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Singularities of Parallel Manipulators:
A Geometric Treatment

Guanfeng Liu, Yunjiang Lou, and Zexiang,IMember, IEEE

Abstract—A parallel manipulator is naturally associated
with a set of constraint functions defined by its closure con-
straints. The differential forms arising from these constraint
functions completely characterize the geometric properties of
the manipulator. In this paper, using the language of differential
forms, we provide a thorough geometric study on the various
types of singularities of a parallel manipulator, their relations
with the kinematic parameters and the configuration spaces
of the manipulator, and the role redundant actuation plays in
reshaping the singularities and improving the performance of the
manipulator. First, we analyze configuration space singularities
by constructing a Morse function on some appropriately defined
spaces. By varying key parameters of the manipulator, we obtain

Unlike its serial counterparts, where there have been well es-
tablished mathematical tools for their analysis, studies on sin-
gularities of parallel manipulators were confined to basic issues
such as definition, classification and identification of singular-
ities. Furthermore, the mathematical tools used in most studies
were directly borrowed from that for serial manipulators and
were applicable only to local analysis. The unique structures of
parallel mechanisms were not fully explored.

Gosselin and Angeles [1] were perhaps the first to define and
study singularities of closed-loop kinematic chains. Based on
some derived Jacobian relations, they introduced several no-

homotopic classes of the configuration spaces. This allows us totjons of singularities which formed a basis of later research. Park

gain insight on configuration space singularities and understand

how to choose design parameters for the manipulator. Second,

we define parametrization singularities which include actuator

and Kim [2] used differential geometric tools to study singu-
larities of parallel mechanisms and provided a finer classifica-

and end-effector singularities (or other equivalent definitions) as tion of singularities. In their later works, they proposed the use
their special cases. This definition naturally contains the closure of redundant actuation as a means of eliminating actuator sin-
constraints in addition to the coordinates of the actuators and the gularities and improving manipulator performances. A six-axis
end-effector and can be used to search a complete set of actuator, 5|16] machine platform was constructed based on this prin-
or end-effector singularities including some singularities that may . .

be missed by the usual kinematics methods. We give an intrinsic Clplg [3], [4]. Kock [5], [6] also used redundant actuation .to
classification of parametrization singularities and define their design a two-degree-of-freedom (DOF) planar parallel manipu-
topological orders. While a nondegenerate singularity poses no lator for high speed assembly. Similar works could also be found
problems in general, a degenerate singularity can sometimes be ajn Nahon and Angeles [7]. It is interesting to note that redun-
source of danger and should be avoided if possible. dant actuation also appears in multifingered robotic hands [8],
[9], and in walking machines [10]. Merlet and others [11]-[17]
studied extensively singularities of the Stewart—-Gough platform
and several of its variants. A good account of recent progress
on parallel mechanism research can be found in [18] and refer-

. . . ences therein. Aside from local analysis, there is some research
OMPARED with its serial counterparts, a parallel manipysp, giobal analysis of manipulator singularities. C. Innocenti and

C lator (or a closed-chain mechanism or system) has a myshyenti-Castelli [19], [20] studied the problem of planning a
more complex structure in terms of its kinematics, dy”am";ﬁath to connect two regular inverse kinematic solutions without
planning and control. In particular, the configuration space ofigiersecting the singular sets; [21] studied the topology of self-
pargllel manipulator is not_even ex.pI|C|t.Iy known, itis 'mp“c't'y_motion manifolds of redundant manipulators; Bedrossian [22]
defined by a set of constraint functions introduced by the manigeformed studies on determination of self motion to take from
ulator’s closure constraints. A parallel manipulator also has, Jsingular configuration to a nonsingular configuration; Kieffer
addition to the usual end-effector singularities, different typestgés;]’ based on a Taylor series expansion method, discovered the
singularities such as configuration space singularities and aliirerence between ordinary singularities, isolated singularities
ator singularities. Understanding the intrinsic nature of the Vainq their bifurcations. Kumar [14], Park [2] and Wen [8] intro-

ious types of singularities and their relations with the kinematj§;,ced several kinematic manipulability measures for design and
parameters and the configuration spaces is of ultimate imp@gniro| of parallel mechanisms.

tance in design, planning and control of the system.

Index Terms—begenerate, differential form, Morse function,
singularity, topological order.

. INTRODUCTION

The behavior of singularities for parallel manipulator is in-
Manuscript received August 19, 2002; revised December 13, 2002. This pagered very complex. An interesting example is offered by that

was recommended for publication by Associate Editor J. Merlet and Editordf the Seoul National University (SNU) manipulator a 3-DOF
Walker upon evaluation of the reviewers’ comments. This work was supportfd lati | ioul ith the ioi fits th ' bchai
by the Research Grants Council under Grant HKUST 6187/01E, under Gr. s ational manipulator with the joints of its three subchains

HKUST 6221/99E, and under Grant CRC98/01.EG02.

arranged in the order of universal—prismatic—universal (UPU).

The authors are with the Department of Electrical and Electronic Engfggj [24] initiated design of genera| 3-UPU manipulators and

neering, Hong Kong University of Science and Technology,
Kong (e-mail: liugf@ee.ust.hk; louyj@ust.hk; eezxli@ust.hk).
Digital Object Identifier 10.1109/TRA.2003.814507

Kowloon, "ois work was later generalized by Gregorio and Parenti-Castelli

[25]. Gregorioet al. [26], [27] analyzed singularities of Tsai's

1042-296X/03$17.00 © 2003 IEEE



580 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 19, NO. 4, AUGUST 2003

manipulator and divided them into rotational and translational
singularities. Park and his coworkers [28] identified a configu-
ration space (CS) singularity of the SNU manipulator and ob-
served that the manipulator at its home position exhibits finite
motions even with all active prismatic joints locked. Zlataeov
al. [29] studied this singularity using screw theory and classi-
fied it as a constraint singularity. The same singularity was also
identified by Joshi and Tsai [30], Simaan and Shoham [31], and
Wolf et al.[32] using an augmented Jacobian matrix which took
the constraints into account. By interpreting the rows of this ma- o
trix as lines, line geometry method, i.e., that in [11], could be
used to efficiently find all possible singularities. Even though a 81 ur )
good explanation of this singularity of the SNU manipulator has 0is2 ©
been offered in [28], [29], a concise mathematical formula for
detecting these singularities is not available. Biv (Bak)

The purpose ofthe paperistwofold. First, in view ofthe factthat
aparallelmanipulatorismostnaturallydescribedbythe constrafii. 1. Coordinate systems for a parallel manipulator.
functions andtheir differential forms associated with the manipu-

lator's closure constraints, we developaunified mathematicaltQ@l .1, open-chain and the chains with the end-effector can be rev-
forsingularity analysis of parallelmechanisms using thelanguag@e prismatic, universal or ball-in-socket joints. The config-
ofdifferentialforms. We give preciseand coordinateinvariantdelﬁ—ration space of a revolute joint &, the unit circle R! for a
initions of configuration space and parametrization singulariti%:;ismatic joint,S' x S! for a universal joint, andO(3) for a
withactuator and end-effector singularities as special cases of fifin-socket joint. Thus, the ambient spagef the manipu-

latter. We investigate the intrinsic nature of the various singulafiq, is given by the Cartesian product of the joint spaces of all
ties of aparallelmechanism, their relations with the kinematic pgye joints that make up the manipulator. We denotd lay R”

rameters and the configuration space of the manipulator and {§g |ca coordinates af. The loop (or closure) constraints of
role redundant actuation plays in reshaping the singularities gpd manipulator are denoted by

improving the manipulator’s performance. We present a detailed

‘Bj+| ®©anmet )

