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On Quality Functions for Grasp Synthesis, Fixture
Planning, and Coordinated Manipulation

Guanfeng Liu, Jijie Xu, Xin Wang, and Zexiang Li

Abstract—Planning a proper set of contact points on a given
object/workpiece so as to satisfy a certain optimality criterion is
a common problem in grasp synthesis for multifingered robotic
hands and in fixture planning for manufacturing automation. In
this paper, we formulate the grasp planning problem as optimiza-
tion problems with respect to three grasp quality functions. The
physical significance and properties of each quality function are
explained, and computation of the corresponding gradient flows
is provided. One noticeable property of some of these quality
functions is that the optimal solutions are also force-closure grasps
if they do exist for the given object. Furthermore, when specialized
to two-fingered or three-fingered grasps on a spherical object,
the optimal solutions become the familiar antipodal grasp, or the
symmetric grasp, respectively. Thus, by following the gradient
flows with arbitrary initial conditions, the optimal grasp synthesis
problem is solved for objects with smooth geometries manipulated
by hands with any number of fingers. Also, note that our solutions
do not involve linearization of the friction cones. We discuss two
simplified versions of these problems when real-time solutions
are needed, e.g., coordinated manipulation of a robotic hand with
contact points servoing. We give simulation and experimental
results illustrating validity of the proposed approach for optimal
grasp planning.

Note to Practitioners: This paper presents three new quality
functions for comparing and planning grasps and fixtures. These
measures improve on the traditional measure of force closure. We
propose a method for computing the optimal solutions of these
functions, and a method for reducing their computation time
through reasonable simplification/approximation. Preliminary
experiments with a three-fingered robotic hand demonstrate that
the proposed functions can be used to optimize the grasp quality
during manipulation/manufacturing, and keep the optimal grasp
configuration once it is reached. However, we only obtain the local
optimal solutions for the functions without simplification except
for some special cases. We also assume that the object/workpiece
is ideally rigid in all three functions. In future research, we will
improve these limitations through a compliance model.

Index Terms—Grasp synthesis, max-transfer problem,
max-normal-grasping-force problem, min-analytic-center
problem, gradient computation.

I. INTRODUCTION

PLANNING a proper set of contact points on a given ob-
ject/workpiece so as to satisfy a certain optimality crite-

rion is a common problem in grasp synthesis for multifingered

Manuscript received December 17, 2002; revised August 16, 2003. This paper
was recommended for publication by Associate Editor C. Melchiorri and Editor
I. Walker upon evaluation of the reviewers’ comments.This work was supported
by the Research Grants Council of Hong Kong under Grant HKUST 6187/01E,
Grant HKUST 6221/99E, Grant CRC98/01.EG02, and by the National Science
Foundation, China, under Grant 50029501.

G. Liu, J. Xu, and Z. Li are with the Department of Electrical and Electronic
Engineering, Hong Kong University of Science and Technology, Hong Kong
(e-mail: liugf@cs.rpi.edu; eexjj@ee.ust.hk; eezxli@ee.ust.hk).

X. Wang is with Control Science and Control Engineering in the Shenzhen
Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
(e-mail: wang_xin@hit.edu.cn).

Digital Object Identifier 10.1109/TASE.2004.836760

robotic hands, and in fixture planning for manufacturing au-
tomation. During a full multifingered manipulation cycle, grasp
planning arises in several occasions, such as when an object is
first picked up from say, a table top; or when the object is ma-
nipulated from an initial to a final grasp configuration through a
continuum of force-closure grasps in order to not dropping the
object (dextrous manipulation); or when the object is coordina-
tively manipulated to execute a given task (e.g., scribing) with
contact points servoing (so as to maintain the object in an op-
timal grasp configuration). Research on grasp planning centers
on two broad categories: grasp analysis and grasp synthesis.

Early work on grasp analysis includes that of Reulaux [1],
who introduced the notion of force-closure and form-closure
grasps; that of Salisbury [2], who developed mathematical
models of contact and grasp, and provided necessary and
sufficient conditions for force-closure grasps; that of Mishra
et al. [3] for FPCs, who showed that a grasp is force closure
if and only if the origin of the wrench space lies in the in-
terior of the convex hull of the primitive wrenches. Several
force-closure tests based on these conditions were developed
by Chen and Burdick [4], Nguyen [5], and Trinkle [6]. Bicchi
[7] translated the force-closure problem into the stability of
an ordinary differential equation. Recently, by linearizing the
friction cones, Liu [8] introduced a ray-shooting problem (LP)
and proposed a clean-cut test for force-closure grasps. Han
et al. [9] observed that the nonlinear friction cone constraints
can be represented as linear matrix inequalities (LMIs) and the
force-closure problem can be reformulated as the feasibility
problem of a semi-definite or max-det problem, for which effi-
cient algorithms are now available. Thus, the general problem
of determining if a grasp is force closure is considered to be
completely solved. Furthermore, the problem of computing
optimal finger forces within the limits of the friction cones to
balance a given external wrench is also solved with the work of
[10], [11], [9].

