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Abstract—We study the motion planning problem for planar dimension of C-space [40]. He also made the important
star-shapedmanipulators. These manipulators are formed by observation that this bound is worst-case optimal, since the
joining k *legs” to a common point (like the thorax of an insect) qrst-case number of components in C-space is exponential in

and then fixing the “feet” to the ground. The result is a planar . - . , ) . b .
parallel manipulator with % — 1 independent closed loops. A its dimension. Canny'’s algorithm is very difficult to implement

topological analysis is used to understand the global structure - to date no full implementation exists.
the configuration space so that planning problem can be solved Inthe 1990's, the intractability of exact motion planning for

exactly. The worst-case complexity of our algorithm isO(k*N®),  general problems stimulated a paradigm shift to randomized
;/I\I/S;r;t]izglsoa?emgtﬁgén l;rrg niL\j/r:r?er of links in a leg. Examples  methods. The method of Barraquad and Latome combined
given. potential field methods with random walk [13]. In essence, a
potential field method defines an artificial potential field on C-
|. INTRODUCTION space such that the goal configuration is the global minimum
The canonical robot motion planning problem is knownf the potential function and no saddle points or other local
as the “piano movers™ problem. In this problem, one iminima exist. When the function has this property, motion
given initial and goal configurations of a “piano” (a rigidplanning can be done by any gradient following algorithm.
body that is free to move in an environment with fixed rigidhn important class of such functions are navigation functions
obstacles) and geometric models of the piano and obstac[@$. [6], [8]. Ideally, the potential function will be a function of
The goal is to find a continuous motion of the piano connectirtge goal configuration, and the global minimum property will
the initial and goal configurations. Lozano-Perez studied thisld for all possible goal configurations. Since such potential
problem in configuration space, or C-space, a space in whitimctions can be difficult to design, Barraquad and Latome
a configuration of the piano maps to a point, a motion magsggested the use of random walks to escape local minima
to a continuous curve, and the obstacles map to the [@3]. This modification yielded a method that is practically
obstacle,i.e., the set corresponding to overlap between theffective and probabilistically complete.
piano and an obstacle [3]. The dimension of C-space is equaWhen possibly many motion planning queries must be
to the number of degrees of freedom of the system. Thandled for a single static environment, a different type of
free space, or C-free, is what remains after removing thandomized method has been found to be more efficient than
C-obstacle from C-space. In C-space, the motion planningrunning the Barraguand-Latombe algorithm for each query.
problem becomes a path planning problem. That is, one miste probabilistic roadmap method (PRM) of Kavraki al
construct a continuous path connecting the initial and gddi2], is an easy-to-implement randomized version of Canny’s
configurations that lies entirely within C-free. Theoreticg0]. In this method, a graph is built that approximates the
results for the piano movers’ problem were first obtained tylobal structure of C-free. One chooses points at random in
Schwartz, Sharir, and Hopcroft [27], [19]. They found that th€-space and tests them for collision. Those that are not in
problem is PSPACE hard, and proposed an algorithm basmllision are retained as nodes in the roadmap graph. Pairs
on Collins’ decomposition to find a path. Since the worst-casé nodes are then tested for connectivity by using a fast
running time of Collins’ decomposition algorithm is doubly‘local” planner. If a pair is found to be connected, then an arc
exponential in the dimension of C-space, it is impractical. (containing the connecting path) is placed in the graph between
The more complex generalized movers’ problem, is thle corresponding nodes. The roadmap becomes useful for
problem in which there are multiple rigid bodies movingnotion planning after it attains the following two attributes: (1)
simultaneously in a workspace. The bodies are the links of oaeone-to-one correspondence between the graph’s connected
or more robots, and thus may be required to obey constraintsmponents and those of C-free; (2) for each point in C-free,
corresponding to their kinematic structures and joint limitst is easy to construct a path to the roadmap. Once the roadmap
Given the importance of motion planning problem in roboticss completed, motion planning is essentially reduced to graph
researchers worked to find more efficient algorithms desp#earching.
the depressing complexity results found earlier. The mostBecause PRMs have been successful in solving problems in
efficient exact method known is Canny’s algorithm, whiclC-spaces with dimension approaching 100, many researchers
has time complexity that is only singly exponential in théave worked to make the method more efficieag( [29],



