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Abstract— A method to compute an exact cell decomposi-
tion and corresponding connectivity graph of the configura-
tion space (C-space) of a planar closed chain manipulator
moving among point obstacles is developed. By studying
the global properties of the loop closure and collision con-
straint set, a cylindrical decomposition of the collision-free
portion of C-space (C-free) is obtained without translating
the constraints into polynomials as required by Collins’
method [1]. Once the graph is constructed, motion planning
proceeds in the usual way; graph search followed by
path construction. Experimental results demonstrate the
effectiveness of the algorithm.

I. I NTRODUCTION

Because of their speed and stiffness, parallel manip-
ulators have recently attracted the interest of robotics
researchers and industrial users. However, their closed
loop structure gives rise to joint variable dependencies,
which manifest in a topologically complex configuration
space. An important consequence of this is that, in
general, the C-space cannot be globally (and smoothly)
parameterized by a single set ofd variables (for example
a subset of the joint displacements), whered is the
number of degrees of freedom of the manipulator. In
other words, anyd-dimensional atlas of C-space will
contain multiple charts. This fact generally makes mo-
tion planning more challenging for parallel manipulators
than it is for serial manipulators.

A. Previous Work

It is well known that general exact motion planning
algorithms for serial manipulators are highly complex
[5], [6], [7], [8], [15]. In fact, the most efficient exact
planning algorithm is Canny’s, whose worst-case time
complexity is exponential in the dimension of C-space
[6]. In principle, exact algorithms can be applied to
systems with holonomic equality constraints such as
those imposed by the closed kinematic loops in parallel
manipulators “by defining convenient charts and manag-
ing them” (see [7], page 411). However, the difficulty
of implementing exact algorithms for general systems
fueled a paradigm shift to sample-based algorithms [9],
[10], [11].

Sample-based algorithms build a graph that approxi-
mates the global structure of the collision-free portion of
C-space (C-free). The graph has nodes that correspond
to selected points of C-free and arcs between nodes that
indicate path connectedness between the corresponding
points. The graph can be thought of a network of
highways, or a roadmap, of C-free. The roadmap be-
comes suitable for motion planning when the following
two attributes are attained: (1) there is a one-to-one
correspondence between components of the graph and
components of C-free, and (2) given a point in C-free, it
is easy to find a path connecting it to the graph. At this
point, motion planning is essentially reduced to graph
searching.

Sample-based algorithms have been quite successful
for systems whose C-space can be parameterized by a
single chart with number of coordinates equal to the
number of degrees of freedom of the system, but less
successful otherwise [12], [16]. Even though one can
always generate an ambient space parameterizable by
a single chart by choosing more parameters than the
dimension of C-space, the number of sample points
needed to construct a good roadmap grows exponen-
tially with the dimension of the ambient space, because
the number of connected components of the collision-
free portion of this space grows exponentially with its
dimension. Second, for most parallel manipulators of
interest, parameterization of C-space using the minimal
number of coordinates requires multiple charts. These
can be difficult to define and to choose suitable metrics
to obtain globally “well distributed” sample points.

The difficulties associated with applying sample-based
motion planning methods to parallel manipulators and
the availability of new results in topology led to renewed
interest in exact planning algorithms for closed kinematic
chains (see Figure 1) [17], [18], [19]. Trinkle and Mil-
gram derived some global topological properties of the
C-space (the number of components and the structures
of the components) of single-loop closed chains with
spherical joints in a workspacewithout obstacles [17].
These properties drove the design of a complete motion



planning algorithm that works roughly as follows.
1) Choose a subsetA of the links that can be posi-

tioned arbitrarily, and yet the remaining links can
close the loop;

2) Move the links inA to their goal orientations along
an arbitrary path while maintaining loop closure;

3) Permanently fix the orientations of the links inA;
4) Repeat until all links are fixed.