Research on optimal grasp synthesis consists of: 1) determi-
nation of the optimality criteria and 2) derivation of methods and
algorithms for computing contact locations with respect to the
optimality criteria and subject to accessibility constraints. Early
work in this area includes synthesis of grasps for polygonal and
polyhedral objects which are force closure. Ji and Roth [12] de-
rived conditions on contact positions and surface normals that
guarantee a grasp to be force closure. Nguyen [5] gave condi-
tions for constructing planar two-fingered force-closure grasps,
which was generalized by Ponce and Faverjon [13] to three-fin-
gered case, and by Ponce et al. [14] to four-fingered case. Mishra
et al. [3] proposed an algorithm for computing force-closure
grasps for polyhedral objects under FPCs. Ding et al. [15] pro-
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posed heuristics for searching an eligible set of grasping sur-
faces of a polyhedra and a quadratic programming approach for
selecting an optimal form-closure grasp that minimizes the posi-
tioning errors. Liu [16] proposed an algorithm for computing all
form-closure grasps of polygonal objects with arbitrary number
of fingers. Apparently, to a given object there exist in general a
large set of grasps which are force closure. In other words, force
closure is too coarse a criterion to be used for grasp synthesis.
More refined criteria are needed to define the notion of grasp
optimality. Cutkosky [17] and Li and Sastry [18] proposed the
use of task requirement for grasp selection. For general two-fin-
gered grasps, Hong et al. [19] used the distance between two fin-
gers as a grasp quality function, of which antipodal grasps are
the optimal solutions. Using this function, Chen and Burdick
[4] developed gradient algorithms for grasp planning. Similar
works could also be found in [20]–[22]. A great deal of difficul-
ties exist when one aims to extend this approach to grasps with
more than two fingers except the particular case, a three-fingered
hand grasping a spherical object, for which the area of the tri-
angle formed by the three contact points is used as a physically
meaningful quality function. The optimal solution for this func-
tion turns out to be the symmetric grasp where the three fingers
locate at three symmetric points of a big circle. To develop a
general approach to grasp synthesis that is not confined to ob-
jects with specific geometries, Kirkpatrick et al. [23] proposed
a quality measure based on the capability of the grasp in re-
sisting external wrenches. They further translated the problem
to the computation of the radius of the largest ball contained
in the convex hull of the primitive wrenches. The same idea
was also adopted by Ferrari and Canny [24]. To avoid the am-
biguity arising in defining physically meaningful norms for ex-
ternal wrenches, Mirtich and Canny [25] proposed two quality
functions via decoupling the force and moment components of
a wrench. Based on these two functions, they computed several
examples and obtained the well known optimal grasps by other
approaches. Zhu et al. [26], [27] introduced the distance and
adopted the radius of the largest ball contained in the convex
hull of the primitive wrenches as a quality measure.

To summarize, a complete solution to the general optimal
grasp synthesis problem rests on derivation of grasp quality
functions which: 1) incorporate the force-closure condition,
i.e., optimal solutions are also force-closure grasps and 2) have
easily computable gradients. In other words, an optimal grasp
can be attained by following the gradient flows of the quality
functions starting from some initial conditions which may not
be force closure. Based on our review of previous works, this
problem remains largely unsolved. The aim of this paper is to
develop solutions to this problem that: 1) have clean senses
of optimality; 2) do not involve approximation of the friction
cones; and 3) can be applied to objects with smooth geometries
grasped by hands with any number of fingers.

First, we will introduce several candidate grasp quality
functions and formulate the grasp synthesis problem as a
max-transfer, a max-normal-grasping-force, and a min-ana-
lytic-center problem. The physical meaning of each quality
function will be explained. Each problem will assume the
form of – – or – – type. Then, we will
develop algorithms for computing the gradients of these quality

Fig. 1. A k-fingered hand grasping an object.

functions. When real-time solutions are needed for applications
such as contact points servoing in coordinated manipulation
[28], [20], we introduce two simplified quality functions, along
with several examples. Note that the optimal solutions of the
simplified problems coincide with previous results obtained
using heuristic approaches, demonstrating again generality of
our current methods. Finally, we perform experimental studies
on the Hong Kong University of Science and Technology
(HKUST) three-fingered hand using real-time optimization of
the simplified quality functions.

