Proof: Following the proof of Corollary 1 by expanding
Adga

−1/2TeQ1 +Adgb
1/2TeQ2. The special case that Q1 is

a Lie group is proved in Example 2. �

Q1 · Q2 is fundamentally different from SQ1(Q2). The
only exceptions are M5 and M3A, for which Q1 · Q2
and SQ1(Q2) are sometimes equivalent, as proved in [10].
Table IV summarizes the list of non-trivial (i.e., excluding
the products of two Lie subgroups) product-type adjoint-
invariant submanifolds and their tangent spaces TeQ at
identity e. These submanifolds exhibit adjoint-invariant
DoFs which, to the best of our knowledge, haven’t been
adequately studied.

V. Kinematic Generators (KG) of
Reflective-type adjoint-invariant Submanifolds

In this section we will focus on synthesizing kinematic
generators of reflective-type adjoint-invariant submani-
folds of SE(3). Consider the maximal inscribing symmet-
ric subspace Mmax and the minimal covering symmetric
subspace Mmin with Mmax ⊂ Q ⊂ Mmin. SQ1(Q2) can be
obtained by compressing Mmin or expanding Mmax.

A. Compressing Mmin

Some reflective-type adjoint-invariant submanifolds can
be synthesized by assembling Q1 · Q2 · Q1 chains with a
Mmin generator in parallel.

Example 4. KG for SC(x)(R(y))
Notice that SC(x)(R(y)) ⊂ C−(x) · R(y) · C+(x) which

TABLE IV
Product-type submanifolds

Products TeQ

M2B · PL(z) {e1, e2, e4, e5, e6}
PL(z) · M2B {e1, e2, e4, e5, e6}
M2B · Yp(z) {e1, e2, e4, e5, pe3 + e6}
Yp(z) · M2B {e1, e2, e4, e5, pe3 + e6}
M3A · C(y) {e1, e2, e3, e4, e5}
C(y) · M3A {e1, e2, e3, e4, e5}
M4 · T (z) {e1, e2, e3, e4, e5}
T (z) · M4

M3B · T2(z)
T2(z) · M3B

M2B · T3
T3 · M2B

M2B · C(z) {e3, e4, e5, e6}
C(z) · M2B {e3, e4, e5, e6}
C(y) · M2A {e2, e3, e4, e5}
M2A · C(y) {e2, e3, e4, e5}
M2A · T (x) {e1, e3, e4}
T (x) · M2A

is generated by cascading a pair of symmetric joints
(C−(x), C+(x)) about the x − y plane with a R(y) joint
in the middle, as shown in Fig. 1-(a). On the other
hand the minimal covering symmetric subspace Mmin of
SC(x)(R(y)) is M4. Then we show that SC(x)(R(y)) =
(C−(x) · R(y) · C+(x)) ∩ M4. First, SC(x)(R(y)) belongs
to both C−(x) · R(y) · C+(x) and M4. Second, at home
configuration e the constraint forces of M4 is {e3, e6},
while that of C−(x) · R(y) · C+(x) is {e2}. The feasible
tangent space of the parallel mechanism at home config-
uration is simply {e1, e4, e5}. According to Position 6 of
[5], the parallel mechanism consisting of a M4 KG and a
C−(x)−R(y)−C+(x) subchain is the KG for SC(x)(R(y)),
as shown in Fig. 1-(b) (only one subchain of the M4 KG
is drawn here for clarity) . A practical mechanism can be
derived by replacing the full M4 generator (e.g. Example
5 in [10]) by its subchains M j

4 , and interconnecting M j
4

as well as the C−(x) − R(y) − C+(x) chain in a similar
manner. This reduce the number of M j

4 subchains from 3
as required in the full M4 generator to 2, as shown in Fig.
1-(c).