(ea,Z ) ‘1'

3 8443

ak+1 )

classification of parametrization singularities and identify those hi(6)

which are potenua!ly dangerous and should be avoided or elimi- H:E—R"™, 6 — H(6) = : —0 (1)

nated through design. :
Thepaperisorganizedasfollows: InSectionll,weintroduceno- b (6)

tations and review basics of differential forms. We then define a . . . L
give concise conditions for CS singularity. Based on this, we a{%te that the loop constraints are obtained by equating pairwise

alyze the “strange” singularity of the SNU manipulator and Shovr\}e_end-eﬁectorP105|t|_ons from each of the open c_hams. The
thatitis a CS singularity. Then, we show that configuration spa re|hmageQ_::|H (0) is referred to as the configuration space
singularities can be reformulated as the critical points of a Morggt '© manipulator. N .
function on some appropriately defined spaces. By varying a se-G'V(.an a funct|orh': L — R, its differential, denoted/. and
lected kinematic parameter of the manipulator, different homgven I local coordinates by
topicclassesoftheconfigurationspace canbeobtained. Thisstudy oh
allows ustodetermine permissibleranges ofthe kinematic param- dh = Z —db;
eters in the design phase. In Section lll, we define parametriza- i=1 99
tion singularity with end-effectorand actuator singularities as two ] )
special cases. According to the rank of the constraint functioh$a one-form, i.edh(¢) € T; E. Physically, an elementf; £
we divide parametrization singularity into regular and irreguld2S the meaning of a generalized force, and its pairing with a
ones. We explicitly show that one singularity of the SNU manip@eneralized velocity vectarin 7, £ gives the virtual power. In
lator is an irregular actuator singularity. In Section IV, we develdparticular, forv = 377, vi(9/06;) € TyE
afine classification of parametrization singularities and show the n
computation and implication of each class of singularities. In par- (dh, v) = Z v Oh = v(h)
ticular, we note that degenerate singularities are sometimes dan- ’ = 00
gerous and should be avoided. Finally, Section V follows with a
brief conclusion of the paper. is the directional derivative of in the directionv.

We refer the readers to [33] for the definitiondfi; A dho,
a two-form, known as the wedge productdsf; with dh., and
similarly that ofdh, A - -Adh,,,, anm-form. Inlocal coordinates

A parallel manipulator as shown in Fig. 1 is regarded as a set
of open-chains connected in parallel to a common rigid body, dh, A dhy = Z
known as the end-effector. The joints that connect the links of i<y

Il. CONFIGURATION SPACE SINGULARITIES

8h1 ahg ah2 ahl
<89i a6, 06 671-> do; A\ df;.
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TABLE |
CONFIGURATION SPACE SINGULARITY
POINTS VERSUSPARAMETER 8

Singularity | Parameter| Parameter| Description | Morse
Points Relation | Value of @ Index
¢ € | Empty set
(94, 00) -
P1 = | lj+le— | 6 =44 A gingle | M21=2
A B (0,0.W) ls - 54 point @
4 € | Unit circle
- 5 > (ds,64) | O
D2 = [l1+lo— | d=4d3 “Figure 8" | Mi =1
Fig. 2. An example: Four-bar mechanism. (070’ 0) I3 = g o0
[ & | Two sepa-
Two functionsh, andh, are said to be linearly independent at {d2,83) | rate circles
9 € E if dhy(8) anddhy(6) are linearly independent as two cO
covectors. The latter is translated exactly into the requirement 3 = | h—la+ | d~da | “Figure 8" | Mi=1
that (0,m,7m) | l3=24dg s
) £ | Unit circle
dhy A dh2|9 # 0. (d1,62) @
Pa =|lhhi-bk—-|d=4d A point ¢ Mi=40
Whendh; A dhy = 0, the intersection ofi;*(0) with h5*(0) ©,7,0) |l3=4
is not transversal [34]. ) € | Empty set
Definition 1: A pointé € Q is called a CS singularity if (0,81)

dhiAN--- A dhm|9 =0. (2)

The concept of CS singularity was initiated by Park and Kim
[2] which provides a geometric interpretation of the uncertainty

configurations [35] and the constraint singularities [29]. A bas
result of differentiable manifolds [33] shows thatvif € @,
dhy A -+ A dh,,le # 0, then@ is a submanifold of dimension
n —m of F.

Example 1: A Four-Bar MechanismConsider a four-bar
mechanism with link length, > andl3 as shown in Fig. 2. Let
6 be the separation between the two fixed basesfant, and

ic I+
1y

N

63 the angle coordinates (another angle variable is eliminat'glg_ 3. Relative position between the annulus and the oligle

from the angle constraint). The loop constraints are given by

hi1 =l1sinfy + lrsinfy — [3sinfl3 = 0 (3)
hy =1y cosfy +lacosfy —l3cosf3 — 6 = 0. 4)

Without loss of generality, we assume thiat— I, > I3 and
lo > l3. Computingdh;, ¢ = 1, 2 anddh; A dhs gives

dhl A\ dhz 21112(8162 - 0182)d01 A\ deg
+ 1113(6183 — 3163)d91 A d93
+ 1213(6283 — 0382)d92 A dfs

wheres; = sinf; andc; = cosf; for: = 1, 2, 3. Thus, CS
singularities are obtained by solving

Sin(@i - 19]) =0, <3

and the solutions are (modular a free parametgs: 0 or r,
1 = 1, 2, 3. In view of the constrairtt,, the singularity points
as a function of the separation distarécare given in Table I.
To visualize the configuration spageof the mechanism and
see how) changes as a function 6f we draw two circles)
andO, with their centers at the origin, and radiiis — I») and
(l1 +12), respectively, and another ciralg, with center atd, 0)
and radiugs, as shown in Fig. 3. Obviously, the annulus forme

by O; andOs is the workspace of the tip point of link 2 obtained
by rotating the first two links, and; is the trajectory of the
same point obtained by rotating abaigt The loop constraints
are satisfied if and only iD3 intersects the annulus. Defihg =
l1—1ly—13,00 = l1—la+13,03 = I +1l3—13,anddy = l1+1a+15
(see Table I). When is large and far away to the righf) is
empty. Asé approaches,, ) becomes a single point, a circle
for 6 € (63,04), a “figure 8" atés, two separate circles for
8 € (62,83), back to “figure 8" atd-, a circle foré € (61,62), a
single point at; and back to the empty set fér< 6;.