[30], [31]) and to modify it to solve more challenging typesThe main result that guided the algorithm’s design is Theo-
of problems, such as those with closed kinematic loopgm 2 in [45]. In generic cases, the C-space is the union of
nonholonomic constraints, dynamics, and intermittent contaofnifolds that are products of spheres and intervals. The joint
(e.g., [48], [28], [1], [32], [36], [21]). There have also beencoordinates corresponding to the spheres are those that can
efforts to develop randomized methods for use in plannirgpntribute to the subsed mentioned above and the structure
methods based on a cell decomposition of C-space [22]. Ré-the C-space suggests a local parametrization for each step.
cent research revisited the theoretical basis that could explairHere, the previous methods for C-space connectivity analy-
the success of PRMs [33], [34], [35]. These works discussei$ are extended to planar star-shaped manipulators with revo-
the failure probability of finding a path between two giveiute joints. These manipulators have a common junction point
configurations in terms of several parameters like the pahdk (k > 0) legs connecting the junction to the fixed base.
clearance, the number of sample points, and so on. In [36hllowing a topological analysis of the global structure of C-
probability measure theory was adopted to develop a maeace, the motion planning problem is solved completely in
strict and complete theoretical basis for PRMs. If one revievmlynomial time. In Section Ill, kinematics and singularities
the set of problems for which PRMs have worked well, iof the manipulator are analyzed. In Section IV, necessary
appears that it is important that C-space be “expansive” [&hd sufficient conditions for C-space connectivity and path
and possess a representation from which it is easy to obtakistence are derived, based on which a complete polynomial-
well-distributed points in C-space. time algorithm is developed in Section V. Section VI addresses
In this paper, we are particularly interested in plagtar- path optimization and robustness issues. Section VII shows
shaped manipulatar¥hese manipulators are formed by joinsimulation results that tests the effectiveness of our algorithm.
ing k£ planar “legs” to a common point (like the thorax ofFinally VIII ends this paper with a brief conclusion.
an insect) and then fixing the “feet” to the ground. The

result is a planar parallel manipulator with- 1 independent [l. NOTATION

closed loops. They are important because they arise in parallel Manipulator Notation
manipulators, walking robots, and dexterous manipulation, and M - Manipulator

motion plans are difficult to obtain using PRMs. In such A - Root junction or thorax of\/
systems, C-space is often most naturally viewed as a lower- o; - Grounding point of foot of M
dimensional space embedded in an ambient space (typically M; - Legyj of M with foot fixed ato;
the joint space). The embedding results from equality con- and other end fregj, =1, ..., k
straints corresponding to kinematic loop closure. In such n; - Number of links inA/;

settings, it is difficult to obtain an explicit description of l;; - Length of linki of M;; i=1,...,n;
C-space with minimal number of parameters and a suitable 0;: - Angle of link ¢ relative to linki — 1
metric to guide sample generation. These problems make it Mj(p) - Leg j of M with foot fixed ato;
difficult to construct a roadmap with the requisite properties, and other end fixed at

and hence difficult to solve motion planning problems for M(p) - Manipulator with A fixed atp
systems with kinematic loops using PRMs. The RLG (random L; - Sum of lengths of links of\;

loop generator) method [4], [5] improves the sampling tech- Ljo - Sum of lengths of links of\/;
niques through estimating the regions of sampling parameters. L;(p) - A setof long links of M (p)
However, its efficiency relies on the accuracy of the estimation, |£:(p)] - Number of long links ofMj (»)

which often varies case by case. Moreover, it ignores the global
structure of C-space, and may fail to sample globally important

Workspace Notation
W4 - Workspace ofA

regions. . )

gI'he difficulties associated with applying randomized motion Ui - Cell of dimensiond of W
planning methods to manipulators with closed chains and p - Point in the plane of\f
the availability of new results in topology [12], [41], [44], v=p(t) - Curvein the plane ofi/
[10] have recently led to renewed interest in exact planning f - Kinematic map ofA

f; - Kinematic map of endpoint ol/;
3 - Critical set of f in W4
- Critical set of f;

algorithms. Trinkle and Milgram derived some topological
properties of the C-spaces (the number of components and the

structures of the components) of single-loop closed chains with J
spherical joints in a workspacsithout obstacles [45], [44]. Configuration Space (C-space) Notation
These properties drove the design of a complete, polynomial- € -C-space OfM
time motion planning algorithm that works roughly as follows. C(p) - C-space ofM (p)
1) Choose a subsetl of the links that can be positioned _ C; - C-space ofi;
arbitrarily, and yet the remaining links can close the Cij(p) - C-space ofM;(p)
loop; ¢ - Point in C-space
2) Move the links inA to their goal orientations along an
arbitrary path while maintaining loop closure; IIl. PRELIMINARIES
3) Permanently fix the orientations of the links Jy A star-shaped manipulator is composedko$erial chains

