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Abstract— A method to compute an exact cell decomposi-  Sample-based algorithms build a graph that approxi-
tion and corresponding connectivity graph of the configura- - mates the global structure of the collision-free portion of
tion space (C-space) of a planar closed chain manipulator ©_gnace (C-free). The graph has nodes that correspond
moving among point obstacles is developed. By studying to selected points of C-free and arcs between nodes that
the global properties of the loop closure and collision con- - % p .
straint set, a cylindrical decomposition of the collision-free indicate path connectedness between the corresponding
portion of C-space (C-free) is obtained without translating points. The graph can be thought of a network of
the constraints into polynomials as required by Collins’ highways, or a roadmap, of C-free. The roadmap be-
method [1]. Once the graph is constructed, motion planning - ¢omes suitable for motion planning when the following

proceeds in the usual way; graph search followed by . . ] .
path construction. Experimental results demonstrate the two attributes are attained: (1) there is a one-to-one

effectiveness of the algorithm. correspondence between components of the graph and
components of C-free, and (2) given a point in C-free, it
|. INTRODUCTION is easy to find a path connecting it to the graph. At this

Because of their speed and stiffness, parallel manipeint, motion planning is essentially reduced to graph
ulators have recently attracted the interest of robotigearching.
researchers and industrial users. However, their closedSample-based algorithms have been quite successful
loop structure gives rise to joint variable dependenciefor systems whose C-space can be parameterized by a
which manifest in a topologically complex configuratiorsingle chart with number of coordinates equal to the
space. An important consequence of this is that, mumber of degrees of freedom of the system, but less
general, the C-space cannot be globally (and smoothByccessful otherwise [12], [16]. Even though one can
parameterized by a single setdfariables (for example always generate an ambient space parameterizable by
a subset of the joint displacements), wheteis the a single chart by choosing more parameters than the
number of degrees of freedom of the manipulator. Idimension of C-space, the number of sample points
other words, anyd-dimensional atlas of C-space willneeded to construct a good roadmap grows exponen-
contain multiple charts. This fact generally makes mdially with the dimension of the ambient space, because
tion planning more challenging for parallel manipulatorthe number of connected components of the collision-

than it is for serial manipulators. free portion of this space grows exponentially with its
) dimension. Second, for most parallel manipulators of
A. Previous Work interest, parameterization of C-space using the minimal

It is well known that general exact motion planninghumber of coordinates requires multiple charts. These
algorithms for serial manipulators are highly complexan be difficult to define and to choose suitable metrics
[5], [6], [7], [8], [15]. In fact, the most efficient exact to obtain globally “well distributed” sample points.
planning algorithm is Canny’s, whose worst-case time The difficulties associated with applying sample-based
complexity is exponential in the dimension of C-spacmotion planning methods to parallel manipulators and
[6]. In principle, exact algorithms can be applied tdhe availability of new results in topology led to renewed
systems with holonomic equality constraints such asterestin exact planning algorithms for closed kinematic
those imposed by the closed kinematic loops in parallehains (see Figure 1) [17], [18], [19]. Trinkle and Mil-
manipulators “by defining convenient charts and managram derived some global topological properties of the
ing them” (see [7], page 411). However, the difficultyC-space (the number of components and the structures
of implementing exact algorithms for general systemsf the components) of single-loop closed chains with
fueled a paradigm shift to sample-based algorithms [Hpherical joints in a workspacsithout obstacles [17].
[10], [11]. These properties drove the design of a complete motion



planning algorithm that works roughly as follows.

1) Choose a subset of the links that can be posi-
tioned arbitrarily, and yet the remaining links can
close the loop;

2) Move the links inA4 to their goal orientations along
an arbitrary path while maintaining loop closure;

3) Permanentl_y fix t_he O”entatlons of the links.i Fig. 1. A closed 6-chain among point obstacles (shown as small

4) Repeat until all links are fixed. discs).