The paper is organized as follows. In Section II, we briefly
review the kinematic model of a multifingered hand manipula-
tion system and the friction cone constraints. In Section III, we
discuss several classical grasping examples and their optimal so-
lutions by heuristic approaches. In Section IV, we show how to
compute the gradients for – – and – –
problems and propose numerical algorithms for grasp planning.
In Section V, we introduce three new candidate quality functions
for grasp synthesis, along with simulation results of a three-fin-
gered hand grasping an ellipsoid. In Section VI, we derive two
simplified quality functions for real-time grasp planning. Sev-
eral examples are studied showing that the optimal solutions of
the simplified problems coincide with those using heuristic ap-
proaches. In Section VII, we perform experimental studies on
the HKUST three-fingered hand with real-time optimization of
the simplified functions. In Section VIII, we end this paper with
a short discussion of future work.

II. GRASP MODELS AND FRICTION CONSTRAINTS

In this section, we review the kinematic model of a multi-
fingered hand manipulation system and the friction cone con-
straints.

A. Grasp Models

Consider a -fingered hand grasping an object as shown in
Fig. 1. Assume that all fingers make contacts of constant types
with the object. Three contact models, frictionless point contact
(FPC), point contact with friction (PCWF), and soft finger con-
tact with elliptic approximation (SFCE) are considered in our
analysis. Following the notations in [29], [30], we attach an ob-
ject frame to the center of mass of the object, finger frame

to the fingertip of the th finger, and local
frames and to the object and finger , re-
spectively, at the point of contact. A configuration of contact is
described by contact coordinates ,
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where are the local coordinates of con-
tact relative to the object, the coordinates
of contact relative to the fingertip, and the angle of contact.
Collectively, a contact configuration of the system is described
in local coordinates by . In this paper,
we represent a grasp as

The relation between the applied finger forces and the resulting
object wrench is given by the grasp map,

(1)

where , with
and , is the vector of finger forces. The finger force
is constrained to the friction cone

or collectively to

with and being, respectively, the normal and the tangen-
tial components of the finger forces at the th point of contact.
Here, for PCWF and SFCE models and
for FPC. denote vector norms described for each of the
contact models by

(2)

(3)

(4)

with and being the friction force components in the
tangential plane, the moment along the contact normal,
the Coulomb friction coefficient, and the coefficient of tor-
sional friction.

A grasp is said to be force closure if and only
if .

B. Friction Cones as Semi-Definite Constraints

By refining the results of [10], [11], Helmke et al. [31]
showed that the friction-cone constraint (3) is equivalent to
positive semi-definiteness of the following 2 2 symmetric
matrix:

Equation (4) is equivalent to

where ; and the friction constraints of the hand is
equivalent to

(5)

Han et al. [9] further observed that (5) can be reformulated as
LMIs of the form

with a reordering of the finger force indices. The force balance
(1) is also translated into

(6)

where are coefficient matrices.

III. GRASP PLANNING: REVIEW OF CLASSICAL EXAMPLES AND

HEURISTIC APPROACHES

In this section, we discuss previous heuristic approaches used
in two classical examples of grasp planning.

Let us briefly review the conditions for a two-fingered force-
closure grasp and that of a two-fingered antipodal grasp. We
assume that the object is devoid of holes and has a closed surface
which is homeomorphic to . Following the notation of Do
Carmo [32], we parameterize the surface of the object by

, and are, re-
spectively, two tangent vectors and the outward normal vector
at . It is well known [19], [33], [4], [5] that a
two-fingered grasp with contact points and

is force closure if and only if

for squeezing grasps

for expanding grasps. Here, . In
general, two-fingered force-closure grasps are not unique and
force-closure regions can be identified for polygonal objects [5]
and curved two-dimensional (2-D) objects [34]. An important
problem naturally arises as which grasp in this region is the best.
Hong et al. [19] first introduced the concept of antipodal grasps
and proposed the following distance function:

(7)

whose critical points give candidates of antipodal configura-
tions. Antipodal grasps are necessarily force-closure grasps and
are regarded as the best among all two-fingered grasps, as shown
in Fig. 2. Antipodal grasps can be synthesized by planning the
contact points to follow the ascent gradient of or other equiv-
alent cost functions [4], [20].

In general, the above heuristic approach can not be extended
to three-fingered grasps on objects of arbitrary geometries.
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Fig. 2. Two-finger antipodal grasp.

Fig. 3. Three-finger symmetric grasp.