Example 5. KG for SC(x)(Ieẑπ/2(M2A))
It is easy to see that SC(x)(Ieẑπ/2(M2A)) is equivalent

to SC(y)(M2A) up to the conjugation map Ie−ẑπ/2 . Recall
SC(y)(M2A) = SR(y)(ST (y)(M2A)) ⊂ SR(y)(PL(x)) ⊂
R(y)− ·PL(x) ·R+(y), where PL(x) is realized by cascad-
ing three revolute joints parallel to x, and (R−(y),R+(y))
are a pair of symmetric revolute joints about the x − y
plane. Combine the two distal revolute joints into a
U(x, y−) pair and a U(x, y+) pair (y− and y+ in the U
pairs are used to show that they are symmetric about the
x − y plane). This yields a U(x, y−) − R(x) − U(x, y+)
mechanism, as shown in the left subchain in Fig. 2. Its
constraint force space is given by {

[
xT , (Pxy × x)T

]T },
where Pxy ∈ R3 is a point in the x − y plane. On the
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other hand SC(y)(M2A) ⊂ Mmin = M5. It is realized as the
Delta - Omni-wrist mechanism (the right subchain of Fig.
2), which contributes the constraint force space {

[
0, zT

]T }.
The parallel mechanism formed by connecting these two
subchains in parallel gives rise to the constraint force space
{e1, e6}, and therefore it is a KG of SC(x)(Ieẑπ/2(M2A)).

Fig. 1. (a): Parallel Mechanism composed of a C−(x)−R(y)−C+(x)
subchain and an M4 subchain; (b): M4 subchain is realized by 3 pairs
of symmetric U − U chains interconnected through cylindrical joints
as proposed in [10]; (c): Only 2 pairs of symmetric U − U chains are
required if we employ additional interconnection with the C−(x) −
R(y) − C+(x) subchain.

B. Expanding Mmax

The reflective-type adjoint-invariant submanifolds,
SM4(R(z)) and SM4(Hp(z)), can be synthesized by
expanding the KG of its maximal inscribing symmetric
subspace Mmax.

Proposition 5. If SQ1(Q2) is a reflective-type adjoint-
invariant submanifold with Q1 a symmetric subspace (̸=
M5), and Q2 a Lie subgroup satisfying TeQ2 ⊂ h =
[TeQ1, TeQ1] and adηTeQ2 ⊂ TeQ2,∀η ∈ h, then a KG
for SQ1(Q2) could be synthesized by inserting a Q2 chain
between each pair of symmetric sub-subchains in the KG
for Q1, while reducing the corresponding DoFs in all
interconnecting chains.

Fig. 2. KG for SC(y)(M2A) composed of a U(x, y−)−R(x)−U(x, y+)
subchain and an M5 subchain whose wrist plane (the plane passing
through the three spherical joints in the wrist) is parallel to the x−y
plane. The y− and y+ axes of the pair of symmetric U pairs of the
U(x, y−) − R(x) − U(x, y+) subchain intersect at a point Pxy in the
x − y plane.

Proof: See Appendix D. �

Example 6. KG for SM4(R(z))
It is easy to see that the maximal inscribing symmetric

subspace Mmax of SM4(R(z)) is M4. For M4, we have
[m4,m4] = {e3, e6}. We choose Q2 = R(z) = {eẑθ | θ ∈ R},
which satisfies the condition in Proposition 5. Now we add
this additional rotational DoF R(z) to the middle of the
original subchain M j

4 of M4. The new subchain is denoted
as N j

4 . Assembling 3 N j
4 together, and interconnecting

them with a prismatic joint (instead of the cylindrical
pair in the original M4 KG) yields a KG for SM4(R(z)),
as shown in Fig. 3-(a). The KG for SM4(Hp(z)) can be
synthesized in the same way.

Fig. 3. (a): A KG for SM4 (R(z)) by adding a rotational DoF of R(z)
to the middle of the original subchain Mj

4 in a M4 KG; (b):A KG for
SM3A

(R(y)).

C. Compressing covering reflective-type submanifolds
Some reflective-type adjoint-invariant submanifolds are

contained in one or multiple reflective-type submanifolds
(called covering reflective-type submanifolds). The KG for
these covering reflective-type submanifolds can be used as
the primitive subchains.
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Example 7. KG for SM3A(R(y))
Notice that SM3A

(R(y)) ⊂ SM̂4
(R(y)), where

M̂4 = Iex̂π/2(M4) is a 4-dimensional symmetric
subspace satisfying M3A ⊂ M̂4. SM̂4

(R(y)) is
equivalent to Iex̂π/2(SM4(R(z))). The KG for
the latter reflective submanifold SM4(R(z)) is
discussed in Example 6. On the other hand
SM3A