The main result that guided the algorithm’s design is

Theorem 2 in [17]. In essence, the C-space is the union

of manifolds that are products of spheres and intervagonnected to ground. The ground is regarded aslink
The joint coordinates Corresponding to the Spheres éﬂﬁd is referred to as the base of the chain. Relative to the
those that can contribute to the subsétmentioned base, the open chain has— 1 degrees of freedom and
above and the structure of the C-space suggests a ldéalC-space is simply a product ef — 1 circles, (e,
parameterizationi €., “convenient chart”) for each step.C = (S')"'). A closedm-chain can be constructed by

The planning algorithm for closed chains in [17] wadttaching the distal end of the open chain to the base

not designed to handle obstacles. In [18], [19], poirS shown in Figure 1. Mathematically, this attachment
obstacles were added to the workspace of a plarifiPoses two algebraic equality constraints, causing the
manipulator, but the closed chain constraint was relaxe@-space of the closed chain to become a compact, closed,
The portion of C-space corresponding to collisions béeal, variety of dimensionn — 3. This variety is a
tween the manipulator and the obstacles (the C-obstadiegnifold as long as the distance between the two base
was analyzed in detail, to reveal that C-free locallgonnections is not equal to one of the&~> critical
fibres over a lower-dimensional base manifold with fibetgngths [17].

composed of open intervals (calleddcal component To fix notation, let{l,,--- ,l,,} denote the fixed link
sheaveks “Gluing” together the sheaves produces cells d€ngths and(¢y, - - - , ¢, } denote their angles measured
C-free, whose boundaries are determined by their criticgpunterclockwise from the vector from the center of
points. joint 1 to the center of jointm. Since our interest is

o in motions of the closed chain relative to the bagg,
B. Contribution is set to zero.

In this paper, the concepts used in [17], [18], [19] are Suppose that there is a finite s&, of point ob-
brought together to design an algorithm to construct atacles{p,--- ,p,} that the closedn-chain may not
exact cell-decomposition of C-free of an-link planar touch. The set of configurations for which a link in-
closed chain moving among point obstacles. The majersects a point obstacle forms an arrangementrof (

steps are: 4)-dimensional varieties. The union of these varieties
1) Partition C-space into two pieces embedded in twé the C-obstacle,,:. If link-link collisions are also
(m-3)-dimensional tori; to be avoided(C,,s; becomes the union of then(4)-

2) Compute the boundary of the loop closure corgimensional collision varieties and am{3)-dimensional
straint variety to identify the reachable portions ofink-link collision set. C-free, denoted by, is the

C-space; compliment ofCg,; in C.

3) Compute the collision varieties in each torus and Finally, the path planning problem can be stated as
construct a connectivity graph of C-free whilefollows: given ¢inic = (¢1,- , dm)init € Crree and
ignoring the loop closure constraint; Gfinal = (@1, , dm)final € Crree determine a continu-

4) Use the boundary of the loop closure variety tous mapr € [0,1] — (¢1(7), -, ¢m (7)) € Cree SUCh
refine the graphs and to determine their connectithat ¢(0) = ¢inic and (1) = Panal-
itya.

e . Il1. C-SPACE OFPLANAR CLOSED CHAINS
As a byproduct of the approach, it is trivial to determine

cell membership and reachability of an arbitrary point in Here we summarize three results from topological
C-space. Given this fact and the graph, one can easigProaches to motion planning that were crucial to
test motion p|anning pr0b|ems for path existence aﬁae work presented here. The first result is about the

then construct a path if one exists. connectivity of the C-space of a planar closed chain. We
need a concept called “long links” [17] which is defined
Il. BASIC NOTATION AND TERMINOLOGY as a subsef of the links such that the sum of the lengths

Imagine a planar serial chain of—1 links connected of every pair of distinct links inC is strictly greater than
by revolute joints, with one end free, and the othdnalf of the sum of the lengths of alk links. Due to the
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Fig. 2. Construction of C-space of closed chains via critical circles Fig. 3. Five types of connected C-spaces of closed 5-chains.
of an open chain.