However, for a spherical object, we can let the square of the
area formed by the three contact points to be the objective
function

and the optimal solutions are symmetric grasps with three con-
tact points located uniformly on a big circle, as shown in Fig. 3.
To solve generally the grasp synthesis problem, in the sections
follows we will introduce several grasp quality functions which
assumes the form of – – or – – , for
which gradient algorithms can be developed.

IV. THEORY AND ALGORITHMS FOR – – AND

– – PROBLEMS

In this section, we first review the general theory of
– , – , – – , and – –

problems. Then, we propose algorithms for solving these
problems.

A. Theory of Gradient Computation

Consider the – problem

(8)

where is an open set and a bounded closed subset. We
shall assume that and is contin-
uous on . Let

possesses the following properties.

1) is continuous on .

2) Suppose and for some the set

is bounded. Then, there exists a point such that

If is chosen as a local set, then is a local minimum, oth-
erwise, it is a global optimum.

It is often impossible to find analytic solutions for the
and problems, and thereby those for the

– – and – – problems. Seeking a pos-
sible numerical solution requires us to compute the gradients
of those quality functions in an efficient way. We first consider
computation of the gradient of the following problem:

For fixed , we define

Obviously, is a bounded closed set. The following
theorem [35] states how to compute the directional derivative of

.
Theorem 1: is a differentiable function with its direc-

tional derivative at along , given by

From this theorem, we conclude that

if is the unique optimal solution for . We can
derive similar results for the – problem.

Second, let us consider the following – –
problem:

(9)

where is an open or close set. Given and , we assume
that is an optimal solution for

(10)

Then, .
Theorem 2: If the following three conditions are satisfied:

1) there is a unique solution to (10);
2)

(11)
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3) is the unique optimal solution for

(12)

then,

(13)

Proof: Since is the unique optimal solution to (12), we
have from Theorem 1 that

(14)

The second term on the right-hand side is equal to zero because
of (11).

This approach can also be applied to – – prob-
lems satisfying the similar conditions.

B. Numerical Algorithms

In this section, we will develop an algorithm for the –
problem, and an algorithm for the – – problem.

For problem (8), we assume that

has a unique solution and can be solved using some algorithm
(called Algorithm A). Then we develop the following algorithm
for (8):

Algorithm 1: Algorithm for the – problem
Input: initial value , step size , and
tolerance ;
Output: optimal value ;
Step 1: set ;
Step 2: solve using
Algorithm A, and calculate ;
Step 3: calculate the gradient

Step 4: set

Step 5: solve
using Algorithm A, and calculate

;
Step 6: if , output

; else set and go to Step 3.

The Algorithm A used in Step 5 depends on the properties of
the cost function . It could be linear programming algo-
rithms, semi-definite programming algorithms, or interior point
algorithms. The uniqueness of the solution for
is often satisfied.

To solve the – – problem (9), we assume that all
three conditions in Theorem 2 are satisfied. We design the fol-
lowing algorithm.

Algorithm 2: Algorithm for the – – problem
Input: initial value , step size , and
tolerance ;
Output: optimal value ;
Step 1: set ;
Step 2: solve and using
Algorithm 1 for

and calculate ;
Step 3: calculate the gradient as
(13);
Step 4: set

Step 5: solve and
, and calculate
as Step 2;
Step 6: if , output

; else set and go to Step 3.

Remark 1: In the grasp synthesis problems that will be in-
troduced in the section follows, condition (1) in Theorem 2 is
often satisfied. However, condition (2) may not be true. Here,
we adopt numerical approximation in (14)

In general, we can only find local optimum in condition (3),
which means that our algorithms can only be used to find local
optimum for the – – and – – problems.
Moreover, the efficiency of the algorithms relies on the chosen
step sizes, please refer to [4] for more details.

V. SEVERAL GRASP QUALITY FUNCTIONS AND

SIMULATION EXAMPLES

In this section, we introduce three new grasp quality func-
tions and formulate the corresponding optimal grasp synthesis
problems.

A. Max-Transfer Problem

Grasp map can be regarded as a transfer function taking
finger forces to object wrenches with a domain being the fric-
tion cones. Planning of optimal grasps amounts to finding a set
of contact points which optimize, in some sense, the transfer
function.

Kirkpatrick et al. [23] utilized the quantitative Steinitz’s
theorem to evaluate a grasp, where the radius of the largest
ball, centered in the origin of the wrench space and contained
in the convex hull spanned by unit primitive forces, measures
the quality of a grasp. Ferrari and Canny [24] proposed a global
grasp quality measure by minimizing the maximal proportion
between the norm of external forces and that of its respective
finger forces. The same idea was further developed by Mirtich
and Canny [25], where force and moment transfer functions
were treated independently and optimized sequentially. By
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doing so, the ambiguity arising in specifying a physically
meaningful norm for the external wrench space can be avoided.
Since all the problems discussed in these works consider the
optimal grasp planning from the ability of the system in resisting
external wrenches, we call them the max-transfer problem.