The main result that guided the algorithm’s design is
Theorem 2 in [17]. In essence, the C-space is the union
of manifolds that are products of spheres and intervals.
The joint coordinates corresponding to the spheres are
those that can contribute to the subsetA mentioned
above and the structure of the C-space suggests a local
parameterization (i.e., “convenient chart”) for each step.

The planning algorithm for closed chains in [17] was
not designed to handle obstacles. In [18], [19], point
obstacles were added to the workspace of a planar
manipulator, but the closed chain constraint was relaxed.
The portion of C-space corresponding to collisions be-
tween the manipulator and the obstacles (the C-obstacle)
was analyzed in detail, to reveal that C-free locally
fibres over a lower-dimensional base manifold with fibers
composed of open intervals (calledlocal component
sheaves). “Gluing” together the sheaves produces cells of
C-free, whose boundaries are determined by their critical
points.

B. Contribution

In this paper, the concepts used in [17], [18], [19] are
brought together to design an algorithm to construct an
exact cell-decomposition of C-free of anm-link planar
closed chain moving among point obstacles. The main
steps are:

1) Partition C-space into two pieces embedded in two
(m-3)-dimensional tori;

2) Compute the boundary of the loop closure con-
straint variety to identify the reachable portions of
C-space;

3) Compute the collision varieties in each torus and
construct a connectivity graph of C-free while
ignoring the loop closure constraint;

4) Use the boundary of the loop closure variety to
refine the graphs and to determine their connectiv-
itya.

As a byproduct of the approach, it is trivial to determine
cell membership and reachability of an arbitrary point in
C-space. Given this fact and the graph, one can easily
test motion planning problems for path existence and
then construct a path if one exists.

II. BASIC NOTATION AND TERMINOLOGY

Imagine a planar serial chain ofm−1 links connected
by revolute joints, with one end free, and the other
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Fig. 1. A closed 6-chain among point obstacles (shown as small
discs).

connected to ground. The ground is regarded as linkm
and is referred to as the base of the chain. Relative to the
base, the open chain hasm− 1 degrees of freedom and
its C-space is simply a product ofm − 1 circles, (i.e.,
C = (S1)m−1). A closedm-chain can be constructed by
attaching the distal end of the open chain to the base
as shown in Figure 1. Mathematically, this attachment
imposes two algebraic equality constraints, causing the
C-space of the closed chain to become a compact, closed,
real, variety of dimensionm − 3. This variety is a
manifold as long as the distance between the two base
connections is not equal to one of the2m−2 critical
lengths [17].

To fix notation, let{l1, · · · , lm} denote the fixed link
lengths and{φ1, · · · , φm} denote their angles measured
counterclockwise from the vector from the center of
joint 1 to the center of jointm. Since our interest is
in motions of the closed chain relative to the base,φm

is set to zero.
Suppose that there is a finite set,O of point ob-

stacles{p1, · · · , pn} that the closedm-chain may not
touch. The set of configurations for which a link in-
tersects a point obstacle forms an arrangement of (m-
4)-dimensional varieties. The union of these varieties
is the C-obstacleCobst. If link-link collisions are also
to be avoided,Cobst becomes the union of the (m-4)-
dimensional collision varieties and an (m-3)-dimensional
link-link collision set. C-free, denoted byCfree, is the
compliment ofCobst in C.

Finally, the path planning problem can be stated as
follows: given φinit = (φ1, · · · , φm)init ∈ Cfree and
φfinal = (φ1, · · · , φm)final ∈ Cfree determine a continu-
ous mapτ ∈ [0, 1] 7→ (φ1(τ), · · · , φm(τ)) ∈ Cfree such
that φ(0) = φinit andφ(1) = φfinal.