same critical circle. Finally, at end of the curve, C-space
strict inequality in the definition, the number of longis a circle. Thus the C-space of the mechanism with the
links |£| must be 0, 2, or 3. If£[ is equal to 3, the end of the open 3-chain constrained to follow the curve
C-space has two components; otherwise, it has one. segment is a tube pinched closed at one end, open at
The second result gives the topology of the C-spadge other, and with a hole through the tube somewhere
It says that for given length§ly, --- , l,,_1} and base between the two ends. Applying the same logic to the
length [,,, that is generic with respect to those — 1 closed 5-chain that would result from connecting the end
lengths, the C-space is the boundary of a manifold wiihf the open 3-chain to the link shown as a dashed line,
boundary, which is given as the union of sub-manifoldsne finds that the C-space of the closed 5-chain is a
of the form (S*)* x I™~2~* [17], whereI? denotes the sphere.
interval of dimensiond. Following this approach, one can show by construct-
To clarify the above conclusion, consider Figure Zng circles and base links of various sizes that a closed
which shows a horizontal base link and three moveabizchain has up to six types of C-spaces, among which the
links. The concentric circles on the right are the criticahown in Figure 3 are connected. The sixth type of C-
circles (not drawn to scale) of the open 3-chain. If thepace is the disjoint union of two copies Bf. Here 52
end point of the 3-chain is anchored at any point in th&nd 72 represent the two-dimensional sphere and torus,
shaded annular region, its C-space is that of a closeskpectively, and# denotes the connected sum of two
4-chain. If the anchor point is interior to one of thespaces.
three reachable annuli, that C-space is, one circle, orThe third result pertains to the parametrization of
two disjoint circles as shown. the C-space. Since the C-space of a generic closed
Assume that the end point of the open 3-chain ishain is an {2-3)-dimensional manifold, C-space can be
connected to an open chain based at the left end of theally parameterized by a set ofi — 3 joint angles.
base link, and further, assume that as a result of thowever, fixing the orientations ofn — 3 links (in
connection, the end-point of the previously open 3-chaaddition to the fixed base), does not fix the configuration
has one degree of freedom, thus effectively creatingofthe closed chain. Returning to Figure 1, fixifg, ¢,
closed 5-chain. Two possible workspaces for the endnd ¢5 still allows elbow-upand elbow-downpostures
point of the open 3-chain are shown: a circle and a cureg links 1 and 2.
segment. This last result suggests partitioning C-space into an
The C-space of the newly-formed closed chain caglbow-up piece and anelbow-down piece as follows.
be determined by “gluing” together all the C-spaces &reak the closed chain at the third joint, thus creating an
each point. For example, begin at the left end of cunapen 2-chain and an opem{3)-chain based at opposite
~1 and traverse it to its other end. Initially, the C-spacends of the base link. The C-space of the second open
over each point ofy; is empty, since the open 3-chainchain is the £:-3)-dimensional torus. For an arbitrary
cannot reach those points. At the intersection with theoint in this space, the chain can be closed in O, 1,
outer-most circle, the C-space of the closed chain isos 2 configurations of the 2-chain. When there are two
point, but the workspace segment lying inside the outerenfigurations, they are labeleglbow-up and elbow-
most annular region generates a tube. At the point whedlewn Since there are never more than two configura-
curve intersects the next critical circle, the C-space tibns that close the loop, two copies of the torus suffice
the closed 5-chain is a figure eight. This signifies # represent the C-space of the closed chain. When there
bifurcation of the tube into two tubes. The two tubess only one configuration, thelbow-upand elbow-down
coalesce into a single tube at the next crossing of tlkenfigurations have converged, so at these points, the



tori are connected. These configurations form a variety
referred to as théoundary varietithat is the subject of
the next section.

IV. BOUNDARY VARIETY AND |ITS DECOMPOSITION

In this section, we outline a recursive projection
method (similar to the approach in [18], [19]) to de-
termine the structure and a cell decomposition of the
boundary variety. Thekt? level of recursion will be Fig- 4. A bitorus drawn in a cubical represenation of C-space. The
denoted b dina(E)” ; ; } _skeleton (_)f this bitorus under a vertical projection map (drawn bold),

y appending(k)” to the expression in qUES- g hree circles.
tion. Refer to Figure 1. As described above, let us
break the closedr-chain into an open 2-chai@H; (1)
with link lengths {l, l,}, and an open r4-3)-chain circle of radiusl,,_; centered atl,,,0) intersects the
CHy(1) with link lengths{is, --- , I,,_1} based at the circles ofS(m—3). With {B(1),--- , B(m—3)} defined,
point (/,,,0). Choose the joint angles ofH,(1) as C-space can now be decomposed into reachable and un-
the parameterization of thelbow-upand elbow-down reachable cells which arent3)-dimensional cylinders.
tori. Further, letf(1) be the forward kinematic map of
CHaz(1). Example: Consider a closed 6-chain, with link