4) Repeat until all link orientations are fixed. with all revolute joints (see Fig. 1). Led/; is composed of



m
@

o
Fig. 2. Left: The workspacdV; of a three-link open chaid/; based at
Fig. 1. Star-shaped manipulator with= 4. o;. The critical set¥; of the kinematic mapf; is four concentric circles.
The small circles, figure eights, and points at 12 o'clock show the topology
of the C-space; (p) of the leg when its endpoint is fixed at a point in one
) o of the seven regions delineated by the critical circles (one of the four circles
n; links of lengthsl; ;,i = 1,...,n; and joint angled); ;,i = or one of the three open annular regions between thRight: The inverse
1,...,n;. At one end (the foot))M; is connected to ground by image of the curve - a “pair of pants.”
a revolute joint fixed at the poind;. At the other end, it is

connected by another revolute joint to a junction point denoted _ . _
by A. Note that wherk is one, a star-shaped manipulator iWhere by analogyf is a total kinematic map of the star-shaped

an open serial chain. Whenis two, it is a single-loop closed Manipulator. Loosely speaking, the union of the C-spalips
at each pointp in W, gives the C-space of a star-shaped

chain. ‘

Assuming that the foot ofM; is fixed at o;, let manipulaor: .
£(©;) = p denote the kinematic map df/;, where©®; = c= U cw). ®)
(0,1,---,0;,,) is the tuple of joint angles, ang is the PEWA

Iocayon of the endpoint of the. leg (the. thorax er.1d).. When Several properties of the C-spaa&sand(; (p) are highly
M; is detached from the junctiod, the image of its joint : e :
< . D elevant and so are reviewed here before analyzing the C-
space is the reachable set of positions of the free end of the . ;
..~ . .~ space of star-shaped manipulators. It is well known that the
leg, called the workspacl/;. In the absence of joint limits, C-space of\; is a product of circlesif.,C; — (S1)%) L. The
the workspacéV’; is an annulus if and only if there exists one P J P " :

link with length strictly greater than the sum of all the Otheworkspacer contains a critical sek; which is composed

link lengths. Otherwise it is a disk. Clearly, the workspaige of all pointsp in W; for which the Jacobian of the kinematic

S . mapDf;(©,) drops rank for som®; < f;*(p). These points
of A when all the legs are connected dois given by: form concentric circles of radjilj,lilmi-]- -+l n,|, as shown

k in Fig 2. WhenA coincides with a point ir2J;, the links can
Wy = ﬂ W;. (1) be arranged such that they are all colinear, in which case the
j=1 number of instantaneous degrees of freedom of the endpoint

jof the leg is reduced from two to one.

In our study ofC, it will be convenient to refer to severa ) ] o
other C-spaces. The C-space of lefy when detached from Now consider the case where the endpoint of jag fixed
to the pointp. In other words, we are interested in the C-space

the rest of the manipulator will be denoted 8y. When the & : et )
endpoint is fixed at the poin, leg j will be denoted by Ci(P) of M;(p). In the 12 o'clock position in Fig. 2, points,
M;(p), where the tilde is used to emphasize the fact thg¥cles, and figure eights are drawn to represent the global
the endpoint has been fixed. Note thaj (p) is a single-loop SITUCtUres ofC;(p) in the seven regions of’;. Specifically,
planar closed chain, about which much is known (see [45)y€n4 is fixed to a poinp on the outer-most critical circle,
including global structural properties of its C-space, denotéd(P) iS @ single point. Fop fixed to any point in the largest
by C;(p) = f; (). open annular region, C-space is a single circle. Continuing

When the junctiorA of a star-shaped manipulator is fixed a'tnward, the pOSSi,b,'e C—.space typgs are a figurg eight (qn the
point p, its C-space will be denoted t(p). Since collisions second largest critical circle), two disconnected circles, a figure
are ignored, the motions of the legs are independent, aHght @gain, a single circle, and a single point (on the inner-
therefore the C-space of the manipulator (with fixed junctiofyost critical circle).

is the product of the C-spaces of the legs with all endpoints” detailed analysis of’;(p) with an arbitrary number of
fixed atp: links in M;(p) can be found in [45]. The results that will be

R ~ particularly useful in the analysis of star-shaped manipulators

Clp) = Ci(p) x---x Cr(p) follow. First, the connectivity of;(p) is uniquely determined

= f7Np) X% frN) ) by the number of “long links.” Consider the augmented link
—

= f 1 p) 1Recall the assumption of no joint limits.



set composed of the links dif; ando;p, which will be called
the fixed base link with length denoted by,. Let L; be the
sum of all the link lengths including the fixed base linke(
L;j =31 1;,). Further, letC;(p) be a subset of0, 1, ..., n;}
such thatl; , + ;5 > L;/2; o,8 € L;(p), a # (. Over all
such sets, leL; (p) be a set of maximal cardinality. Then the
number of long links ofM;(p) is defined agL;(p)|, where

| - | denotes set cardinality.