It is well known that , any finger force
can be uniquely decomposed into two components

where can be interpreted as the ma-
nipulation force [36], and the
internal grasping force. The manipulation force is determined
as long as the external wrench is given. The undetermined
component is the internal grasping force. Considering that
finger forces with large magnitude are not allowed during
manipulation, the grasp quality at can be measured as
the minimal proportion (worst case) between the norm of the
external wrench and that of the finger forces while fixing
the norm of the manipulation force

Problem 1: Max-Transfer Problem: Find such that

(15)

is maximal.
Since it is impossible to endow a bi-invariant metric on the

space of external wrenches, we usually assign a left invariant
metric

Note that the problem in the current form is slightly different
from that of Ferrari and Canny, and Mirtich and Canny in that
the constraints is position dependent.

Example 1. Planning of Optimal Grasps Using for a Three-
Fingered Hand Manipulating an Ellipsoid: Consider the case
of a three-fingered hand manipulating an ellipsoid through fric-
tional point contacts. We parameterize the ellipsoid by the lon-
gitude and latitude coordinates

with and . Initially, the three fingers are
arbitrarily placed at the three points

, and . We use to plan
trajectories of the three fingers so that is minimized. A
is chosen to be I. To apply Algorithm 1 and 2 of Section IV, we
need to calculate and .
Note that

we have

Fig. 4. View 3: Trajectory of cost function.

and is its projection to the constraint sub-
space . iscalculatedas

The final simulation results are shown in Figs. 4– 7. In this ex-
ample, the computation time for an optimal solution is about 4 h
in P4 and Win2000 (typically 4–5 h, depends on the initial con-
ditions and used step sizes). Without specifically pointing out,
all our simulations are performed in the same system.

Remark 2: One problem of using the left-invariant metric is
that different choices of will in general lead to different op-
timal grasps. Since force and moment are two different quan-
tities which can be measured both in a physically meaningful
way, Mirtich and Canny considered to optimize both the force
and moment transfer function. Some successful applications of
this method to optimal grasp planning can be found in [24] and
[25]. For two-fingered planar grasps, the antipodal grasp with
the largest distance between the two contact points is found to
be the optimal, and for three-fingered planar grasps the equilat-
eral grasp with the maximal outer triangle (symmetric grasps if
the object is a circle) is the best.

B. Max-Normal-Grasping-Force Problem

For frictional point contacts, the normal component of the
finger force is . We define

as the normal grasping force, where .
Note that for a balance grasp measures how stable
the grasp is. Physically, it represents how much passive forces
it can produce to the object to resist external disturbances. Mo-
tivated by this, we introduce the following problem.

Problem 2: Max-Normal-Grasping-Force Problem: Find
grasp such that

(16)

is minimal.
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Fig. 5. View 1: Trajectories of the three fingers.

Fig. 6. View 2: Trajectories of the three fingers.

This is a – – problem. For given and , the
problem in the most internal layer of (16)

can be transformed into a semi-definite problem [37], [38].
Example 2: Optimal Grasp Planning Using : Example 1

Continued: In this example, we adopt to optimize the grasp
for the ellipsoid of Example 1 with the same initial grasp as be-
fore. First, we compute and as follows. Since

we have

and is its projection to . Similarly

Fig. 7. View 3: Trajectories of the three fingers.

Fig. 8. Trajectory of cost function.

Using Algorithm 1 and 2 of Section IV, we obtain simulation
results as shown in Fig. 8–11. In this example, it takes about 2 h
to compute an optimal solution.

C. Min-Analytic-Center Problem

From the works on grasping force optimization [10], [11],
[9], [28], we see that given and , we can assign a unique
analytic center to as

The smaller is, the farther the optimal is from the boundary
of the friction cone (i.e., more stable). Based on this, we formu-
late the following problem.
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Fig. 9. View 1: Trajectories of the three fingers.

Fig. 10. View 2: Trajectories of the three fingers.