A. CS Singularities of the 3-UPU Manipulator

In this subsection, we will study the CS singularities of a well
studied spatial mechanism: the 3-UPU manipulator as shown
in Figs. 4 and 5. As implied by its name, the manipulator con-
sists of three serial chains with their joints arranged in the order
of UPU, where only the three prismatic joints are actuated. By
simply applying the Gruebler's mobility formula, we see that
the mechanism has three DOFs.

3-UPU manipulators with their simple kinematic structure
have attracted many researchers. Tsai [24] and Gregorio and
Earenti-Castelli [25] provided conditions for such a manipulator
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Fig. 5. The SNU 3-UPU manipulator.
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Moving Platform

Diagram of thc SNU manipulator

Fig. 6. The SNU manipulator with the {first, second} and {fourth, fifth} axles
of the three serial chains lying in two parallel planes.

from the kinematics relationZv = 6,, wherev € R¢ is the
generalized velocity of the end-effectéy, = [0,.1, 642, Ha,g]T
the joint angles of the three actuators, @hthe Jacobian matrix
whose rows represent the screws of the three prismatic jéints.
is full rank at the home position and thus fails to predict the ob-
served behavior, (see [29] for more detail). Hdml.[28] iden-
tified such a singularity as a CS singularity by checking the rank
(and the condition number) of the Jacobian matrix of the loop
closure equations. Zlatanov, Bonev and Gosselin [29] obtained
the same results by exploring the rank of the constraint screws.
This singularity was also identified by Joshi and Tsai [30] using
an augmented Jacobian matrix which took the constraints into
account. By interpreting the rows of this matrix as lines, line
geometry method, i.e., that in [11], could be used to efficiently
find all possible singularities. In this section and the next we
show that this singularity is not only a CS singularity, but also
an irregular actuator singularity. We also show the equivalence
between the HKKP method [28] and the ZBG method [29].

Following the notations of Murrayet al. [36], let
©; = [fi1,-,0:i5]", i = 1,---,3 be the joint angles
of the three serial chains. Denote By(3) the configuration
of the end-effector relative to the world frame and3) its Lie
algebra. An element of £(3) can be represented in terms of
homogeneous coordinates as

[10% 113] , Re SO3), P e R?

and that ofse(3) by

£ ’UA) v 3
{—[0 0],w,v€R

where forw = [wq,ws, w3]T, we have

to be purely translational. Haat al.[28] performed singularity 0 —w3  ws
analysis of such a manipulator in detail. They found that for the w= | ws 0 —w
axis arrangement as the SNU manipulator (see Figs. 4 and 6), —ws Wi 0

the mechanism will exhibit a “strange” singularity at the home . o
position, where the end-effector is free to rotate even when kit vV be the identification map
the prismatic joints are locked. They pointed out that “strange-

ness” of the singularity lies in the fact that it can not be detected V:se(3) — R, f — [T, w"]" .

T
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The forward kinematics of théth chain is described by the P’ﬁ‘t’fv;l‘_’g

product of exponential formula
gi(@i) — 651.191,1 . 651‘59"591(0)-/ i=1,---,3

Whereéid € se(3) is the screw representing thith joint in the
ith chain. }

Note that (gi_ldgi)v = Z;=1 Ad;f,j”a,j...651.501,591.(0)
& jdb;; € se*(3) is exactly the Maurer—Cartan form
[37], [38] with its action on a permissible velocity
>0_10i;(0/96;;) € se(3). The end-effector velocity is
given by

5
1 . .
v = Ad~, ; i:6; = J;0;
Z Eﬁi,joi,j...egi.SDi..Bgi(())SL’j tJ v
J=1

with .J; the Jacobian of théh chain. Express the manipulator’s Diagram of Tsai’s manipulator

loop closure constraints as
Fig. 7. Tsai's manipulator with the planes formed by the {first, second} axle

of the three serial chains being different, and so do the planes formed by the

91(01) = 92(02) = 93(O3) {fourth, fifth} axle.
and equate the Maurer—Cartan form of the three chains, we have verse conditon number of SNU 3_UPU mechanism
wo,1 ‘
we = 0t ;

TIUIARLAL
NN
AR LY AW
LA RERRRRE RS
"\
N

we,12 0.084. -
NN
R
ANy Y

— [(gfldgl)z - (!Eldgz)q
(97" dg1) " — (95 'dgs)
101 — 1d®; ] _
J1dOy — J3dOs | O

We can prove that at the home position of the SNU manipulator

we, 1N - Awe12 =0. 5)

-02 02

While for Tsai's manipulator (see Fig. 7), the left-hand side of y (m) xm)
(5) is not zero. Figs. 8 and 9 represent the inverse condition

number of the SNU manipulator and that of Tsai's manipulatéf9- 8 The inverse condition number of the SNU manipulator.
in a neighborhood of the home position. This shows that the \nvorse conditon number of Teafs 5UPU mechanism

home position of the SNU manipulator is a CS singularity. Ap- BREEE
pendix A givesJ;, i = 1,---,3 for the SNU manipulator and

Tsai's manipulator at their home positions. The derivation is  oee.... B 5
similar to that of HKKP [28]. 008 h O
H H 0.07 4 .“0 "" )
To establish the equivalence betwe_en the I—_|KKP met_hod ool . 0‘:‘:"0'0":'0'0:'0'"4"0/ - A
[28] and the ZBG method [29], we first consider CS sin- ;4N ‘:“.‘.’:toﬁt‘o'o"o"1"lf"/lfll/’;///////’lx”7ﬂ
gularities in the spacee(3) x se(3) x se(3) with the map oot]. :“:"‘9%:0:}\'0:0':03//;;,';;%/;’//” '
J = diag(Jy, J2, J3) : TE = TR — se(3) x se(3) x se(3) 003+ 3 \‘,‘97/{'0:“‘“‘\\'\""[/”////////4/////
! ! 0.02 v///I'OO‘ S\ \'[ l/l//////f
LSS 773
0, X, " : SN 4
O=102 = X=1X1=J0 2 .
whereX = [XT, XT XINT € R' with X; € R® being the o 2 %2 -

Cartesian coordinates of the end-effector of ttie subchain.
i 18x15 H 3 H
tShmfeJ € R, there exists a set of Pfaffin constraints SUCBig. 9. The inverse condition number of Tsai’'s manipulator.
a
a; 0 0 wherea; € RS, 4 = 1,---,3 is the constraint screw of thih
AX =0 af 0]|JO=0 chain satisfying:? .J; = 0. Here, for simplicity, we assume that
0 0 af Ji, 1 = 1,---,3 are of full rank. Second, the loop constraints
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impose another set of Pfaffin constraints @1{3) x se(3) x
se(3) such that

I —-I 0|
1 -

Collectively, we have the following complete set of Pfaffin con-

straints:
aldX,
wx,1 angg
wx=1| 1 | =| afdxy; | =0
wx,15 Xm - dXQ
Xm — ng

It is shown in Appendix B that
wx 1A Awxas = 0 & af dX1AaldX1AaldX; = 0. (6)
Another proof in Appendix C also shows that

(/.)971/\---/\QJ@JZ:0<:>LUX71/\---/\(4.)X715:0. (7)

In other words, a CS singularity of HKKP [28] is equivalent t
the linear dependence of thés, i = 1,-- -, 3, coinciding with
the definition of ZBG [29]. For the SNU manipulator at its hom

position, we have

ai:[07 07 07 07 07 l]TL:LS

e

C-space of four bar mechanism

60—

e, +l2c,-13c,
o
1

|

[

S
1

Fig. 10. Torusin{i, so, lici + loca — l3c3).

varying the design parameter from one critical value to another,
we obtain the homotopy classes of the configuration space and
useful information on suitable ranges of the design parameter.