Lemma 1: Kapovich and Milson [41], Trinkle and Mil-
gram [45]

The C-spac€;(p) = fj_l(p) has two components if and only

H * _ e H * _
if |£j (p)| =3, and is connected if and Only itj (p)| =2or Fig. 3. The workspacé&V 4 of A for a star-shaped manipulator with= 2

0. No other cardinality is possible. is the intersection of the workspaces 4ffor each leg considered separately.
. ) ) L The critical set> is composed of the black circular arcs where they bound
Let us return to the discussion of Fig. 2. Viewinl; as or intersect the gray area.

a base manifold and the C-space corresponding to each end
point location as a fibre, it is apparent that the critical set
¥; partitionsW; into regions over which the C-spacés(p)
form a trivial fibration. The implications of this observation
are useful in determining the C-space of more complicated
mechanisms. Consider a modification’tf (p) that allows the
endpoint to move along a one-dimensional curve segment
within ;. Then as long as is entirely contained in one of the
regions defined by the critical circle;(v) = C;(p)x I, where

I is the interval. Ify crosses a critical circle transversally, then
Ci(9) = (€(m) x H)UCj(ps) U(Cs(p2) x I), wherep, is a
point in one of the two open annular regions containing-

is a point in the other, angs is a point on the critical circle
crossed byy, and|J denotes the standard “gluing” operation.
In Fig. 2, an exampley and the corresponding C-spaCgy)

are shown.

Fig. 4. Workspace (shaded gray) of a star-shaped manipulator with three legs.
The critical set partition$V 4 into 12 two-dimensional, 32 one-dimensional,
and 21 zero-dimensional chambers.

IV. ANALYSIS OF STAR-SHAPED MANIPULATORS
For star-shaped manipulators with one or two legs, the
global topological properties of the C-spa€eare fully un- t0 the vertices of the lune are single points, which correspond
derstood (for one, see [43]; for two, see [45], [44]). Thé& Simultaneous full extension of the two legs.
goals of this section are to study the global properties of Fig. 4 shows a possible workspace for a star-shaped ma-
C when M has more than two legs and to derive necessdﬁipmator with three Iegs. The critical set defines 65 distinct

and sufficient conditions for solution existence to the motio#ets “U; of varying dimensiond, wherei is an arbitrarily
planning problem. assigned index that simply counts components. We will refer

1) Local Analysis:As a direct generalization of the criticalt0 these sets ashambersThere are 12 two-dimensional, 32

set of a single leg, we define the critical set of a star-shap@@e-dimensional, and 21 zero-dimensional chambers, each of
manipulator as a subs#& of W, such that for every ¢ ¥, Which is trivially fiored. Removing théU; from ¥ partitions

there exists a configuration such that at least one of theit into open one-cljimensional chambelfs;, i = 1,--- tm.
Jacobiang D fy(c), -, Df(c)} drops rank. By definition we Removing“U; and'U; from W4 yields open two-dimensional
have: sets?U;, i = 1,--- ,2m, for which the following relationships
. hold:
»=(U zz) (YWa. 4) ‘m m
(i—l E = U OUZ U U lUi (5)

An advantage of this definition is thatcan be used to stratify = =
W4 such that each stratum is trivially fibred. Figure 3 shows Zm,
a star-shaped manipulator with two legs. The critical Set Wy—-%¥ = U ;. (6)
is the boundary of the lune formed by the intersection of the i=1

outer critical circles of their individual workspaces. For every
point interior to the lune, the fibre is two circles (the direct Proposition. 1: For all d = 0,1,2 and 4, f~(U;) =
product of two points with one circle). The fibres associate®; x f~!(p), wherep is any point in?; and the operatox



denotes the direct product. Gluing tife’* (U;) for all 7 and Proposition. 3: For all p € X, f]fl(p) is a singular set
d gives the total C-spacé. containing isolated singularities. If a singularity separates its

Proof: Whend = 0, % contains a single point, the res Itneighborhood/ in f;l(p), then it is these singularities which
: = ; [ [ i u a

ot O lue the two separated componentgjit (¢) whereq € W, —
follows. Whend = 1, 'U; belongs to one critical circle of g P P 9] (9) 7€ Wa

one leg, say\;. Any two pointsp;, p» € 'U; are related by a *; s & point sufficiently close tp.
Euclidean rotatiom; —o; = R(p1 —o;), indicating thatfj(pl) Proof: First it is obvious thatf;l(p) contains isolated
and C;(p2) are homotopic. Thug;(p) for all p € 'U; have singularities for there are finite ways to colinearize all the
equivalent topological structure. For the other léds I # j, links of a close chain. Second, let
according to [44] (Lemma.1 and Corollary6.5) él(p) for all
p € 'U; have equivalent topological structures'@s is free of
critical points of M;(p). Thus f~'(p) = C1(p) x --- x Cr(p) be a curve that is transverse . According to Corollary
for all p € 'U; have equivalent topological structures. Thé.6 of [44], the distance functios(v(t)) = fot |¥|dt defines a
case wheni = 2 can be proved by applying Lemnéal and Morse function onfj‘l(y)
Corollary 6.5 of [44] to all legs. [ | ' o

sof;: 1) — R.