Problem 3: Min-Analytic-Center Problem: Find grasp ,
such that

is minimal.
Clearly, the min-analytic-center problem is a – –

problem. Given and can be solved as follows.
Eliminating the force balance equation by substituting

into yields

(17)
where

, and is the th element of . If the
solution set for is empty, i.e., Problem (17) is

Fig. 11. View 3: Trajectories of the three fingers.

infeasible, the system is not force closure at . For these
grasp configurations, we assign a large number to , e.g.,
2000. Otherwise, an optimal solution can be obtained. Denote
by the set of positive definite matrices. Since

as goes to the boundary of , it is
minimal if and only if its gradient is equal to zero, i.e.,

Let be the solution of the above equalities, which can be
shown to be unique and smoothly depend on both and
[31]. Although it is hard to derive the analytical expression of

, Problem (17) is a standard analytic-center problem
and can be solved numerically by interior point algorithms [38]
when and are given in advance.

Example 3: Planning of Optimal Grasps Using : Example
1 Continued: Consider again the grasp case in Example 1 with
the initial configuration:

, and .
Algorithm 1 and 2 of Section IV require us to compute

and . Note that

We have

and is its projection to , where

...

and denotes the vector operator. is given
by
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Fig. 12. Trajectory of the cost function: from nonforce closure to force closure.

Fig. 13. Trajectory of the cost function: force-closure part.

The simulation results are shown in Figs. 12–16. From Fig. 12
and 13, we conclude that using , and Algorithm 1 and 2,
the grasp will evolve from nonforce-closure states to force-clo-
sure states as goes from 2000 (nonforce-closure states) to a
much smaller value (force-closure states). Second, the noncon-
vergence of in Fig. 13 is because the grasps goes into states
where we can apply arbitrary large normal finger forces to the
object, and will go to (correspondingly,
to ). In this example, it typically takes 2 hours for 800 it-
erations. To ensure the convergence of the algorithm, we can
add a linear term to the quality function so as to restrict
the normal grasping force. Then, the original quality function is
changed into

Compared with the previous grasp synthesis problems, e.g.,
those in [24] and [25], both the max-normal-grasping-force

Fig. 14. View 1: Trajectories of finger 2 and 3.

Fig. 15. View 2: Trajectories of the three fingers.

problem and the min-analytic-center problem are formulated
based on the optimal grasping forces. They are closely related
to the real-time grasping force optimization problem [9], which
can be formulated as a semi-definite programming problem, an
analytic center problem, or a max-det (determinant) problem.
Thus, the physical meaning of the above two problems can
be explained as finding optimal grasp configurations such that
the worst case optimal graphing forces is optimal. These two
problems are general enough to be applied to objects with
smooth surfaces grasped by hands with any number of fingers
as long as the geometric model of the surface is known. Pow-
erful algorithms exist for computing an optimal grasping force
which will be used in Algorithm 1 and 2, and thereby improve
their computation efficiency.

VI. TWO SIMPLIFIED PROBLEMS

The max-transfer and Min-analytic-center problems can be
simplified via estimation. The derived simple analytic expres-
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Fig. 16. View 3: Trajectories of finger 1 and 2.

Fig. 17. Relative configuration between Aff and the product of SOC.

sions of their respective grasp quality functions are suitable for
real-time grasp planning.

A. Simplifying the Max-Transfer Problem

is a subset with rotational symmetry (assume that
for SFCE contacts). Its center of symmetry is a line passing

through the vertex (the origin of , see Fig. 17) with the
direction given by

for

for

for

The size of is determined by the vector of cone angles
with , being the angle

of cone . for FPC contacts and for PCWF
and SFCE models.

Without the friction-cone constraints and adopting the idea
used in the max-transfer problem, the maximal distance from
the origin to the affine set among all

unit external wrenches measures the capability of finger forces
in resisting the external wrenches

Here, we have implicitly used the 2-norm for finger forces and
the metric for external wrenches. By the projec-
tion theorem, is calculated as

i.e., is the magnitude of the manipulating force. To take into
account the friction cone constraints, we need to modify the
distance into its projection to the center of the friction cone

and to

In fact, at a given grasp configuration is maximal if and
only if , i.e.,

from which, we have

We introduce the following simplified max-transfer problem.
Problem 4: Simplified Max-Transfer Problem: Find grasp

configurations such that

is minimal.
Since is constant, the above problem is equivalent to

B. Simplifying the Min-Analytic-Center Problem

The analytic center for at a given
grasp configuration and under a given external force (sat-
isfying ) can be physically interpreted as the one
which is farthest from the boundary of the friction cone. can
be estimated as the intersection point between the center of sym-
metry and the affine set Aff, see Appendix A for a complete
derivation. Let , then

(18)

(19)

(20)
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From the Helmke et al. expression of is cal-
culated as

Then

Since the log function is monotone increasing, we introduce the
following simplified min-analytic-center problem:

Problem 5: Simplified Min-Analytic-Center Problem: Find
grasp configurations such that

is minimal.