Q/Ve use again the four-bar mechanism to illustrate the applica-

tion of Morse theory for study of CS singularities and kinematic
parameter design.

Example 2: Four-Bar Mechanism Revisitedkssume that
dh; does not vanish (this is in fact true for all value®f and
Q = h7*(0) is a manifold of dimension 2. Topologicall§) is

and thus, (6) is zero. On the other hand, for Tsai's manipulatarforus as shown in Figs. 10 and 11.

we have
ar =0, 0, 0, 0.1155, 0, —0.9933]"
as = [0, 0, 0, —0.0578, 0.1, —0.9933]"
a3 = [0, 0, 0, 0.0578, 0.1, 0.9933]"

and the left-hand side of (6) is not zero, and the home position

of Tsai’'s manipulator is not singular.

Rearrangé:i, so that
ho =11 cosfi + lscosfy —l3cosbfs =6
and leth, be the restriction of, to @, i.e.,
ho:Q — R: 0+ ho(h) = 6.

Note thath, gives the height of the torus, as shown in Fig. 10
and 11. Furthermore,; *(6) = hi ' (0)Nh3 " (5) = Q. A point

B. CS Singularity: Another View p € Q is called a critical point ofi; if

Observe from Example 1 that away from CS singularities or
whens € (63,84) oré € (62,83), @ = H~(0) is indeed
a manifold of dimension one. However, the topological stru
ture of these two one-dimensional manifolds are quite differe
with one being connected and the other not. Also, note that the
topology of the configuration space changes precisely at the
CS singularity points. From this change, we can obtain an inire see thap € Q is a critical point if and only if there exists a
tial design guide for selection of the parameteFor instance, Lagrange multipliet\ € R such that
6 should be chosen so that, first of all, CS singularities are
avoided, and secondly, the resulting configuration space is either

a unit cwclg(é < .(63.’ 64)) ortwo separate circle® < (82, 83)). The later is true if and only if the CS singularity conditiéhy A
Other design criteria can be later introduced to fine-tune the pg- . e ) ; .
o = 0 is satisfied. Thus, CS singularity points are translated

rameter within a selected range. This topic will be addressé : o . ;
: . . . exactly into critical points of.. Let
in another research on optimal design of parallel manipulators

Q" = hy'(—o0,a] = {p € Q : ha(p) < a}.

using LMI technique and semi-definite programming [39].

To develop a general understanding of CS singularities and
their relations with some key kinematic parameters of a paie state the following useful result from [34].
allel manipulator, we apply Morse theory [34] where CS sin- Proposition 1: Leta < b and suppose that the gef*[a, b],
gularities are viewed as the critical points of an appropriatetpnsisting of allp € Q with a < Ez(p) < b, is compact, and
defined function with its value being the design parameter. Byntains no critical points of,. Then,Q* is diffeomorphic to

v(ha) = (dha,v) = (dhy,v) =0 Vv € T,Q.
ﬁ;he value ofi, at a critical pointis called a critical value. Since

T,Q = {z € T,E|(z,dh,) = 0}

dhe = Adh;.
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in the last column of Table I. Note that in Fig. 10, a good visu-
alization ofQ is obtained as follows. Le? be a differentiable

map
01 S1
PRESRE:[0,] — S9

03 lici + laco — l3c3

that maps) to a new manlfoIcQ @ has the same topology as
Q since the critical points ofi, on Q are mapped to those on
Q, and the Morse index of

8%ho 8%hs

~ o~ Os? 951052
D?hy := -
2 azhz 82}L2

051082 88%
=diag (01—17 02_1) D?hodiag (cl_l, 02_1) (20)

is equal to that ofD2h, because; = +1 # 0(i = 1,2) at
the critical pointsQ is depicted in Fig. 10 instead @f with
Fig. 11. Diagram of the torus-topology of the four-bar mechanism. Iy = 30,13 = 15, andil3 = 10.
To conclude the four-bar example, we note that other kine-
matic parameters can also be studied by manipulating the con-

5 Sa i : Bb
Q°. Furthermore@)* is a deformation retract @p”, so thatthe gy 4int functions. For instance, to considewe simply let

inclusion mapQ® — Q' is a homotopy equivalence.

In other words, the parametérshould be chosen to lie in a hy = lisi +1lpsa tanfs = 0
range[a, b] so thath; *[a, b] contains no critical points dfs. lici +laca — 0
Given a critical poinp € @, it is important to know whether hy = (l1s1 + l282)* + (licy + laca — 6)* = 13.

it is an isolated critical point or not. This can be answered by
a result of Morse Lemma [34] which states that, if the Hessmn
D2h, of hy atpis nondegenerate, thenis an isolated critical
point. To compute the HessiaP2h,, we assume thap is pa-
rametrized by, 62), and let

The general theory for understanding the relation between
selected kinematic parameter and the topology of the con-

flguratlon space proceeds in a similar manner as that of the

four-bar example. We assume, for simplicity, that the first—

1) functions are linearly independent for all € Q, where

Q = H~'(0) and
03 = 03(01,02). h1(9)

7 . m—1
From (3) we obtain H:EF—R" " §+—

him—1(6)
_ (al ) Then,Q is a manifold of dimensiotw—m+1). Leth,,(§) = 6,
95 _ “\o0) _ lici oo ) and define
a0; (%) l3cs’ ) " N
993 hm :Q — R, § — h,(0) =6
Using (8) and applying the chain rule to to be the restriction of.,,, to Q. Since the tangent spa@gQ
has the form
iZQ(el,aQ):hQ (91,92,93(91,92)) TPQ: {UETpE|<U7th’> =0, = 1,---m—1}
yields 020 020 itis not difficult to see that a point € Q is a critical point ofh,,
D2, — 391522 391352 if and only if itis a CS singularity. The study of CS singularities
2= 33253 % 6{5; is translated into study of the critical points of the Morse func-
o e P& A tion h,,. By varying the parametef over R, we obtain homo-
B —licg— 222 4 135 113—(1 9 topy classes of the configuration space. To determine whether a
- zlzzclsq ey — 125283 +l 3c3 - (9 critical point is isolated or not, the Hessian/gf, can be com-

lzc3

lscs puted as in the previous examples.