The boundary variety3(1) is the set of all configu- lengths, {0.5512, 1.9457, 1.2131, 2.9482,4.5684,
rations for which the endpoints of the two open chains.7815}. The C-space of this chain is connected, since
can be connected when the links of the open 2-chain affere are only two long links. It is contained in two
collinear. With the constraint of collinearity, the space ofree-dimensional tori that are connected through the
possible end point locations(1) of the 2-chain in the boundary varietyB(1). B(1) is the union of the C-
workspace is a pair of concentric circles of radiit-lo  spaces of two closed 5-chaifg; (1) and M (1) with the
and|l; — | centered at the origin. The boundary varietyast four link lengths{1.2131, 2.9482, 4.5684, 5.7815}
can now be defined as follows: and the first link of length equal to one of the critical

_ 1 lengths {1.3945, 2.4969} of the circles composing
B(1) = F)— (1), %(1). Using the approach described in Figure 2, the
Note thatB(1) is the union of the C-space of the twoC-spaces of each of/;(1) and M(1) is a bitorus,
closed ¢n-1)-chainsM; (1) and M, (1) with link lengths  T?#7? (see Figure 3). This is consistent with the fact
{ly +1o, 13, -+, Iy} @nd{|ly — o], I3, --- , I, }. Also, that each of ofM; (1) and M>(1) have two long links.
B(1) is empty if and only if the intersection between To draw B(1), it is convenient to represent a 3-torus
¥(1) and the annulus centered &,,0) with radii as a three-cube with edge lendth and opposite faces
Z;’:gl I; andmin(||l3 +---+1,,—1]|) is empty, in which identified. In this space, a bitorus (qualitatively like those
case, C-space is not connected. composingB(1)) is shown in Figure 4. Note that the

The process described above is repeated for eachbeld girth curve and the two circles where the bitorus is
the two closeds:-1)-chains. That is, each of these closedut (recall that the top and bottom circles are identified)
chains is assumed to have a their third joints removeig, the skeleton of the bitorus under the projection map
which gives rise to2? critical circles centered on theonto the(¢4-¢5)-space.
origin with radii |l; 4l 3] and whose union i&(2). B(2) is the skeleton ofB(1) under the vertical pro-
Similar to B(1), the boundary varietyB(2), is given jection onto the ¢4-¢5)-face of the cube. In Figures 6
as B(2) = f(2)71(2(2)), where f(2) is the forward and 7,B(2) is plotted in thin solid closed curves. Note
kinematic map of thely,--- ,l,,—1} open (n-4)-chain that B(2) consists of six circles; two pairs of small
CH,(2) based at the pointl,,,0). By construction, “concentric” circles and one pair of large concentric
it is clear thatB(2) is the union of the C-spaces ofcircles containing the other two pairs. The large circles
the four closeds:-2)-chains each with first link length are the projections of the girth curves of the bitori
equal to one of the four critical radiiB(2) is also the of B(1). The two pairs of small circles are the small
set of critical values, or skeleton of the projection otircular skeletal curves like those shown in Figure 4. The
B(1) onto the {n-4)-dimensional torus with coordinatesfact that these pairs of circles are concentric implies that
{4, , Gm—1}- the two bitori of B(1) are “nested” in C-space.