C. Practical Examples

The objective functions of the simplified max-transfer and
the simplified min-analytic-center problems are simple analytic
functions. They can be used to efficiently determine the op-
timal grasps of several classical examples. It turns out that the
obtained optimal grasps coincide with those by the traditional
heuristic approaches. Moreover, the developed quality measures
are general and suitable for real-time grasp optimization.

Example 4: Antipodal Configurations: Optimal two-fingered
Grasps: Consider a two-fingered hand grasping a spherical ob-
ject with radius , as shown in Fig. 2. The hand makes contacts
with the object at and .
Assume that both contacts are SFCE, the grasp map is calcu-
lated as

where , and
. The finger forces are restricted to the friction

cones

with the center of symmetry .
Applying the simplified min-analytic-center problem by sub-
stituting and into , we obtain

where is assumed to be the identity matrix (the same results
will be obtained if is chosen to be other positive definite ma-
trices). It is minimal if and only if

That is, the two contacts are antipodal. It should be noted that
antipodal grasps are also the optimal solutions for the simplified
max-transfer problem.

In general, if the grasped object has a complex geometry

which is equal to zero (minimal) if and only if

Again, the optimal solutions are antipodal grasps. Antipodal
grasps are not unique for a given object. To determine the op-
timal one from the set of antipodal grasps, we need to go back to
the max-transfer problem and find the grasp with the maximal
distance to be the optimal one [25].

Simply applying the gradient algorithm, can also be used
to plan trajectories of the two contact points from an arbitrary
initial configuration to the optimal one. In the current case, we
have

where . Its Euclidean gradient is
calculated as

Fig. 18(a) and (b) gives trajectories of and the distance be-
tween the two fingers of the hand, respectively. It clearly shows
that the grasp tends to be antipodal (see Fig. 19). The parameters
used are mm, and .
The computation time for achieving the final antipodal configu-
ration is 0.047 second, which shows that the computation time
has been greatly reduced compared with those in Section V.

Example 5. Symmetric Configurations: Optimal 3-Fingered
Grasps of a Spherical Object: Consider a three-fingered
hand grasping a spherical object of radius . PCWF model
is assumed for the three contacts with local coordinates

, and .
The grasp map is given by

where
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Fig. 18. (a) Trajectory of g . (b) Distance between two fingers.

The finger forces are restricted to

with the center

Applying the simplified min-analytic-center problem, the cost
function is calculated as

Fig. 19. Trajectories of the two contact points.

It is minimal if and only if

This clearly shows that the three fingers should be at three sym-
metric points of a big circle of the object. The same conclu-
sion can also be reached by applying the simplified max-transfer
problem.

In general, when the object is not spherical, the cost function
is given by the equation at the bottom of the page, and it is

zero (or minimal) if and only if

The first equality means that the three normal vectors are 120
from each other. The two equalities together mean that the three
normal vectors intersect at the same point, and are contained in
one plane. This is exactly what Mirtich and Canny [25] termed
a symmetric grasp. Again, all such grasps form a nonempty set
for a given object. To find the optimal one from this set, we go
back to the max-transfer problem and find the grasp with the
largest outer triangle.

Second, we use and its respective gradient algorithm to
optimize the grasp from an arbitrary initial configuration. Note
that
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Fig. 20. (a) Trajectory of g (b) The sum of the length of three sides of the
grasp triangle.

Its Euclidean gradient is given by

The trajectories of and the sum of the length of the three sides
of the triangle formed by the three contact points are shown in
Fig. 20(a) and (b), respectively. Fig. 21 gives the trajectories
of the three contact points of the hand. Here, we have used the
following parameters mm,

, and . As is expected, the grasp tends
to be symmetric as the sum of the length of the three sides of the
triangle formed by the three contact points approaches to .
It takes to arrive at the symmetric grasp configuration,
showing again the efficiency of the simplified problem.

Fig. 21. Trajectory of the grasp configuration.

VII. APPLICATION TO COORDINATED MANIPULATION WITH

CONTACT POINTS SERVOING

In this section, we apply real-time grasp planning to coordi-
nated manipulation with contact points servoing. As shown in
Fig. 1, given a desired trajectory of the grasped object, ,
we wish to find the corresponding finger velocity that: 1)
executes the desired object trajectory, and 2) maintains or op-
timizes the grasp quality. Readers are referred to [20], [9] for
generation of optimal finger forces that balance a given object
wrench. The transformation taking to can be expressed as

from which we have

and thus

(21)