III. C- SPACE OFPLANAR CLOSED CHAINS

Here we summarize three results from topological
approaches to motion planning that were crucial to
the work presented here. The first result is about the
connectivity of the C-space of a planar closed chain. We
need a concept called “long links” [17] which is defined
as a subsetL of the links such that the sum of the lengths
of every pair of distinct links inL is strictly greater than
half of the sum of the lengths of allm links. Due to the
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Fig. 2. Construction of C-space of closed chains via critical circles
of an open chain.

strict inequality in the definition, the number of long
links |L| must be 0, 2, or 3. If|L| is equal to 3, the
C-space has two components; otherwise, it has one.

The second result gives the topology of the C-space.
It says that for given lengths{l1, · · · , lm−1} and base
length lm that is generic with respect to thosem − 1
lengths, the C-space is the boundary of a manifold with
boundary, which is given as the union of sub-manifolds
of the form(S1)k× Im−2−k [17], whereId denotes the
interval of dimensiond.

To clarify the above conclusion, consider Figure 2,
which shows a horizontal base link and three moveable
links. The concentric circles on the right are the critical
circles (not drawn to scale) of the open 3-chain. If the
end point of the 3-chain is anchored at any point in the
shaded annular region, its C-space is that of a closed
4-chain. If the anchor point is interior to one of the
three reachable annuli, that C-space is, one circle, or
two disjoint circles as shown.

Assume that the end point of the open 3-chain is
connected to an open chain based at the left end of the
base link, and further, assume that as a result of the
connection, the end-point of the previously open 3-chain
has one degree of freedom, thus effectively creating a
closed 5-chain. Two possible workspaces for the end-
point of the open 3-chain are shown: a circle and a curve
segment.

The C-space of the newly-formed closed chain can
be determined by “gluing” together all the C-spaces at
each point. For example, begin at the left end of curve
γ1 and traverse it to its other end. Initially, the C-space
over each point ofγ1 is empty, since the open 3-chain
cannot reach those points. At the intersection with the
outer-most circle, the C-space of the closed chain is a
point, but the workspace segment lying inside the outer-
most annular region generates a tube. At the point where
curve intersects the next critical circle, the C-space of
the closed 5-chain is a figure eight. This signifies a
bifurcation of the tube into two tubes. The two tubes
coalesce into a single tube at the next crossing of the
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Fig. 3. Five types of connected C-spaces of closed 5-chains.

same critical circle. Finally, at end of the curve, C-space
is a circle. Thus the C-space of the mechanism with the
end of the open 3-chain constrained to follow the curve
segment is a tube pinched closed at one end, open at
the other, and with a hole through the tube somewhere
between the two ends. Applying the same logic to the
closed 5-chain that would result from connecting the end
of the open 3-chain to the link shown as a dashed line,
one finds that the C-space of the closed 5-chain is a
sphere.

Following this approach, one can show by construct-
ing circles and base links of various sizes that a closed
5-chain has up to six types of C-spaces, among which the
shown in Figure 3 are connected. The sixth type of C-
space is the disjoint union of two copies ofT 2. HereS2

andT 2 represent the two-dimensional sphere and torus,
respectively, and# denotes the connected sum of two
spaces.

The third result pertains to the parametrization of
the C-space. Since the C-space of a generic closedm-
chain is an (m-3)-dimensional manifold, C-space can be
locally parameterized by a set ofm − 3 joint angles.
However, fixing the orientations ofm − 3 links (in
addition to the fixed base), does not fix the configuration
of the closed chain. Returning to Figure 1, fixingφ3, φ4

and φ5 still allows elbow-upand elbow-downpostures
of links 1 and 2.

This last result suggests partitioning C-space into an
elbow-up piece and anelbow-down piece as follows.
Break the closed chain at the third joint, thus creating an
open 2-chain and an open (m-3)-chain based at opposite
ends of the base link. The C-space of the second open
chain is the (m-3)-dimensional torus. For an arbitrary
point in this space, the chain can be closed in 0, 1,
or 2 configurations of the 2-chain. When there are two
configurations, they are labeledelbow-up and elbow-
down. Since there are never more than two configura-
tions that close the loop, two copies of the torus suffice
to represent the C-space of the closed chain. When there
is only one configuration, theelbow-upandelbow-down
configurations have converged, so at these points, the



tori are connected. These configurations form a variety
referred to as theboundary varietythat is the subject of
the next section.