Note that0 is a singular value ofs o f; and the isolated

v (7576) — Wa, ’Y(O) =P

Proposition 1 and the fact th4t; is a simply connected set,

reveal that each component 6f (%) is a direct product of . - 1 : .
one component of;(p), j = 1,--- .k, with a d-dimensional singularities of f;"(p) are also singularities of o f;. The

: : X o It of Morse theory applying te o f; yields that(s o
disk. Using| L% (p)|, j = 1,--- ,k and Lemma 1, one can show' 34 2 7 2
that the number of components ¢t (4;) is 2%, where 170 = f; 1(73) is given by attaching a handle t@o
ko < k is the number of legs for whichZ* (p)| = 3. fi)teo) = f; " (q) for a sufficiently small, andg a point

) o sufficiently close top. The Proposition follows. |
2) Local Path Existence:Before considering the global

path existence problem, consider motion planning between twd\€xt, we establish necessary and sufficient conditions for
valid configurationsc;,i; and cgoa1 for which the junctionA the connectivity ofC. Let J be the index set such that for all
lies in the same chamber. Since the fibre over every poih€ 7/» |£j| = 3 for at least one chambet/;. We prove the

in 4, is equivalent, path existence amounts to checking tffglowing theorem.

component memberships of the configuratiens and ceoar. . 2 ‘m g ) _

For a single leg\/;(p), if the number of long |ink5f£;g(p)| Theorem L: Supposaita = Uy, (U=, 05 ). Thenc
is not three, then any two configurations &f;(p) are in the . )
same component. WhelL(p)| = 3, choose any two long 1) WA IS connecfted, I
links and test the sign of the angle between them (with full 2) ZjNWa#0foralljeJ.
extension taken as zero). There are two possible signs, on®roof: (i) “Necessity:” SinceC is a fibration of the base
corresponding t@/bow-upand the other t@/lbow-down If for ~ manifold W, it can have one component only wh#ry has
two distinct configurations odZ;, A lies in the same chamber,one component. Thus iteinof Theorem 1 is required. Second,
there is a continuous motion between them while keeping in order thatC be connected, for each lety; restricted to
in this chamber, if and only if the elbow sign is the sam&/,, the C-space’;(W,) = f;l(WA) must be connected.
at both configurations (naturally, one must perform the siggy definition, for all j € .J, there exists a chamb&gi such
test with the same two links and in the same order for bothat || = 3. The result of Proposition 3 means thg{1V.)
configurations). Considering all the legs together, a continuoigsconnected only ifi?/4 X #0.
motion of A in U; exists if and only if a motion exists for (i) “Sufficiency:” Item 1 and 2 imply that; (W) are path
each leg individually. The previous discussion serves to progénnected for allj. Moreover,C is a fibration overi?V 4. The
the following result. result follows. n

f~1(W,) is connected if and only if:

Proposition. 2: Restricted tof ~*(;), two configurations  Fig. 5 illustrates the global connectivity for an examplgy
c1,co € f7Y(U;) are path connected if and only if for eactcorresponding to a star-shaped manipulator with two legs and
leg M]— with |£7[ = 3 in U;, the elbow angle oMj has the a workspace for which there are two chamb&ig and2U;
same sign at; andc,. where leg 1 has three long links and another chantibgr

where both legs have three long links. Among these chambers,

. Propositi_on 2 completely solves the path existe_nce problem1 and ', belong toX;, and'U; belongs toX,. According
if W consists of a single chamber. However, things becom® theorem 1, the C-space is path connected. In this example,
complex whenl¥Vy has more than one chamber. the C is the product of the two structures shown.

3) Singular Set and Global C-space AnalysRecall that
the C-spaceC is a union of f~1(W;), d € {0,1,2}, i =
1,---,%m and thatf~'(p), p € U, for d # 2 and alli is a
set containing at least a singularity §f Combining the local
C-space and singular set analysis yields the global structurc,;
of C-space.

Corollary 1. Two configurationg:; andc, of a star-shaped
manipulator are in the same component if and only if
1) f(c1) and f(c2) are in the same component Bf 4;
) For each legi with [£%] = 3 for all chambersU; in the
component ofi’ 4 which containsf(c;) and f(cz), the
elbow sign is same at both andc;.



compute way point p; on boundary of 3
two-component cell cf)ntaining Pgoal O(k+Nk)
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—1 1 1
M, f(v) 'al '
1 01 ou)
- : O(kN)
1o | solution
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Fig. 5. C-space of a star-shape manipulator with two legs. For simplicity,
only the portion off ~1(v) is shown, wherey is a continuous curve ifl 4
that visits all chambers.

no solution

Fig. 6. Logical flow and complexity of the major stepsRédthExists

Remark 1: As a matter of facty completely determines
the connectivity of C-space. When computing a path betwe&tep 1: Compute the boundary circles bf;. In general,
two given configurations, often motions of the junction tdV; is an annulus. The radius of its outer boundary circle
points onX are incorporated to allow the adjust the signs of tHé Tmax = Y_;~1 l;.» While that of its inner boundary circle,
leg angles. However, inevitable deviations of the junction frommin, Can be determined by comparifg. := max; l;; and
¥ caused by numerical errors, make it impossible to adjust theax —lmax- If Imax > "max —lmax, th€Nrymin = 2lmax — max,
sign of legs while fixing its end point. For these reasons, poir@€, 7 min = 0;

in 2D chambers are preferred for sign adjustment. Step 2: Decompose the whole plane into cells using all
boundary circles of all legs (e.g., the line sweeping algorithm