Apparently, the Hessians at all four critical points are nondegen-
erate, and they are thus isolated critical points. The Morse index
of h is defined as the number of negative eigenvalugsf,. Consider the configuration spae= H~'(0) C E of apar-
This index is independent of the local coordinates@rThe allel manipulator. We wish to specif9 or parametrize it with
Morse index ofD?h, at each of the four critical points is givena suitable set of parameters. In generad) ifloes not contain a

I1l. PARAMETRIZATION SINGULARITY



586 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 19, NO. 4, AUGUST 2003

CS singularity, then it is a manifold of dimensien— m, and Definition 2: A point p € @ is called aparametrization

a minimal number of. — m parameters is needed to locallysingularity (or P-singularity) ifZ},+ drops rank, i.e., there exists

parametrize). For parallel manipulators, there are two naturdl # v € T,Q such that

choices of parametrization variables: the angle coordinates of

the active joints and the coordinates of the end-effector. Ty -v=0. 1)
Justlike the polar coordinates of the unit sphere that becomgse cyrrent setting, the above condition is equivalent to

singular at its boundary of definition, any set of parametrization

variables for) could encounter singularities. In this section, we (dip;,v) = (dz;,v) =0, i=1,2. (12)

study singularities of a parallel manipulator when the angle co- o

ordinates of the active joints and the coordinates of the end-&0! the other hand, we also have from the definitiofl o that

fector are used to parametrige Here singularities could arise (dH,v) = 0. (13)

either because the parametrization variables reach their limits '

(or not properly chosen) or\arfg becomes singular simultane-Equations (12) and (13) show that;, di», anddH are linearly

ously. Traditionally, actuator singularities [2] (or singularity otlependent, and hence

type 2 [1], redundant output [40], forward singularity and un-

controllable singularity) and end-effector singularities [2] (or dH N dipy Ndipy = dH A day N dzy = 0. (14)

singularity of type 1 [1], redundant input [40] and inverse SingLNote that, by expanding (14), yields
larity) have been separately defined. But, we see here that these ' '

[ iti ‘ i ization singyt 0H OH OH OH
sm_gularltles are just two special cases of parametrization singy- 04 doy+ S gt S diy | Adiry Ay = 2 diy
larities. Jx 0o T3 O3

We will use again the language of differential forms to give AdxoNdzs

precise conditions of parametrization singularities. We will
study these singularities whénis a manifold (i.e., away from
CS singularities) and whe is singular. We call the former The above condition is equivalent to that in Gosselin [1] and
case regular P-singularities and the latter case irregular P-ddark [2], which states that € @ is a P-singularity if and only
gularities. Physical significance of these singularities will alsib (0H/dz,) of the following expression drops rank:
be discussed. In the section that follows, a finer classification
. " \ OH OH
of the regular P-singularities will be presented. %diﬂa + %dxp =0 (15)
a p

A. Regular Parametrization Singularity wherezr, = (71, 72) andz, = z3. From the Implicit Function

Assuming thaty = H~1(0) C F does not contain a CS sin-Theorem we know that, away from P-singularities, the passive
gularity and is thus a manifold of dimensi¢n — m), we say joints can be expressed uniquely in terms of the active joints
that the manipulator inominallyactuated if the number of ac-which can in turn be measured using sensors integrated with the
tuated joints is equal tn — m), and redundantly actuated if it actuators.
is strictly larger tharfn —m). For a nominally actuated system, (11), (14) and (15) give three equivalent conditions for P-sin-
the set of active joint angles, denotégd € R"~™, serves as gularities, from which we conclude that the P-singularities of
a natural candidate for the coordinatesaf Normally, every the (1, z)-coordinates coincide with the equator; = 0) of
coordinate system has its limitations as parametrization sindbe unit sphere.
larities are inevitable at certain points ¢ It is important in Generalizing from the unit sphere example, we have the fol-
kinematic analysis and control to know the singularities of eadtwing.
coordinate system. To define precisely parametrization singu-Proposition 2: Let; : £ — R,i = 1,---n —m, be a set of
larities and give exact conditions for occurance of these sindaeal coordinate functions ai. A pointp € Q is a P-singularity
larities, we consider the case of a unit sphere parametrizeddfy) if and only if then-form in (16) vanishes gi

the horizontal axes.
Example 3: Parametrization of2: A unit sphere inR? is dhy Ao N dho N dipy Ao N dipy—mlp = 0. (16)

specified by In particular, if we let))(§) = 6, € R"~™, the joint angles of
the active joints, then the condition factuator singularities
(or A-singularity) is given by

Let@Q = H~1(0). Alocal coordinate system @f atp € Q is a dhy A~ Adhy, Adfa1 A A dO =0 (17)
local diffeomorphism m a, a,n—m|p

=0.

H:R® —R:(z1,29,23) — 25 + 22+ 25— 1=0.

and if we lety)(6) = + € R*™™, the local coordinates of the
:Q —R?:z— r/’l(x)} end-effector, then the condition fend-effector singularities
Pa(z) (or E-singularity) is given by

where; (), i = 1 2 are known as the coordin{:\te functions of dhy A~ A dhm Adzy A+ A dnmlp = 0. (18)
p. Ingeneralg;, < = 1, 2 could be any two of ;, j = 1,- - -, 3.

Here, we simply choos#;(z) = z;, ¢ = 1, 2 without loss of Because of inevitable P-singularities, a single setrof- m)
generality. active joints can not cover an entire manif@dof dimension
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(n—m). To provide a complete coordinate system, more actigeneralization of other tools such as matrix analysis and screw
joints need to be introduced so that a new combination of thieeory, as shown in Section 2.1; 2) naturally taking into account
active joints can serve as a valid coordinate system when anottigr constraint functions in addition to the selected actuator and
setis singular. Consider, for instance, the case of a unit sphererfi-effector coordinates. The former allows us to analyze sin-
we “actuate” jointz 3 as well, then the unit sphere is completelgularities of a wide class of parallel manipulators and the latter
covered by the three coordinate systems ¢;), 1 < i < j < allows us to completely search for all actuator and end-effector
3. This is because the three equators defined:py= 0,7 = singularities, including the “strange” A-singularity of the SNU
1,.--,3,i.e.the P-singularities of these three coordinate chartsanipulator.
have no common intersection point. In other words, for a point
p € Q to be an A-singularity of£,, x5, 23), we need to have V. GEOMETRIC STRUCTURE OF REGULAR
L P-SNGULARITIES
df[/\dl’i/\d:l?j:07 1<1<y3<3. ) ) ) ]
When a parallel manipulator is at a regular P-singularity, the

The only solution of the above equatioryis= (0,0,0), which  set of passive joints becomes undetermined. Depending on the
is notinQ. nature of the singularity, the manipulator may still be able to

In general, when there are a total— m + [) active joints, a exhibit finite motions even when all actuators are locked. This
pointp € @ is an A-singularity if no combination ofn. — m) can sometimes be a source of danger as the mechanism may col-
active joints exists that makesa regular point. lapse, harming the mechanism itself or humans in the workspace

Corollary 1: Apointp € Q isan A-singularity ofn—m+1)  of the mechanism. It is thus important to be able to classify all
active joints(fq,1, - - - fa,n—m+1) (Or I redundant actuators) if singularities and identify these which are potentially dangerous.
and only if

A. Degrees of Deficiency and Stratified Structure

dhy N~ Ndhp ANdOq i, A---db,; =0 19 . ) . -
! ’ men P (19) Consider a parallel manipulator with actuated joints
wherel < i; < -+ < ip_m < n —m+ . In other words, all (84,1, ,0an—m+1). Define the set of regular P-singularity
C, ., n-forms vanish simultaneously ate Q. points