(R(y)) = {eê1θ1eê3θ2+ê4θ3eŷθ4eê1θ1eê3θ2+ê4θ3}
based on the facts that M3A = T (x) · M2A. Since
eê1θ1eê3θ2+ê4θ3 = eê3θ2+ê4θ3eê1θ1 by direct computation,
we have SM3A(R(y)) = ST (x)(SM2A(R(y))) ⊂ ST (x)(M3B)
⊂ T −(x) ·M3B · T +(x), where T −(x) ·M3B · T +(x) can be
generated by cascading a pair of symmetric translational
pair (T −(x), T +(x)) with a KG (e.g. Example 4 in [10])
for M3B in between. Finally assembling the KG for
SM̂4

(R(y)) and that for T −(x) · M3B · T +(x) yields a
KG for SM3A(R(y)), as illustrated in Fig. 3-(b). This
can be proved by recalling that at home configuration
e the constraint force of the former subchain is {e2},
while that of the latter subchain is {e6}, and therefore
TeSM̂4

(R(y)) ∩Te(T −(x) ·M3B · T +(x)) = TeSM3A
(R(y)).

VI. Conclusion
In this paper we propose a class of submanifolds of

SE(3), the adjoint-invariant submanifolds, which extends
the theory of Lie subgroups and symmetric subspaces
by relaxing the symmetry requirements in these objects.
We study global geometric properties as well as existence
and uniqueness of adjoint-invariant submanifolds based
on the theories of distributions on manifolds and their
integrability. Then we classify adjoint-invariant subman-
ifolds into reflective-type submanifolds and product-type
submanifolds, and derive the conditions for adjoint in-
variance for each of the subcategory spaces. With the
developed theory and methods we obtain the list of non-
trivial reflective-type and product-type adjoint-invariant
submanifolds. Finally we propose geometric tools and
algorithms for constructing the kinematic generators for
reflective-type adjoint-invariant submanifolds along with
a number of examples.

Appendix A
Calculation of

[
g1(g)ξ̂ig

−1
1 (g)g, g1(g)ξ̂jg

−1
1 (g)g

]
Let ξ̃i = g1(g)ξ̂ig

−1
1 (g)g. The integral curve of the

vector field ξ̃i is simply hi(t) = g1(g)eξ̂itg−1
1 (g)g. Then

given a function f on SE(3) we calculate
[
ξ̃i, ξ̃j

]
f =[

g1ξ̂ig
−1
1 g, g1ξ̂jg

−1
1 g

]
f as

(((ξ̃ig1(g)) |t=0 ξ̂j − (ξ̃jg1(g)) |t=0 ξ̂i)g−1
1 (g)g

+g1(g)(ξ̂j(ξ̃ig
−1
1 (g)) |t=0 −ξ̂i(ξ̃jg

−1
1 (g)) |t=0)g

+g1(g)
[
ξ̂j , ξ̂i

]
g−1

1 (g)g))f,

where (ξ̃ig1(g)) |t=0 and (ξ̃ig
−1
1 (g)) |t=0 denote the direc-

tional derivative of g1(g) and g−1
1 (g) along the integral

curve hi(t) of ξ̃i at t = 0.
If g1(g) = e, then

[
ξ̃i, ξ̃j

]
= g1

[
ξ̂j , ξ̂i

]
g−1

1 g.

If g1(g) = g1/2, then
[
ξ̃i, ξ̃j

]
= g1(

[
g−1

1 Bi, g
−1
1 Bj

]
−[

Big
−1
1 , Bjg

−1
1

]
)g1, where Bi = d(g1eξ̂itg1)1/2

dt |t=0, and we
use the fact that g1ξ̂ig1 = d(g1eξ̂itg1)

dt |t=0= Big1 + g1Bi.
Because Bi is a tangent vector based at g1, and recall

that now the distribution ∆ at g1 is given by ∆(g1) =
Rg1∗Adg

1/2
1

∆(e), we have Big
−1
1 = Ad

g
1/2
1
ζi and Bjg

−1
1 =

Ad
g

1/2
1
ζj for some ζi, ζj ∈ ∆(e). Therefore

g1(
[
g−1

1 Bi, g
−1
1 Bj

]
−

[
Big

−1
1 , Bjg

−1
1

]
)g1 = g1(Ŵ )g1

W = Ad
g

−1/2
1

[ζi, ζj ] −Ad
g

1/2
1

[ζi, ζj ]

which is valid for all g ∈ SE(3).
If g = gag̃ and g1(g) = ga, where ga is an element of a