Recursion continues untiB(m—3) is defined. In this  The last step is to project the skeleton &f(2)
case, ¥ (m—3) is the union of2™~3 (geometrically) to an edge of the cube. This is shown by the
concentric circles centered at the origin. The boundafy?2 dashed vertical lines (three are covered by other
variety B(m—3) is the set of values ob,,,_1 where the vertical lines) in Figures 6 and 7. Using the ap-




proach discussed in Figure 2, one can show thagplacing links 1 and 2 by a single link of length &[5
six of the eight critical circles with the radii and fixing this link in contact withp;.
{6.6582, 5.5558, 4.2320, 3.1296, 2.7668, 1.6644 } are in-
tersected transversally by the workspace of the end pointExample continued: We introduce two point obsta-
of the open 1-chain Ck{3). These correspond to the 12%les, p; = (4,2) and p, = (3,1). Note that it is
critical values of¢s. impossible for link 1 or 2 to touch either point, so the
corresponding varieties are empty. Consequently, only
4 the contact varieties of links 3, 4, and 5 appear in
Let VJ, j = 1,---,m — 1, denote the 1:-1)- Figures 6 and 7. Note that the two thickest vertical lines

dimensional variety corresponding {9 lying on link at ¢5 ~ 41.38, define extreme points of the boundary
J- The union of these varieties over all links gives theariety B(1). By these figures, one can also determine
contribution ofp; to the C-obstacle: the structure ofl;?, which project to the two second

me1 thickest vertical lines in the Figures. TaRg;’; as an

V,, = U Vp{. example. The projection df;g is the line¢s ~ —0.345

= whose intersection with the interior between the pair
of large concentric circles of3(2) is two separated
line segments, and with the interior of the inner pair
n of circles an interval. This reveals that the cross-section
of Vp52 in the horizontal plane of each 3-torus changes
im1 from two separated segments to one segment, and then
ack to two separated segments (recall that opposite

ces of each 3-torus are identified). The boundary of

Elas?f) ;23'% és Oagﬁlrz_g)r_?;;?n |2t§(;r)1e_rﬁ2ecnon2t£;a{ﬁe cross-section is either four or two separated points,
! P ' the union of which givesB(1)V,3. Gluing the two

varieties of CH(1) are already understood from pre- . . .
vious work [19]. However, our interest is iff/ for pieces ofl7}, in the elbow-upandelbow-dowrtori along

i —m—1,-.3 andi — 1. .n), which ¢an be B(1)(NV,, vields the surfacé™#T7>. This result can
viewed as t’he cé)n’tact varietieic, of é;@-]l) clipped by the also be obtained using the approach described in Figure 2

B(1). The portions of the constraint varieties of gH) lf?] rktreen (:t?]rsre;p;5r11(12|n? 9c4|g?eclj 2‘?; 1h aéngzg% glizltf)he
lying on the unreachable side @&(1) are eliminated. : gths {0. > r n » )

. . : .which has two long links. Using the same analysis
Figur how: linder with rectangular cr ti . . i
gure 5 shows a cylinde ectanguiar cross sec grr\rﬁethod, we can see thef is a torusI™ (in the figures,

in a three-dimensional C-space. The cylinder is cut b : 5 ! : . o
V,., V,, and two patches of3(1), labeledB, (1) and t%et line ?;: VI_J1 has no :cntgrslectlon with the interior
B, (1). Assuming the top and bottom of the rectangulakFe ween the inner pair of circles).

column are identified and ignoring(1), there are two
cells in the cylinder. Assuming that the region above  VI. GRAPHREPRESENTATION OFC-FREE
the top patch and below the bottom patch®f1) are
unreachable, a portion df}, is clipped and there are
three cells.

The topological properties of the remaining varieti
v, andV?2, i = {1, --- n}, are determined by the tec

V. COLLISION VARIETIES

The union of theV,,, over all point obstacles i© is
denoted byV:

To study the global structure of these varieties, t

The recursive decomposition of thelbow-up and
elbow-dowrtori makes the construction of a connectivity
esgraph straight forward. In essence, the graph construction
h_pirocess is recursive starting with the one-dimensional

nique developed in [17] and described in the discussiGHC'e Parameterized by, _, and working up to the

- - | (m-3)-dimensional C-space. Referring to Figure 6,
of Figure 2. These varieties can be expressed as follo lél. . ; i 2
'gu vanet XP the circle in T2 parameterized byss has 12 distinct