Remark 1: All results contained in this paper are coordinates
invariant, an added advantage of using differential forms! ~ @s= {PG Q[dhiA---Adhm Adfaiy A -Adbai, |, =0,

dhy A+ Ndhp |y #0,1< iy <+ <ip_py <n—m+1}

B. Irregular P-Singularity

Obviously, at a CS singularity, the condition (16) an@nd the set of annihilation vectorsjat Q)
(17) for P- or A-singularity is automatically satisfied. In this
case, the set of 1-formgdhy, -, dhy,, dip1, -, dipp_m} OF LV ={v € T,Ql(v, dhi) = {v,df. ;) = 0,

{dhy,-- - dhp,db4 1, dO4.n_m} may drop rank by one or i=1,-m,j=1--n—-m+l}.

more. We call these singularities irregular P- orA-singuIaritie%_.h di ionl of T.V he defici fh
At an irregular A-singularity® is not a manifold, the mech- e dimensioni of 7,V measures the deficiency of these one-

anism may instantaneously gain one or more DOF, and tﬁ)éms and is called the degree of deficiency (DoD) of the P-sin-
: s P ) .

originally nominally actuated system becomes underactuat@&'ia”ty' Smc(e)z thﬁhis’g _hL R alre Imearlly mdhe pendentlé

The home position of the SNU manipulator is an irregul f_hn\]_m.b' n the oj[ﬂer_angiHlsaaeso eq%?ni%i_% co-_rﬁn

A-singularity as it is a CS singularity. This explains why th@" the Jacobian matrix, = (0H[06,) € , Wit

end-effector can experience finite motion even with all actiee = (0p1: - ¥p.m—1) being the angles of the p.assive joints,
we haved < m — [. Thus, an upper bound ahis given by

joints locked.
For a redundantly actuated manipulator, a definition of irreg- d < do == min(n — m,m — 1).
ular A-singularity is given by Let N 7
Wiy A= Awi, |p =0 (20) Qsk = {p € Q| dim(T,V) = k}

where w;; € {dhy,-- dhy,dbay, - dfan—mi1},  be the set of singularities of DoB(1 < k < dq). A result of
Jj = 1,---,n. In other words, allC , n-forms vanish [42] shows that),, is generically a manifold of codimension
simultaneously ap € Q. From (17), we see that irregular(; 4 i)k, We also have)., = U Q..

actuator singularities can not be eliminated by actuating apefine -

new set of joints while keeping the number of actuators fixed.

However, from (20), it is possible to avoid them through Ask = U T,V

redundant actuation. PEQ:k
Remark 2: To completely identify actuator and end-effectoand

singularities, it is necessary to take into account the constraints A, = Ul Ay

in addition to the kinematics as was done in (16), (17) and (18).

To conclude this section, we highlight following two advanA; is a distribution of annihilation spaces of dimensioon
tages of our approach to singularity analysis: 1) The use of &@;;, andA; is a distribution of annihilation spaces gh, with
terior algebra (also called Grassmann algebra [41]) is a gooot necessarily constant ranks. Note that the dimensio@s of
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. Actator O Passive joint

Fig. 13. Dimension of the 2-DOF parallel manipulator.

Fig. 12. 2-DOF parallel manipulator. 0 and¢; — ¢ — m = 0. The result is a one-dimensional curve,
with a basis for its tangent spa@g; )51 given by

andAg;, are not necessarily the same. With these notions, we o 9 9 o 9 o

are able to give a classification of P-singularity points [42]. Y=9y,- 06, +Y1- 06, tr2 - 00 Y35 — BYS Y35 — Dby 8753
Definition 3: A pointp € Qs is called a first-order singu- \yhere

larity point if and only if there does not exist a vectoe A,y

thatis also tangent 1Q ;.. Otherwisep is called a second-order

singularity.

4l cos (3 (¢1+¢2—265))sin (4)1_4)2) sin(¢3 —603)

—2l5(sin(pa—03) sin(f; —03) —sin(py — 0y ) sin(h —03))
Second-order singularity has a special property that it may . ) . )
still be close to the singular curve under a perturbation along gp— ll(s{n(%_gl) 51.n(q52 —02) _an(qsl 1) S?n(qs?’ i)
annihilation vector (e.g. the vectorthat is tangent t@).). lasin(¢2 —2) sin(61 —3) —sin(¢1 — 1) sin(62—3))
Example 4 P-Singularities of a 2-DOI_: Parallel Manip_— 2sin(f; —0s) sin(ds —05)
ulator: Consider a 2-DOF parallel manipulator shown irys= —
Figs. 12 and 13, where the ambient space is parametrized by
(01, 02, 05, ¢1, b2, ¢3), and the actuated joints byy( ;). = cos(dpa+01—b2—03)—cos(¢1 —b1+02—03)
By equating pairwise the end-effector position coordinates —+cos(¢y— 61 — 82 +03) —cos(po — b — 0z +63).
from each of the three arms, we obtain the following constraint

Y11=

[0}

functions: A basis forA,; can also be calculated from the definition, and
is given by
h1(p)=Za, +12 cos 1411 cos 1 — x4, —la cos O3 —1q cos ¢o P
ho(p) = Ya, +128in 01 +1; sin ¢y —ya, —l2 sin O3 —11 sin Py V' = csc(p1 —03) sin(¢ps —63) % —csc(pr —03) sin(¢pz —03)
h3(p) = a, +12 cos 01411 cos p1 — x4, — Iz cos O3 =11 cos ¢3 0 Iy csc(py — 03) sin(¢y — q’)g) 0
h4(p)=ya1 41y 8in 0y 1y S By —Ya, — 2 Sin B3 — 1 sin by X Oy Iy s’

Actuator singularities are obtained by solving the equation V' is tangent taQ,; if

03 = ¢3.
dhi A dha A dhs A dhg A\ dB; A dfs =
or In other words, most points of the singularity curve are first-
sin(¢py — ¢o) sin(fs — ¢h3) =0. order singularities, see, e.g., Fig. 14(a). Only one point given
by the above condition is a second-order singularity. Fig. 14(b)
There are two solutions given by, respectively shows the configuration of the second-order singularity.

Consider next singularity poipk. The singularity curve) >
is determined by the constraiff = 0 andf; — ¢3 = 0. The

pridr=d2+7m or p2:fs;=¢s. basis for its tangent spad@&, Q.. is given by
Consider first singularity poing;, where the singularity mani- V-4 0 0 0 0 7] 7]
fold Q. is obtained by solution of the constraint functifih= %6, Y250 90, * 50, 905 5" 9, t Yy Dby + s
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- CS Sing.
Degenerate
Singularities
of
—1 E-Sing. |<— Parallel
First-order _
First Order Singolarity Second Order Singularity
[ Jv— O Passive Joint Fig. 15. A hierarchic diagram of singularities, A-sing.: actuator singularity.
b E-sing.: end-effector singularity. P-sing.: parametrization singularity. N.
@ (b) Degenerate: Nondegenerate.