Lie subgroup G1, then the integral curve of ξ̃i is hi(t) =
gae

ξ̂itg̃. So we have[
ξ̃i, ξ̃j

]
f = ga( d(e

ξ̂1
i

t
ξ̂je

ξ̂2
i

t−e
ξ̂1

j
t
ξ̂ie

ξ̂2
j

t)
dt g̃

= ga(
[
ξ̂1

i , ξ̂
1
j

]
+

[
ξ̂2

j , ξ̂
2
i

]
)g̃

where ξ1
i (resp. ξ1

j ) is the projection of ξi (resp. ξj) onto g1,
the Lie algebra of G1, while ξ2

i , ξ
2
j are the corresponding

projections onto W .

Appendix B
Proof of Proposition 3

Notice that we have a local parameterization for each
open neighborhood Ui of e on Qi, i = 1, 2, as they are all
symmetric subspaces

ga ∈ U1 = eΣn1
i=1ξ̂iθi , gb ∈ U2 = e

Σn1+n2
i=n1+1ξ̂iθi

where TeQ1 = {ξ1, · · · , ξn1}, and TeQ2 =
{ξn1+1, · · · , ξn1+n2}. At a generic point g̃ = gagbga,
we can assign a coordinate map ϕg̃ on an open
neighborhood Ug̃ about g̃, namely, ϕg̃(Θ) =
g

1/2
a eΣn1

i=1ξ̂iθig
1/2
a g

1/2
b e

Σn1+n2
i=n1+1ξ̂iθig

1/2
b g

1/2
a eΣn1

i=1ξ̂iθig
1/2
a

as g
1/2
a eΣn1

i=1ξ̂iθig
1/2
a is a local coordinate map in a

neighborhood about ga on Q1, and g
1/2
b e

Σn1+n2
i=n1+1ξ̂iθig

1/2
b

is a local coordinate map on Q2. Notice that
ϕg̃ : U0 → Ug̃,Θ → ϕg̃(Θ), where U0 ⊂ Rn1+n2 .
The Jacobian J of ϕg̃ is given by J = Ad

gag
1/2
b

J1,
where J1 = [Aξ1, · · · , Aξn1 , ξn1+1, · · · , ξn1+n2 ], and
A = Ad

g
−1/2
b

g
−1/2
a

+ Ad
g

1/2
b

g
1/2
a

. The range space of J1 is
easy to see to be (Ad

g
−1/2
b

g
−1/2
a

+Ad
g

1/2
b

g
1/2
a

)TeQ1 + TeQ2.
It is exactly TeQ1 + TeQ2 when ga = gb = e. Therefore
if ∀ga ∈ Q1, gb ∈ Q2, Adg

−1/2
b

g
−1/2
a

+ Ad
g

1/2
b

g
1/2
a

)TeQ1 +
TeQ2 = TeQ1 + TeQ2, J1 is nonsingular at every
combinations of (ga, gb). In fact we can prove that
Ug̃ is a slice of Vg̃, a local neighborhood of g̃ on
SE(3). We have ϕg̃(Θ) = gag

1/2
b hg

1/2
b ga, where

h = e
Σn1+n2

i=n1+1Âdgc ξiθieΣn1
i=1ζ̂iθi , ζi = (Ad

g
−1/2
b

g
−1/2
a

+

Ad
g

1/2
b

g
1/2
a

)ξi, and gc = e
Σn1

i=1
̂Ad

g
−1/2
b

g
−1/2
a

ξiθi

. ϕg̃ is a slice
of

ψg̃(Θ, α) = gag
1/2
b heΣ6−n1−n2

j=1 η̂jαjg
1/2
b ga
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for which αj = 0, j = 1, · · · , 6 − n1 − n2. Notice that
(ζ1, · · · , ζn1 , ξn1+1, · · · , ξn1+n2 , η1, · · · , η6−n1−n2) is a ba-
sis of se(3). ψg̃ is a local coordinate map at g̃ on SE(3).
Therefore ϕg̃ generates an atlas for SQ1(Q2).