Ve o= f)70n) (1) critical points. Removal of these points from thig

V2 o= f(1) () @ c!rcle d.eflnes a set of 12 |nterval§. Some of the. two-

pi dimensional cells about these points could be discon-
Where'y]i- is the workspace of the end-point (always @ected at these points, but whether or not this is the
closed loop) of CH(1) when link j is in contact with case is only revealed as the method proceeds. Therefore,
p; and f(1) is the forward kinematic map of GHl). initially, these intervals and the cells above them are
Again it is important to understand the intersection adissumed to be disconnected at the critical points. Thus,
these contact varieties witl(1). Since the boundary at this stage, the graph of the spaceggf_; is simply
constraint requires links 1 and 2 to be colinear, th#2 disconnected nodes. The same decomposition occurs
intersections ofi,) and V;? with B(1) can be seen to in T as shown in Figure 7, but no attempt is made to
be the C-spaces of two closeth{2)-chain formed by connect the two graphs yet.



The next step is to “lift” the graphs so that they rep- @, B,(1)— — B@)
resent the cell structure of the two 2-tori parameterized 1 B,(2)
by ¢,,_1 and¢,,_». The intervals identified in the first D @
step serve as the base manifolds for the second step. T — [ A B0
If one fixes ¢,,_1, then ¢,,_o lies on a circle. For B,(1) 1
the critical values ofg,, 1, the circle is drawn as a Q
dashed vertical line (9 of the 12 are visible). Between =
the critical circles are two-dimensional cylindrical cells. Blz(l)f\ /%R— %
For example, consider the two critical circles straddling o
¢s = 1 in Figure 6. This portion of C-space is a é/%\j
thickened circle, or tube, that is cut in four places by P 3
projected skeleton of the boundary variety. This identifies B,(1) L\ ~_| B,(1)
four two-dimensional cells. The tube just to the right is ‘ J
cut in only two places, yielding two cells. However, in 0
the (@m—1,0m—2)-space some of the cells in the two 4 A = tf
tubes are connected. After merging the connected cells,

three possiblydisconnected cell remain. [0}

The graphs are again lifted, this time into the
(Pm—1,Pm—2,dm_3)-space. Figure 5 shows aFig. 5. A rectangular cell inds,¢5)-space onto which the critical
cell in the @m_1—¢m_2)—space. Above it is the points of constraint varieties inyf,¢s5,¢6)-space are projected.
(Pm—1,Pm—2,dm—3)-space  with  one-dimensional
constraint and boundary varieties. The locus of critic

points are those in the intersection of the surfaces. S, iher is in theelbow-downtorus. The computed

projection onto the cell is the curve D, which splits th%ath is projected onto the two two-dimensional tori

cell into two. Above each non-critical point in the twog, i Figures. 6 and 7. (Note that in these lower-

cells, there are four constraint surfaces. Assuming th&ﬁn ;
’ . ensional spaces, one should not expect the path
the space aboveé3;(1) and below B;(1) violates the P ’ P

. .to jump from theelbow-upto the elbow-downspaces
loop closure constraint, then the four surfaces def”?ﬁrough the projection of3(1)). While it is difficult

two reachable cylindrical cells above the cell (a,D) a:% see in a three-dimensional plot, the path in the ful

three cells above (D,b). Further the two cells bound _space crosses through the boundary variBil).

below by B,(1) are connectesi, ,?S are thos_e bounde/ﬂﬂimation of the motion in this example can be found
below by the surface labeled “2.” Merging yields thre% ftp://6bar:6bar@143.89.47.18
cells above the original cell ing(,_1,¢.,—2)-Space. ' ' R