Fig. 14. (a) First-order singularity. (b) Second-order singularity.
It should be noted that Definition 4 is too abstract to be useful

where in practical situations. Alternative conditions in terms of local
_ (li+1a) ese(py — 1) sin(¢1 — 63) coordinates can be developed for verifying degeneracy of a sin-
T lo gularity point. Park [2] first explored the Hessian of some Morse
(I1 + 12) csc(pa — B2) sin(pa — O3) functions and developed sufficient conditions for an A-singu-
V2= lo larity to be nondegenerate. Here, we follow the idea initiated by
. (Iy + Is) csc(py — 01) sin(fy — 03) Park and study the coefficients of the Taylor series expansions
V3= Iy of the most obvious Morse functions 6h: h;,7=1,---,m.
) (I + ls) csc(da — 05) sin(Bs — 63) Letd, € Qs bea_nA-singuIarityY ={Yy, -- ,Yk} beabasis
Ya = — I . of Agx. Then, avariation vectar, € A, can be written as
A basis of A, is calculated as Vg = {9.‘1] = [0} =Y .o «acRF
N d i i 7
V= ia—eg + 8753 0s € Qs is a degenerate A-singularity if and only if

i i f hi(0s s)—hi(0s) =0, i=1,---, 21
Thus, no solution exists fdr to be tangent t@) ., and all these (6 + €v,) (6:) =0, i ;M (21)

points are first-order singularity points. ) ) ) )
for smalle. Taking the Taylor series expansion of (21) yields

B. Degenerate and Nondegenerate Singularities o
Lz 8 }Ll
A second-order singularity can be further classified into hy(0s + evs) —hi(6;) = e ag 21 Z 90, 861
nondegenerate singularity if it is isolated and degenerate sin-
gularity if it is continuous. More precisely, we know that gener-

ically Q. is a(l + k)k-codimensional submanifold ¢j,, and X Z Gt Y 0ty 0ty + - = 0. (22)
A, = Span(Yy, - - -, V%) is ak-dimensional subdistribution of tta=1
annihilation vectors oid) . Note that the first term on the right-hand side of (22) drops out

Definition 4: A second-order singularity € Q. is degen- sincew; is an annihilation vector. Also, for arbitrarily small
erate if and only if there is a constant rakhk (with k; < k) the remammg coefficients in (22) are required to be zero for

sub- distribution&skl c A, such that i=1,-
1) Ak, (p) C TpQur 82hi 9%h;
2) A = Span(Ys,---Yi) can be integrated to form a [W} . (Yo,Ya)=a"Y" {392 hs Ya=0 (23)

degenerate singular manifolgl;. 93h

Note that the second condition requiré@kl to satisfy the [ ;
Frobenious involutive condition. Degenerate second-order 96
singularities may be a continuous curve or a surface of higher L (25)
dimensions. A degenerate A-singularity is sometimes dan- '
gerous because the mechanism may collapse along the integtere [((0%h;)/(09%)]¢. is a tensor of order 3 and
manifold (; even if all active joints are locked. Similarly, a1/3![((93h;)/(00°))]s.(Ya,Y,Ya) gives the coeffi-
mechanism with a degenerate E-singularity will exhibit finiteients ofe3. Thus, degeneracy of the singulartyis equivalent
internal motions without affecting the end-effector. It is foto the existence of a nonzero solution to (23), (24) and (25). In
these reasons that degenerate singularities should be eliminatbeér words, if there exists ansuch that the quadratic form
in the design, or to be avoided to the least. YT[((0%h;)/(962%))]ssY € RE** is positive definite or nega-

A hierarchic diagram of our classification of singularities isive definite, then the considered singularity is nondegenerate.
given in Fig. 15. This kind of singularity is also called elliptic as the quadratic

] Yo,Ya,Ya)=0 (24)
s
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VRO ) Lugn = a4+ 8

\q,=(ux.vzy)T Lvs.x) = G+ 04
T

B~ Vay) Lwgn = o+ 0

Fig. 16. 3-DOF parallel manipulator.
Fig. 18. Vectors of 3-DOF parallel manipulator.

wheres;;; = sin(f; + 6;), andc;4+; = cos(; + ;). A-singu-
larities are obtained from

dhi A dha A dhs A df1 A dBs A dfs = 0.
The solution is a surface determined by the following equations:

hy =v12V32V2y53445546-1-2 + V1xV2yVU3yC5465142-3—4
+ V12V22V3yS142834+4—5-6 + U32V1yV2yC14+2534+4—5-6
+ V1yV22V32554+6514+2—3—4 + V22V1yV3yC34+4554+6—1—2
=0 (26)
H =[hy,ha, h3]T =0 (27)

@  Actuawor O Passive joint

Fig. 17. Dimension of the 3-DOF parallel manipulator. where

Vig = Ta, + 1101 + laci42 — Ta, — l3c3 — lac344

form has an elliptic Dupin indicatrix [43]. The quadratic form U1y = Yax T 1151 + 125142 — Y, — 353 — 45314
associated with a degenerate singularity should be hyperbolic, V2 =Za, +l1c1 + lac142 — Tay — Iscs — lcs16
parabolic, or planar. Vay =Ya; + 1151 + 125142 — Yo, — 555 — lgS546

Example 5: Degenerate Singularities of a 3-DOF Parallel
Manipulator: Consider a 3-DOF parallel manipulator shown in
Fig. 16 and 17, where the ambient space is parametrizédby U3y =Yay + 1353+ laS34a = Yo, — l555 — loSspe.
[01,02,03,04,05,06]". The configuration of the end-effector is__ T T T
described by the Cartesian coordinalés= [z, z2, 23] with Sincevy = (vig,v1y)", v2 = (”2@”2}/) 1 U3 = (”3?’”311) .
(x1, 22) the displacement of the cent@r anda; the orientation V4 Us; Vs are vectors as shown in Fig. 18, an obvious solution
angle.d, = [0, 05,657 are chosen to be the active joints. Th@f (26) is given by
loop closure constraints are given by

U3y = Ta, + 1303 + lacays — Ta, — lsc5 — lsCs46

é(—’l}4,’U1) =, A(U17v5) = ﬂ Z(IU37UG) =7

hi = (Ta, +lic1+Hl2c1 40— Ta, —I3c3—1sc314)? or equivalently

+ (Ya, Hl181+ 128142 — Yo, — 353 —l45344)* =312 = 0

9 Vi ZT(C3+4 - 01+2), V2x = 7"(65+6 - 01+2)
ho = (@a, +her+lacryn = Ta; I = lsCs16) V3 =7(C546 — C344), U1y = (8344 — S142)

+ (ya1 +1151 +l251+2_ya3 _1555_l655+6)2_37'2 =0 V2y :7"(85+6 - 81+2) U3y = T($5+6 — 83+4)

hs = (za,+! l —Ta, —l5c5—1 2 .
3 = (Fa, HlscaHlacara=Ta; ~ls¢s~loCs16) where/ (v;,v;) represents the angle from to v;. The singular

+ (Yay +1353 4145344 —Yas — 555 —lss546)° —3r> = 0 configuration of the manipulator is depicted in Fig. 19 where the
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@  Actuar O Passive joint ®  Actustor O Passive joint

Fig. 19. Nondegenerate P-singularity. Fig. 20. Degenerate P-singularity.