IV. B OUNDARY VARIETY AND ITS DECOMPOSITION

In this section, we outline a recursive projection
method (similar to the approach in [18], [19]) to de-
termine the structure and a cell decomposition of the
boundary variety. Thekth level of recursion will be
denoted by appending “(k)” to the expression in ques-
tion. Refer to Figure 1. As described above, let us
break the closedm-chain into an open 2-chainCH1(1)
with link lengths {l1, l2}, and an open (m-3)-chain
CH2(1) with link lengths{l3, · · · , lm−1} based at the
point (lm, 0). Choose the joint angles ofCH2(1) as
the parameterization of theelbow-up and elbow-down
tori. Further, letf(1) be the forward kinematic map of
CH2(1).

The boundary varietyB(1) is the set of all configu-
rations for which the endpoints of the two open chains
can be connected when the links of the open 2-chain are
collinear. With the constraint of collinearity, the space of
possible end point locationsΣ(1) of the 2-chain in the
workspace is a pair of concentric circles of radiil1 + l2
and|l1− l2| centered at the origin. The boundary variety
can now be defined as follows:

B(1) = f(1)−1(Σ(1)).

Note thatB(1) is the union of the C-space of the two
closed (m-1)-chainsM1(1) andM2(1) with link lengths
{l1 + l2, l3, · · · , lm} and{|l1− l2|, l3, · · · , lm}. Also,
B(1) is empty if and only if the intersection between
Σ(1) and the annulus centered at(lm, 0) with radii∑m−1

i=3 li andmin(‖l3±· · ·± lm−1‖) is empty, in which
case, C-space is not connected.

The process described above is repeated for each of
the two closed (m-1)-chains. That is, each of these closed
chains is assumed to have a their third joints removed,
which gives rise to22 critical circles centered on the
origin with radii |l1± l2± l3| and whose union isΣ(2).
Similar to B(1), the boundary varietyB(2), is given
as B(2) = f(2)−1(Σ(2)), where f(2) is the forward
kinematic map of the{l4, · · · , lm−1} open (m-4)-chain
CH2(2) based at the point(lm, 0). By construction,
it is clear thatB(2) is the union of the C-spaces of
the four closed (m-2)-chains each with first link length
equal to one of the four critical radii.B(2) is also the
set of critical values, or skeleton of the projection of
B(1) onto the (m-4)-dimensional torus with coordinates
{φ4, · · · , φm−1}.

Recursion continues untilB(m−3) is defined. In this
case,Σ(m−3) is the union of2m−3 (geometrically)
concentric circles centered at the origin. The boundary
variety B(m−3) is the set of values ofφm−1 where the

Fig. 4. A bitorus drawn in a cubical represenation of C-space. The
skeleton of this bitorus under a vertical projection map (drawn bold),
is three circles.

circle of radiuslm−1 centered at(lm, 0) intersects the
circles ofΣ(m−3). With {B(1), · · · , B(m−3)} defined,
C-space can now be decomposed into reachable and un-
reachable cells which are (m-3)-dimensional cylinders.

Example: Consider a closed 6-chain, with link
lengths, {0.5512, 1.9457, 1.2131, 2.9482, 4.5684,
5.7815}. The C-space of this chain is connected, since
there are only two long links. It is contained in two
three-dimensional tori that are connected through the
boundary varietyB(1). B(1) is the union of the C-
spaces of two closed 5-chainsM1(1) andM2(1) with the
last four link lengths{1.2131, 2.9482, 4.5684, 5.7815}
and the first link of length equal to one of the critical
lengths {1.3945, 2.4969} of the circles composing
Σ(1). Using the approach described in Figure 2, the
C-spaces of each ofM1(1) and M2(1) is a bitorus,
T 2#T 2 (see Figure 3). This is consistent with the fact
that each of ofM1(1) andM2(1) have two long links.