V. A POLYNOMIAL -TIME, EXACT, COMPLETE can do this), and construct the cell adjacency graph;
ALGORITHM Step 3: Pick a point from the interior of each cell, compute

. . . . . its distance from each base point, and compare the distance
Our algorithm consists of two main routind3athExists with the radii of the two boundary circles 6¥;. The set of

and ConstructPath . The logical flow of PathExists cells which can be reached by all legs constitiita.

is illustrated in Figure 6. Its input is the topology and lin X o . . .
lengths of a star-shaped manipulator and two valid configkg]e complexity of this 2-D cell decomposition algorithm is

) ; (k2 + kN).
rations, cinis and cgoa1. The output is the answer to the path (K + )
existence question. Below we will show that the complexity 0R. Are pi,ir andpgoa in Same component dﬂ/A?‘ As an
PathExists  is O(k*N?), whereN is the maximum number immediate consequence of the cell decomposition, this can

of links in a leg andk is the number of legs. be answered directly by searching the cell graph.
The approach taken is to computé, and then, for each

leg with its end point constrained to lie iV 4, to determine This step is used to filter out easy solution

if its initial and goal configurations are path connected. Sin€@Xistence checks, based on the cardinality and members of the
the C-space of a leg is guaranteed to be connected if GRESL] (Pinit) @NAL] (pgoar). FOr each leg\l; (pinit), compute

of its critical circlesY; intersectsiV,, the most straight L; (see Section Ill) and find the three longest links of the
forward way to test connectivity is to explicitly perform theS€t{l; o, ..., 1;, }. Denote these links bpinic; Aj 1, Aj 2, Aj3)-
intersections. However, since there are as many2as! Do the same for(py..) and define(pgoar; Aj1, Aj2, Aj3)-
critical circles, any algorithm based on this approach wilthis requiresO(N) work. Finally, [£}(p.))| = 3 if and
have worst-case complexity that is at least exponential @ly if Aj2 + Ajz > L;/2. If L3 (pinit) = L (pgoar) and

N. The key contribution ofPathExists  is a polynomial- |£;(pinit)| = 3, and if the signs of the long links are different
time algorithm for checking the existence of an intersectio® Cinit @Ndcgoa1, then addj into J. Computing/ is O(kN).

betweenWA and a critical C|rcl'es - even though there is aru4. Does the set of long links vary for alle J?‘ If and only
exponential number of these circles.

if ¢ € W4 exists such that/:;(q) * c;f(pinit), then it is
1. Constructi?,4 | We computelV 4 in three steps. possible to make the long links colinear and thus change the




signs of their relative angles. This can be done by computisgmponent cell of leg containingpg..i. Thus the number of

a pointg € W4 on the boundary of the cell that containguards §;'s) may be more than the number of way points
Pgoal @nd keeps the same s€(p) for all p in this cell. This since the number of legs that have three long linkpat,
boundary is characterized by, » + \; 3 = L;/2. Sincel;, is may be more than the cardinality of. Next theguardsare

the only link whose length varies along with this boundary inserted into the path. Later when we construct the path, in
must be one or two circles (called inner and outer circlesign-adjust moves are only performedyatrdsg; (but notp;)
respectively) whose radii, denoteld,.. andd,,;,, depend on for after that the thorax endpoint gets into the two-component
the link lengths of the leg. Lef; o = Z;’;’l l;,; and suppose cell and the sign between a pair of long links will not change
the four longest links apgoar are(Aj1 > Aj2 > Aj3 > A;4) during accordion moves, i.e., the leg will always remain in the
with A; 2+ A; 3 > L;/2, we deduce the radii of the boundaryright component of its C-space. Assuming each arc in the path

circles for four different cases: is approximated by a fixed number of line segments, finding
Case 1:ifl; o (pgoal) = Aj 1, theNdmax = 2(\j2+X;3)—Ljo, guards isO(k?).

and dpin = max{L;o — 2X;3,2(\j3 + Nj4) — Ljo}- ’3. Accordion moves and sign-adjust mo*/e'Ehe path inC
Case 2: iflj0(Pgoat) = Aj2, dmax = 2(Aj1 + Aj3) — Ljo,  thenis produced by using accordion moves along the path and
anddmin = max{L;o — 2X;3,2(A;3 + Aj4) — Lo} sign-adjust moves at thguards At eachguard, one checks
Case 3: ifl;,0(pgoal) = Aj3: dmax = 2(Aj1 + Aj2) — Ljo.  the sign between a pair of long links of the corresponding
and dmin = max{Ljo — 2X;2,2(Xj2 + Aja) — Lo} leg. If it does not match the goal one, then the junction point
Case 4: Otherwis@lmax = min{2(X;2 + A;3) — Ljo, Ljo — s fixed while a sign-adjust move is executed, otherwise, the
2X;j2}, anddmin = 0. accordion move continues. Onck is coincident withpgeal,