V. CONCLUSION
lines of the linkls, 14, lg pass through the centér of the ma-

nipulator simultaneously. The annihilation velocity at this con- This paper presented a geometric framework for analyzing

figuration is computed as the singularities of a parallel manipulator. Using the differential
forms associated with the constraint functions, we derived
1 8 1 1 9 simple conditions for configuration space singularities. Topo-

logical structure of these singularities and their relations with
the kinematic parameters of the system were investigated sys-
) ) . _ tematically using Morse function theory. We gave an intrinsic
or in terms of end-effector velocity a8 = (9/0x3), thatis, definition of parametrization singularities, and showed that
the end-effector is allowed to perform an infinitesimal rotatiogetator and end-effector singularities are just two of its special
about the cented. cases. We applied the proposed approach to the analysis of the
To determine the degeneracy of this singularity, the Jacghserved “strange” singularity of the SNU manipulator and
bian (9h,/d6,) and the Hessian(9*h,)/(967)) (similar for showed that it is in fact a CS singularity and an irregular A-sin-
others) are needed as shown in the equation at the bottonygfarity. We derived conditions for classifying parametrization
the page. Itis not difficult to verify that(0h1)/(06,))Vs = 0 singularities into first-order and second-order singularities. The
and ((9*h1)/(06;)) is positive semi-definite. Furthermore, ifjatter can be further classified into nondegenerate and degen-
6, # 0, there exists an such thatyl'((9%h;)/d072))0, # 0. erate singularities. The danger associated with a degenerate A-
This shows that the singularity is nondegenerate. On the oth@IE-singularity was described.
hand, one degenerate singularity can be obtained by simply letit should be noted that the mathematical tool presented in this
tinglo = Iy = l¢ = —r. The Hessian matrix df; (similar for paper is a powerful one even for general analysis of parallel
others) is calculated as manipulators. In a forth coming paper, we will extend this tool
to geometric control of parallel manipulator based systems.

V=it 410 19
1,96, T 1,00, 15 906

92hy 2r2c31a-1-2 —2r2c314-1-2
2 2

902 — —2r°C344-1-2 2r°C34a_1-2

P 0 0

0
ol. APPENDIX A
0

JACOBIAN MATRICES OF THESNU MANIPULATOR AND TSAI'S

The annihilation vector turns out to be a constant velioe MANIPULATOR AT THE HOME CONFIGURATION

(0/002) + (0/064) + (0/08¢). This singularity is shown in  The Jacobian matrices of the three chains of the SNU manip-

Fig. 20. ulator at its home position are given by the first equation at the
oh
E)T?l = [2lars34a_1-2 —2l4rs344_1-2 O]
p
thl 2[27‘(1 — C3+47172) + 2[% —2121403+4,1,2 0
502 —2llycaia-1-2 204r(1 —c34a-1-2) +20F 0
P 0 0 0
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bottom of the page, and that of Tsai’s manipulator by the second
equation at the bottom of the page. The initial configurations of
the end-effector for these two manipulators are the same and

APPENDIX B
PROOF OF(6)

given by First, we note that the Pfaffin constraints can be manipu-
lated into
a?Xm
1 0 00
aQTXm
0 100 wx = T =0.
gi(O): . L:1,~ 3 X a3z dX1
0 0 1 496.6555 dX, — dX,
0 0 01 dX; —dXs;
0 0 —0.1155 —496.6555 0
0 0 0 0 496.6555
T1(0) = 0 259.8076 0.9933  202.0726 0
1 0 0 0 1
0 1 0 1 0
LO 0 0 0 0
ro 0 0.0577  248.3277  —430.1163
0 0 —0.1000 —430.1163 —248.3277
T (0) = 0 259.8076  0.9933 202.0726 0
—0.5000 —0.8660 0 —0.8660 —0.5000
0.8660  —0.5000 O —0.5000 0.8660
LO 0 0 0 0
ro 0 0.0577 248.3277 —430.1163
0 0 0.1000 430.1163 —248.3277
T5(0) = 0 259.8076 0.9933 202.0726 0
—0.5000 0.8660 0 0.8660 —0.5000
—0.8660 —0.5000 O —0.5000 —0.8660
LO 0 0 0 0
ro 0 —0.1155 0 —496.6555
0 —30 0 470 0
J1(0) = 259.8076 0 09933 0 202.0726
0 0.9933 0 0.9933 0
1 0 0 0 1
LO 0.1155 0 0.1155 0
ro 259808  0.0577 —407.0319 248.3277
0 15 —0.1000 —235 —430.1163
15(0) = 259.8076 0 09933 0 202.0726
—0.8660 —0.4967 0 —0.4967 —0.8660
—0.5000 0.8602 0 0.8602 —0.5000
LO 0.1155 0 0.1155 0
ro —25.9808 0.0577 407.0319 248.3277
0 15 0.1000 —235 430.1163
T3(0) = 259.8076 0 0.9933 0 202.0726
0.8660 —0.4967 0 —0.4967 0.8660
—0.5000 —0.8602 0 —0.8602 —0.5000
LO 0.1155 0 0.1155 0
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If
aTXm A\ angl A\ angl =0, 1]
then
wX71/\~-~/\wX715:ar{dX1 [2]
/\angl A a3TdX1 ANwxga N Nwx15 = 0. [3]
To prove the converse, we expang ; A - - - Awx,15 as the sum
of linearly independent forms. One form is (4]
a?Xm N aQTXm A aérXm N dX2,1 VAYRRRA dXS,G-
If wx1 A--- Awx.1s = 0, we have necessarily that (5]
aldX, AaddX, AaldX, =0.
[6]
APPENDIX C 7]
PROOF OF(7) ]
Consider the map
g=g1 X g2 X g3 : R = SE(3) x SE(3) x SE(3) [9]
10— (91(01),92(02),93(03)) . (10]
J is precisely the tangent map ¢f.J = g.). It is not difficult [11]
to see that
woj; =9 wxj+3 Jj=1,---,12 [12]
Ozg*wXJm k= L., 3 [13]
If © is an annihilating vector abe ;, j = 1, -- -, 12, then
. . . [14]
we j(0) =0 = g*wx j13(0) = wx j+3(90), 115
j=1,---,12
g wxk(©) =0 = wx (9. 0), [16]
k=1,---,3
. - I . (17]
which shows thay..© is an annihilating vector obvx ;j =
1,---,15. Conversely, ifX annihilateswy ;, j = 1,---,15, [18]
then from [19]
wX,k(X):()? k:1,3 [20]
X = 4.0 has a unique solution fop. We derive from the
remaining equations that [21]
wx j+3(X)=wx j1+3(0:0) =g"wx j13(0)=we ;(©) = 0 [22]
wherej = 1,---,12. This clearly shows tha® annihilates 23]
we.j, j = 1,---,12. Further, we can easily prove that the di-

mensions of the annihilation spaces for these two set of forms
are equal and then (7) derives. [24]
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