To drawB(1), it is convenient to represent a 3-torus
as a three-cube with edge length2π and opposite faces
identified. In this space, a bitorus (qualitatively like those
composingB(1)) is shown in Figure 4. Note that the
bold girth curve and the two circles where the bitorus is
cut (recall that the top and bottom circles are identified)
is the skeleton of the bitorus under the projection map
onto the(φ4-φ5)-space.

B(2) is the skeleton ofB(1) under the vertical pro-
jection onto the (φ4-φ5)-face of the cube. In Figures 6
and 7,B(2) is plotted in thin solid closed curves. Note
that B(2) consists of six circles; two pairs of small
“concentric” circles and one pair of large concentric
circles containing the other two pairs. The large circles
are the projections of the girth curves of the bitori
of B(1). The two pairs of small circles are the small
circular skeletal curves like those shown in Figure 4. The
fact that these pairs of circles are concentric implies that
the two bitori ofB(1) are “nested” in C-space.

The last step is to project the skeleton ofB(2)
to an edge of the cube. This is shown by the
12 dashed vertical lines (three are covered by other
vertical lines) in Figures 6 and 7. Using the ap-



proach discussed in Figure 2, one can show that
six of the eight critical circles with the radii
{6.6582, 5.5558, 4.2320, 3.1296, 2.7668, 1.6644} are in-
tersected transversally by the workspace of the end point
of the open 1-chain CH2(3). These correspond to the 12
critical values ofφ5.

V. COLLISION VARIETIES

Let V j
pi

, j = 1, · · · ,m − 1, denote the (m-1)-
dimensional variety corresponding topi lying on link
j. The union of these varieties over all links gives the
contribution ofpi to the C-obstacle:

Vpi
=

m−1⋃

j=1

V j
pi

.

The union of theVpi
over all point obstacles inO is

denoted byV :

V =
n⋃

i=1

Vpi
.

To study the global structure of these varieties, the
closed chain is again broken into the open 2-chain
CH1(1) and the open (m-3)-chain CH2(1). The contact
varieties of CH2(1) are already understood from pre-
vious work [19]. However, our interest is inV j

pi
for

j = m − 1, · · · , 3, and i = 1, · · · , n), which can be
viewed as the contact varieties of CH2(1) clipped by the
B(1). The portions of the constraint varieties of CH2(1)
lying on the unreachable side ofB(1) are eliminated.
Figure 5 shows a cylinder with rectangular cross section
in a three-dimensional C-space. The cylinder is cut by
Vp1 , Vp2 and two patches ofB(1), labeledB1(1) and
B2(1). Assuming the top and bottom of the rectangular
column are identified and ignoringB(1), there are two
cells in the cylinder. Assuming that the region above
the top patch and below the bottom patch ofB(1) are
unreachable, a portion ofVp2 is clipped and there are
three cells.

The topological properties of the remaining varieties,
V 1

pi
andV 2

pi
, i = {1, · · · n}, are determined by the tech-

nique developed in [17] and described in the discussion
of Figure 2. These varieties can be expressed as follows:

V 1
pi

= f(1)−1(γi
1) (1)

V 2
pi

= f(1)−1(γi
2) (2)

where γi
j is the workspace of the end-point (always a

closed loop) of CH1(1) when link j is in contact with
pi and f(1) is the forward kinematic map of CH2(1).
Again it is important to understand the intersection of
these contact varieties withB(1). Since the boundary
constraint requires links 1 and 2 to be colinear, the
intersections ofV 1

pi
and V 2

pi
with B(1) can be seen to

be the C-spaces of two closed (m-2)-chain formed by

replacing links 1 and 2 by a single link of length|l1±l2|
and fixing this link in contact withpi.