In (21), the object velocity is the input and the fingertip
velocity is the output to be determined. We wish to specify
the contact velocity so that: (i) grasp quality (and
thus force-closure condition) is maintained or optimized, and
(ii) the fingers impart on the object a desired object wrench. In
order to prevent sliding, and maintain finger forces inside the
friction cone, we impose the following constraints on the contact
velocity:

where are relative rolling velocities to be determined.
By inverting Montana’s kinematic equations of contact
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Fig. 22. The HKUST three-fingered hand manipulating a spherical object.

where is the relative curvature form, the metric
form of the object [29], and

We specify using the negative gradient of the grasp quality
function

and

Let be the optimal finger forces needed to balance an object
wrench, (see [10], [9] for computation of ). The net finger
velocity required to accomplish all the objectives is given by

(22)

where is a compliance matrix, and the actual
finger force. Note that in (22), the first term allows the finger to
accommodate the object motion , the second term servos the
contact points to an optimal grasp configuration and the last term
enables the fingers to impart a net object wrench with optimal
finger forces. Once the hand achieves an optimal grasp configu-
ration, the second correction term disappears with vanishing of
the gradient vector field.

Remark 3: During manipulation, the real-time optimization
of the grasp quality function is necessary to keep the stability of
the system, and thereby prevent the dropping of the object [21].
Here, we adopt the simplified grasp quality function , which
makes the real-time execution of manipulation tasks possible as
suggested in the simulation example (0.047 s).

Several experiments are conducted with the HKUST three-
fingered hand (see Fig. 22). Each finger of the hand consists of
a Motorman K-3S robot equipped with force/torque sensor and
a 16 16 tactile array fingertip. A VME based multiprocessor
control system with three 8-axis DSP motion control boards is

Fig. 23. (a) Finger 1: Desired trajectory of v , (b) Finger 1: Trajectory
tracking of v .

provided for joint-level control and two Motorola 68 040 pro-
cessors are used for object-level motion and grasping force con-
trol, along with a VxWorks real-time operating system and a Sun
workstation. In the experiments, the object is required to move
100 mm along the twist in 10 seconds.

We first manipulate a ball of radius mm
using only two fingers, the initial coordinates of the two
contacts are and

. The desired curves
of the two contacts, as planned in Example 5, are given in
Figs. 23(a) and 24(a), which show that the two fingers tend to
be antipodal at the big circle . Figs. 23(b) and 24(b)
show the trajectory tracking results of .
The desired curves are obtained from by inverting
Montana’s contact kinematics equations [30], [29].

In the second experiment, we manipulate a ball of radius
mm using three fingers. Other parameters are
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Fig. 24. (a) Finger 2: Desired trajectory of v , (b) Finger 2: Trajectory
tracking of v .

, and . The
desired curves of the three contacts, as planned in Example
6, are shown in Figs. 25(a) and 26(a), from which we can
see that the three fingers tend to the three symmetric points
of the great circle . The trajectory tracking results of

are shown in Figs. 25(b), 26(b), and
27(b), respectively.

VIII. CONCLUSION

This paper presented a general formulation of the optimal
grasp synthesis problem as optimization problem of three grasp
quality functions. We discussed physical significances and gave
algorithms for computing the gradient solutions of these quality
functions. We also provided simplified versions of two prob-
lems when real-time grasp planning solutions are needed. we
showed in particular that optimal solutions of the simplified
problems coincide with the familiar optimal grasps obtained
using heuristic approaches. We applied real-time grasping op-
timization to coordinated manipulation with contact points ser-

Fig. 25. (a) Finger 1: Desired trajectory of v , (b) Finger 1: Trajectory
tracking of v .

voing. Simulation and experimental studies were conducted to
illustrate validity of the proposed methods.

In future works, we wish to extend the methods and algo-
rithms to objects with edges and vertices and obtain accelerated
results when objects have special geometries, e.g., polyhedral
objects.

APPENDIX A
APPROXIMATE SOLUTION TO THE ANALYTIC-CENTER PROBLEM

The analytic-center problem

is equivalent to

(23)

Based on the structure of the matrix (5), we have
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Fig. 26. (a) Finger 2: Desired trajectory of v , (b) Finger 2: Trajectory
tracking of v .

Here, without loss of generality we assume that the friction
model is PCWF. Note also that all finger forces with

and , will automatically satisfy
. Thus a sufficient condition for to be a solution of

(23) is , and with

If and can not be simultaneously satisfied, we
seek a as in (18), (19), and (20), such that is
satisfied, which, of course, only provides an approximation of
the solution to (23). We could also adopt the following optimal
approximation:

However, the resultant optimal solution is still a function of .
This will not simplify too much of the cost function.

Fig. 27. (a) Finger 3: Desired trajectory of v , (b) Finger 3: Trajectory
tracking of v .
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