If there is no overlap between the two boundary circles arghe is assured by the previous steps, that witHixed at

the component ofV,4 that containgpini; and pgoar, then no ,, . “the configuration of each leg is in the same component
path exists betweefi,;; andc,q.1. Otherwise, path exists andgf its current C-SPace; (pgoal) @S Cgonr- The final move can
we obtain way pointg; for all leg j € J. Computingdmax, be accomplished using a special accordion move algorithm
dmin, and the way pointg; is O(kN). found in [45]. At this stage, we remark that finding the set of
way pointsp; and planning an initial path visiting aj; is

Th ic i nstructPath is that when movin . :
e basic idea oConstructPat S that when moving necessary for otherwise, an arbitrary path betwggn and

from cinit 0 cq0a1, those legsj € J may require a change

in the signs of relative angles between long links, which flgoal MAY not intersect the boundary of the two-component

always possible at the way poip} or other critical points of cell of a leg th?t containggoa- ) .
the corresponding leg. A natural approach then is to use two! € complexity of the accordion move algorithms reported
motion generation primativesiccordion movendsign-adjust ' [45] areO(N?). Since the path ha8(k?) line segments the
move The former moves the thorax endpoint (4} along COMPlexity of ConstructPath  is O(I?BNS)' Note that ac-
a specified path segment with all legs moving compliantﬁprd'on move algorithms with the requwed behavior can be de-
so that all loop closures are maintained. The latter keeps {@ned to beO(N?), so the complexity oConstructPath
endpoint fixed at a way point; € 3, (e.g.,q; = p; or other could be reduced. ‘
critical points) while moving leg into a singular configuration ~ Overall, our path planning algorithm 8(k*N?).
and then to a nearby configuration with the sign of the relative
angle between a pair of long links in this leg chosen to match
those ofcgoar. VI. PATH OPTIMIZATION AND ROBUSTNESS

The input of ConstructPath is W4 and its cell graph,
Cinit, Cgoal, @nd the set of way pointp; € Wa,j € J The above algorithm can be refined with path optimization
computed during the execution BfathExist . and the consideration of robustness. It is obvious that in our
1. Construct an initial pathConstructPath ~ explores the algorithm the way points and thus the path between two
cell graph of Wy, and constructs a path i, connecting given configurations is not unique if these exists a path. So
Pinit 10 Pgoar a@nd visiting all of the way points. Since therea natural problem is path optimization in the sense of finding
are at mosk way points, this can be done @(k?) time (the the shortest path. Here optimization is multidimensional since
path hask + 1 segments each with(k?) arcs). both the choice of way points, the order of way points, and the
2. Construciguardsand insert the guards into the patdo- Path between two consecutive way points could be optimized.
fice that when one accordion moves a leg in a cell in which SinceC is a fibration overiV4, a meaningful optimization
the number of long links is ndt (called one-component cell), problem is to construct a shortest pathiiny (corresponding
neither the signs of concatenating angles, nor the sign betwé@rthe minimal motion of the thorax endpoint) that connects
any pair of links in this leg will be kept invariant. Thus everinit andpgea1 and visits allp;, followed by determining the
the sign between a pair of long links is adjusted to the desirgtinimal motion of all legs that maintains all loop closure
one at a way point, it still could change if the leg keeps movirgpnstraints.
in a one-component cell. For this reason, we geards for The former problem is generally a nonconvex and nonlinear
legs which have three long links af..i. These are the set of optimization problem, sincdV4 could be nonconvex, and
pointsg;, each of which is the last intersection point betweethe objective function (the distance function) as well as the
the above constructed pathliviy and the boundary of the two- constraints are nonlinear. Le(t) be this path withp(0) =




Pinit andp(1) = pgoar. The problem can be described as

. 1
min [ {|dp|| ‘
p(t) € Wy, vVt €[0,1] 25t
pi € {p(t)}, Vi 20l
pi € Asiy

15- goal configuration

where 4;,; € J is the boundary arcs of the two-component

cell of leg j that containgpgoar. 6(J) is a permutation of/ >

with 6(J) = J. Solving this problem exactly is extremely °
hard, but a random search method can be used to obtain a or
good approximate solution. sl

To solve the latter problem, we notice that for a local motion
dp = [dx,dy] of the thorax endpointd@fdej is minimized

if and only if. w0 20 10 o 10 20
_ 7t X
e, = Jtdp
af; - . . Fig. 7. Manipulator’s initial configuration (junction on the right, drawn red)
where J; = 3@; is the Jacobian of legj, and pg goal configuration (junction just below the top left, drawn blue.) The
+—7T( 7. 7T\-1,409. boundary circles of/; are drawn as dashed green lines.
J=JT(J;07)~1do;. y j g