Example continued: We introduce two point obsta-
cles, p1 = (4, 2) and p2 = (3, 1). Note that it is
impossible for link 1 or 2 to touch either point, so the
corresponding varieties are empty. Consequently, only
the contact varieties of links 3, 4, and 5 appear in
Figures 6 and 7. Note that the two thickest vertical lines
at φ5 ≈ ±1.38, define extreme points of the boundary
variety B(1). By these figures, one can also determine
the structure ofV 5

pi
, which project to the two second

thickest vertical lines in the Figures. TakeV 5
p2

as an
example. The projection ofV 5

p2
is the lineφ5 ≈ −0.345

whose intersection with the interior between the pair
of large concentric circles ofB(2) is two separated
line segments, and with the interior of the inner pair
of circles an interval. This reveals that the cross-section
of V 5

p2
in the horizontal plane of each 3-torus changes

from two separated segments to one segment, and then
back to two separated segments (recall that opposite
faces of each 3-torus are identified). The boundary of
the cross-section is either four or two separated points,
the union of which givesB(1)

⋂
V 5

p2
. Gluing the two

pieces ofV 5
p2

in theelbow-upandelbow-downtori along
B(1)

⋂
V 5

p2
yields the surfaceT 2#T 2. This result can

also be obtained using the approach described in Figure 2
for the corresponding closed 5-chain ofV 5

p2
with the

link lengths {0.5512, 1.9457, 1.2131, 2.9482, 2.1415),
which has two long links. Using the same analysis
method, we can see thatV 5

p1
is a torusT 2 (in the figures,

the line of V 5
p1

has no intersection with the interior
between the inner pair of circles).

VI. GRAPH REPRESENTATION OFC-FREE

The recursive decomposition of theelbow-up and
elbow-downtori makes the construction of a connectivity
graph straight forward. In essence, the graph construction
process is recursive starting with the one-dimensional
circle parameterized byφm−1 and working up to the
full (m-3)-dimensional C-space. Referring to Figure 6,
the circle in T 2

u parameterized byφ5 has 12 distinct
critical points. Removal of these points from theφ5

circle defines a set of 12 intervals. Some of the two-
dimensional cells about these points could be discon-
nected at these points, but whether or not this is the
case is only revealed as the method proceeds. Therefore,
initially, these intervals and the cells above them are
assumed to be disconnected at the critical points. Thus,
at this stage, the graph of the space ofφm−1 is simply
12 disconnected nodes. The same decomposition occurs
in T 2

d as shown in Figure 7, but no attempt is made to
connect the two graphs yet.



The next step is to “lift” the graphs so that they rep-
resent the cell structure of the two 2-tori parameterized
by φm−1 andφm−2. The intervals identified in the first
step serve as the base manifolds for the second step.
If one fixes φm−1, then φm−2 lies on a circle. For
the critical values ofφm−1, the circle is drawn as a
dashed vertical line (9 of the 12 are visible). Between
the critical circles are two-dimensional cylindrical cells.
For example, consider the two critical circles straddling
φ5 = 1 in Figure 6. This portion of C-space is a
thickened circle, or tube, that is cut in four places by
projected skeleton of the boundary variety. This identifies
four two-dimensional cells. The tube just to the right is
cut in only two places, yielding two cells. However, in
the (φm−1,φm−2)-space some of the cells in the two
tubes are connected. After merging the connected cells,
threepossiblydisconnected cell remain.