Analyzing all adjacent cells in,,_1,¢$.,_2)-space in VIIl. COMPLEXITY ANALYSIS

the same way yields all connected components of theThe complexity of any algorithm that performs cell
(Pm—1, Pm—2, dm—3)-space, and the process continuegecomposition on C-free is bounded from below by the
until all connected components of dimension— 3 are  number of connected components. While we have not
identified. proven this, there is evidence that suggests that this lower
bound isQ(n™=3), m > 5. We also conjecture an upper
bound, by considering the polynomial representation
Our method for closed 5-chains and 6-chains wad the collision and loop closure varieties. Assuming
implemented in Matlab and tested for many planninthat the highest degree of these polynomialg,ishen
problems. Typically, a closed 5-chain closed chain movdalperin’s cell complexity results [20] applied to our
ing amongd point obstacles required about 160 secondapproach imply that each connected component of C-free
and closed 6-chain moving amor point obstacles could be composed ab(n™~%6§) cells. Since each of
required abouR10 seconds. these cells must be computed, the worst-case complexity
of our decomposition algorithm i©(n?™~7), m > 5.
Returning again to the example, a connectivity graph To provide insight into our conjecture, we show how
of C-free was constructed according to the approatt obtain these results for the caserof = 5 with n
described above. Then a motion planning problem waeint obstacles. The C-space is two-dimensional and the
specified by the following configurations: contact varieties are one-dimensional curves in C-space.
An upper bound on the number of components can be
Pinit = (—0.6363, —1.2183,0.0416, 1.9416, —0.1416,0)  gptained by imposing three conditions: (1) albow-up
®goal = (—0.9063, 0.8648,0.0416, —2.0416,0.3416,0).  and elbow-downconfigurations are valid, (2) all contact

zBne of the configurations is in thelbow-up torus;

VIl. EXPERIMENTAL RESULTS




Elbow-up rectangle Tﬁ

Lines determining the region of the C-space
Lines passing through skeleton of B(2)

B(2)

Projection of collision variety by link 5

- Projection of collision variety by link 4

Skeleton of collision variety by link 3
Intersection between B(1) and variety by link 3
Projected path

varieties are closed, and (3) all possible intersections
among varieties occur and they occur in general position.
These conditions can be satisfied only if:

Is =0, L1 =14, la =13, l2>2; (3

which defines a degenerate closed chain with base link
of length zero. The result is effectively a closed four-
chain with base link pinned at one end rather than both.
One can see that it is always possible to mgyeand

¢3 arbitrarily and that for every, and ¢35 there are
two configurations of the other two linkg/bow-upand
elbow-down Thus C-space is two copies @f?, 77

and T2, glued along the two circles corresponding to
configurations where all the links are colinear.

¢ = ¢ €[-m, 7] 4)
¢2 - d)l +7me [_71-771-]7 (5)

i.e., T2 NT? are the disjoint union of two circles.
Given anm-dimensional manifold?, define H,(Q)
the k-dimensional homology group @). The dimension
of Hy,(Q) can be interpreted as the number kbf
dimensional generators ¢f. For example, fofl? it can
be shown that(T?) = R, H,(T?) = R? for T? =

Fig. 6. The path (drawn as green points) projected’fo The wo St x S andH»(7?) = R'. The geometric interpretation

triangles pointed to the left and right represents the initial and go

configurations, respectively

Elbow-down rectangle T

d

6F

A = -

Lines determining the region of the C-space
Lines passing through skeleton of B(2)

B(2)

Projection of collision variety by link 5

— - Projection of collision variety by link 4

Skeleton of collision variety by link 3
Intersection between B(1) and variety by link 3
Projected path

Fig. 7. The path (drawn as green points) projecte(T(fo

R that the torus has one connected component, two one-
dimensional generatorgdt = S' x S'), and one two-
dimensional generator (the space inside the torus). Also,
given an(m — 1)-dimensional closed submanifol@

of @, them-dimensional relative homology group &f

with respect toQ,, defined asH,,(Q,Qs), gives the
number of components @ — Q..

Each contact varieth{ is a union of two closed
curves, each in one torus, with two points in common.
However, V1 and V4 common are coincident circles
correspondlng to aII links are collinear, as ﬂ’ﬁ and

. Thus the C-obstacld/ = U”Vpﬂ, is the union of
6n C|rcles. We then compute the number of intersections
between thes#n circles. Under the general position
assumption abou?,! we can show that the total number
of intersections is4n? — 11n.

Let V denote the disjoint union @ circles inV. The
set of intersection points among the circles is denoted
X. It is obvious thatH; (V) = R®", Hy(V) = R5",
Hy(X) = RY*~11n and Hy(V) = R!. What is left to
compute isH; (V'), for which we can use the following
exact sequence:

INo three points are in the same line, no two points and the origin
are in the same line, and no two lines each passing through a different
pair of points intersect at the same point in the circle centered at the
origin and with the radiug; .



from which we obtain H;(V,X) = Hy(V) = REFERENCES
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