Appendix C
Proof of Corollary 1

As Qi, i = 1, 2, are symmetric subspaces (including Lie
subgroup as a special case), we can express g1/2

a = eξ̂1

and g
1/2
b = eξ̂2 , ξi ∈ TeQi, i = 1, 2, globally (except for

Mp
2A for which the expression only holds locally). Given

ξ3 ∈ TeQ1, we calculate Ad
g

1/2
a
ξ3 = ξ+η and Ad

g
−1/2
a

ξ3 =

ξ − η, where ξ =
∑∞

i=0
ad2i

ξ1
(2i)! ξ3, η =

∑∞
i=0

ad2i+1
ξ1

(2i+1)!ξ3. We
can see that ξ ∈ TeQ1 and η ∈ [TeQ1, TeQ1]. Further cal-
culation shows that (Ad

g
−1/2
b

Ad
g

−1/2
a

+Ad
g

1/2
b

Ad
g

1/2
a

)ξ3 =

2
∑∞

i=0
ad2i

ξ2
(2i)! ξ+2

∑∞
i=0

ad2i+1
ξ2

(2i+1)!η. Notice that ad2
ξ2
ξ̃2 ∈ TeQ2,

∀ξ̃2 ∈ TeQ2 as Q2 is a symmetric subspace. As long as
ad2

ξ2
ξ ∈ TeQ1 + TeQ2 and adξ2η ∈ TeQ1 + TeQ2, all items

in the summation are contained in TeQ1 + TeQ2 using
induction.

Appendix D
Proof of Proposition 5

Recall that the n-D symmetric subspace Q1 (except for
M5) can be constructed by assembling k subchains Ci,
i = 1, · · · , k, which are in turn composed of a pair of n-
D symmetric sub-subchains {C+

i , C
−
i }. Suitable intercon-

necting subchains are added that link the middle link of
Ci. According to [10] the forward kinematic map of C+

i

has the form eξ̂eη̂ (ξ ∈ TeQ1, η ∈ [TeQ1, TeQ1]), while
that of C−

i is e−η̂eξ̂, and their combo-kinematic map of
Ci is e2ξ̂ ∈ Q1 as long as (C+

i , C
−
i ) maintains a symmetric

arrangement. Inserting a Q2 chain to the middle of Ci with
Q2 a Lie subgroup and TeQ2 ⊂ [TeQ1, TeQ1] yields a new
subchain Ai = C+

i −Q2−C−
i whose combo-kinematic map

(with ζ, ζ1 ∈ TeQ2) is eξ̂eη̂eζ̂e−η̂eξ̂ = eξ̂eζ̂1eξ̂ ∈ SQ1(Q2),
as long as eη̂eζ̂e−η̂ = eζ̂1 . The latter is ensured by the con-
dition in the proposition. The centers of pairs of subchains
(A1, Aj) are joined by a new interconnecting mechanism
whose screws come from [TeQ1, TeQ1] but excluding those
from TeQ2.

Now we strictly prove that the task space of the mech-
anism {A1, · · · , Ak} is SQ1(Q2) after applying the closed-
loop constraints by following the rigidity argument pro-
posed in [10]. First, given an arbitrary motion of C+

1 −Q2
in A1, there is only one feasible solution locally for C+

j −Q2
of Aj (j ̸= 1) and the interconnecting mechanism between
A1 and Aj . The remaining mechanism composed of C−

j

for all j forms a motionless rigid mechanism. This yields a
manifold of dimension exactly same as that of SQ1(Q2) as
SQ1(Q2) has same degrees of freedom as C+

j −Q2. Then we
consider a submanifold Qs of the task space Q of the entire
mechanism. Each point of Qs is obtained by applying an
arbitrary motion of C+

1 first while freezing the motion
of the Q2 chain of all subchains to be identity e. The

remaining mechanism {C−
1 , · · · , C−

k } becomes rigid again
so that (C+

j , C
−
j ) in Aj forms a symmetric arrangement

exactly as the KG for Q1. Then we move the entire top half
of the mechanism relative to the entire bottom half, by an
arbitrary motion in Q2. As the result of the composition
of these two motions, the motion of Aj is exactly given
by eξ̂eζ̂1eξ̂ ∈ SQ1(Q2), and thus SQ1(Q2) ⊂ Qs ⊂ Q
(at least locally). We just proved that Q has the same
dimension as SQ1(Q2). They must match at least in an
open neighborhood of e.
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[1] J. Hervé, “The planar-spherical kinematic bond: Implementa-

tion in parallel mechanisms,” Internet site ”ParalleMic”, pp.
1–19, 2003.
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