The graphs are again lifted, this time into the
(φm−1, φm−2, φm−3)-space. Figure 5 shows a
cell in the (φm−1-φm−2)-space. Above it is the
(φm−1, φm−2, φm−3)-space with one-dimensional
constraint and boundary varieties. The locus of critical
points are those in the intersection of the surfaces. Its
projection onto the cell is the curve D, which splits the
cell into two. Above each non-critical point in the two
cells, there are four constraint surfaces. Assuming that
the space aboveB1(1) and belowB2(1) violates the
loop closure constraint, then the four surfaces define
two reachable cylindrical cells above the cell (a,D) and
three cells above (D,b). Further the two cells bounded
below by B2(1) are connected, as are those bounded
below by the surface labeled “2.” Merging yields three
cells above the original cell in (φm−1,φm−2)-space.

Analyzing all adjacent cells in (φm−1,φm−2)-space in
the same way yields all connected components of the
(φm−1, φm−2, φm−3)-space, and the process continues
until all connected components of dimensionm− 3 are
identified.

VII. E XPERIMENTAL RESULTS

Our method for closed 5-chains and 6-chains was
implemented in Matlab and tested for many planning
problems. Typically, a closed 5-chain closed chain mov-
ing among4 point obstacles required about 160 seconds,
and closed 6-chain moving among2 point obstacles
required about210 seconds.

Returning again to the example, a connectivity graph
of C-free was constructed according to the approach
described above. Then a motion planning problem was
specified by the following configurations:

φinit =(−0.6363,−1.2183, 0.0416, 1.9416,−0.1416, 0)
φgoal =(−0.9063, 0.8648, 0.0416,−2.0416, 0.3416, 0).
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Fig. 5. A rectangular cell in (φ4,φ5)-space onto which the critical
points of constraint varieties in (φ4,φ5,φ6)-space are projected.

One of the configurations is in theelbow-up torus;
the other is in theelbow-down torus. The computed
path is projected onto the two two-dimensional tori
shown in Figures. 6 and 7. (Note that in these lower-
dimensional spaces, one should not expect the path
to jump from theelbow-up to the elbow-downspaces
through the projection ofB(1)). While it is difficult
to see in a three-dimensional plot, the path in the full
C-space crosses through the boundary varietyB(1).
Animation of the motion in this example can be found
in ftp://6bar:6bar@143.89.47.18 .

VIII. C OMPLEXITY ANALYSIS

The complexity of any algorithm that performs cell
decomposition on C-free is bounded from below by the
number of connected components. While we have not
proven this, there is evidence that suggests that this lower
bound isΩ(nm−3), m ≥ 5. We also conjecture an upper
bound, by considering the polynomial representation
of the collision and loop closure varieties. Assuming
that the highest degree of these polynomials isδ, then
Halperin’s cell complexity results [20] applied to our
approach imply that each connected component of C-free
could be composed ofO(nm−4δ) cells. Since each of
these cells must be computed, the worst-case complexity
of our decomposition algorithm isO(n2m−7), m ≥ 5.

To provide insight into our conjecture, we show how
to obtain these results for the case ofm = 5 with n
point obstacles. The C-space is two-dimensional and the
contact varieties are one-dimensional curves in C-space.
An upper bound on the number of components can be
obtained by imposing three conditions: (1) allelbow-up
andelbow-downconfigurations are valid, (2) all contact
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varieties are closed, and (3) all possible intersections
among varieties occur and they occur in general position.
These conditions can be satisfied only if:

l5 = 0, l1 = l4, l2 = l3, l2 > 2l1 (3)

which defines a degenerate closed chain with base link
of length zero. The result is effectively a closed four-
chain with base link pinned at one end rather than both.
One can see that it is always possible to moveφ4 and
φ3 arbitrarily and that for everyφ4 and φ3 there are
two configurations of the other two links;elbow-upand
elbow-down. Thus C-space is two copies ofT 2, T 2

u

and T 2
d , glued along the two circles corresponding to

configurations where all the links are colinear.

φ2 = φ1 ∈ [−π, π] (4)

φ2 = φ1 + π ∈ [−π, π], (5)

i.e., T 2
u ∩ T 2

d are the disjoint union of two circles.
Given anm-dimensional manifoldQ, defineHk(Q)

thek-dimensional homology group ofQ. The dimension
of Hk(Q) can be interpreted as the number ofk-
dimensional generators ofQ. For example, forT 2 it can
be shown thatH0(T 2) = R1, H1(T 2) = R2 for T 2 =
S1×S1, andH2(T 2) = R1. The geometric interpretation
is that the torus has one connected component, two one-
dimensional generators (T 2 = S1 × S1), and one two-
dimensional generator (the space inside the torus). Also,
given an(m − 1)-dimensional closed submanifoldQs

of Q, them-dimensional relative homology group ofQ
with respect toQs, defined asHm(Q,Qs), gives the
number of components ofQ−Qs.

Each contact varietyV j
pi

is a union of two closed
curves, each in one torus, with two points in common.
However, V 1

pi
and V 4

pi
common are coincident circles

corresponding to all links are collinear, as doV 2
pi

and
V 3

pi
. Thus the C-obstacle,V = ∪i,jV

j
pi

, is the union of
6n circles. We then compute the number of intersections
between these6n circles. Under the general position
assumption aboutO,1 we can show that the total number
of intersections is14n2 − 11n.

Let V denote the disjoint union of6n circles inV . The
set of intersection points among the6n circles is denoted
X. It is obvious thatH1(V ) = R6n, H0(V ) = R6n,
H0(X) = R14n2−11n, andH0(V ) = R1. What is left to
compute isH1(V ), for which we can use the following
exact sequence:

0 → H1(V ) → H1(V , X) → H0(X) → H0(V ) → 0

1No three points are in the same line, no two points and the origin
are in the same line, and no two lines each passing through a different
pair of points intersect at the same point in the circle centered at the
origin and with the radiusl1.



from which we obtain H1(V ,X) = H1(V ) =
R14n2−11n. Substituting into another exact sequence

0 → H2(C) → H2(C, V ) → H1(V ) → H1(C) → 0

yields H2(C, V ) = R14n2−11n. This shows that the
number of components of the C-free is14n2 − 11n.

Since in our algorithm each component is decomposed
into at least one cell, the number of cells in a graph with
the worst-case number of components is at least14n2−
11n. This gives the asymptotic lower bound ofΩ(n2).
On the other hand, notice that the number of cells in our
graph for C-free is bounded by the product of the number
of critical points and the number of collision curves. Let
δ be the degree of the polynomials of collision curves.
Then the number of cells in our graph is bounded by
(14n2− 11n+6nδ)× (6nδ) = O(n3) is the asymptotic
upper bound of the worst-case complexity.

IX. CONCLUSION

This paper presents a method for an exact cell
decomposition of the reachable collision-free portion
the configurations space (C-space) of a planar closed
chain withm-links moving among point obstacles. This
method combines the results on the topology of C-
spaces of planar closed chains and the decomposition
method proposed in [19]. First, the C-space is covered
using only two charts. Then, each piece is imbedded
in an (m-3)-dimensional torus. The structure of the
collision set is used to decompose both tori into cells
of collision-free configurations (C-free) and to construct
graphs representing the structure of C-free. The global
graph is then established by joining graphs of the the two
tori if they are connected, as indicated by the analysis
of the boundary of the loop closure constraint. A benefit
of the decomposition method is that it is very easy to
determine cell membership of a given configuration. This
fact combined with the exact graph representation of C-
free allows one to check path existence by graph search.
If a path exists, the cylindrical structure of the free cells
facilitates easy path construction.

The proposed algorithm is complete, yet time con-
suming. In a forthcoming paper, we seek a trade-off be-
tween sample-based methods and the complete methods.
Namely, we refine current sampling approaches so that
the sampling density is different around geometrically
different features of the C-free. These features are the
union of singular loci, which reflect the global structure
of the C-space, in particular, the narrow passages. It is
expected that by applying refined sampling the compu-
tation speed will be enhanced, and the fault probability
be reduced.
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