Another important issue about our planning algorithm is
robustness. The sign-adjust move of jegerformed at a guard
q; is only feasible wherC;(q;) is connected. Since; € X,
which is only 1-D, a small perturbation of the junction point
in W4 (e.g., due to numerical errors) will violate the condition
p € ¥;. Whenp moves into a two-component cell, then the 251
sign-adjust move will fail. A remedy to this is to modify the 20!
path of the thorax in the neighborhood @f € ¥; so that a
point q‘; in the interior of a one-component cell is reached.
After the sign of legj is adjusted to the desired one with
fixing atq’, we apply a constrained accordion move algorithm
to ensure that the leg stays in the right component 6f; (p)
just before its thorax endpoint enters the two-component cell
containingpgoal.
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VIl. EXAMPLES -30 220 10 0 10 2

In this section, we demonstrate the correctness and com-
plexity of our algorithm through two examples: a maniprig. 8. A path betweep;y,i;, andpgo. that is completely contained i 4.
ulator with three three-link legs, and a manipulator with
three five-link legs. Movies of the motion plans are very
helpful in understanding the figures. They can be found at
http://www.stanford.edu/"phwul/multiloop .

In the first example, two of the three legs of the manipulator .
have three long links wheH is fixed atpg..1. Figure 7 shows N
the manipulator in its starting and goal configurations. Our i Ny
algorithm predictsJ = (. Then the algorithm constructs a
path in W4 from pipni; t0 peoar, drawn as the dark solid lines tor guardforleg 1+
in Fig. 8. This path intersects the boundary circles of the ‘
two-component cells of legs containingpg..1 several times,
among whichg;, j = 1,2 are the last ones. These two points
are the guards (drawn as

diamonds in Fig. 9) where sign-adjust moves are performed.

At ¢;, j = 1,2, we check the sign of a pair of long links .
of leg j and see if it matches its sign at the goal. If not, we T Er— e = =
fix the other two legs and adjust the sign of the chosen long X
links in leg j. In this particular example, we chose the two _ . _ .
longest links as the pair of long links. Before leavipgvia Fla?th %f AT;% tt"hvg ggj;gaﬁ;o'ms e tfhte 'aft Intersection tpo”;lts between the
the next accordion move, the pair of long links of lggvas P y cireles of two fwo-ecomponent ¢ets.
moved to the elbow-opposite configuration (recall that there

N

51




Fig. 10. All legs use an accordion move to move the junctibto the first
guardg; of leg 1.
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Fig. 11. With the junctionA at q1, the joint angles of led can be adjusted
to achieve the signs required at the goal configuration. All other legs are fi
in place.
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Fig. 12. All legs use an accordion move to move the junctibrio the
second guards of leg 2.

are two configurations for these two links, one is “elbow up”,
the other is “elbow down”), which has exactly the same sign
as the goal configuration. The Trinkle-Milgram algorithm [45]

is used to plan such a motion between the two elbow-opposite
configurations. Figures 10, 11, 12 13, 14, and 15 show the
progress of the manipulation plan as the steps of the complete
planning algorithm are carried out.

Next, we apply our algorithm to a bit more complex
example, a star-shaped manipulator with three five-link legs.
The initial and goal configurations of the manipulator and the
motion of the manipulator that achieve the goal configuration
are shown in Figs. 16, 17, 18, 19, 20, 21, and 22. Among
which, 16, 17, and 18 respectively show the initial and goal
configurations of the manipulator, the computed way point for
a leg (leg2 in our numbering scheme) that has two components
at piniy aNdpgoa (i.€., JIH2})., the path for the junction point
that connecti,it, the way point, antg..;, and the guard
which is the last intersection point between this path and the
boundary circle of the two-component cell.

The computation time for path existence for star-shaped
manipulators with less than 10 legs, and legs of less than 10
links is typically from less than 1 second to a few seconds
when run in a Matlab, P4, WindowsXP system.

VIII. CONCLUSION

In this paper, we studied the global structural properties of
planar star-shaped manipulators. Via the analysis of the critical
set ¥, we derived the global connectivity of the C-space,

@Rd necessary and sufficient conditions for path existence.

Based on these results, we devised a complete polynomial
algorithm for motion planning. Simulation examples were used
to illustrate the key ideas behind the motion planning problem
of planar star-shaped manipulators.
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Fig. 14. All legs use an accordion move to move the junctibto its goal

Fig. 13.' With the junctlo_nA al gz, the joint an_gles (.)f leg can be adjusted_ location. The signs of the joint angles are preserved guaranteeing that legs 1
to achieve the signs required at the goal configuration. All other legs are flxg 4 2 will be in the correct C-space component oricés fixed at the goal

in place. position.
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‘ Fig. 17. A way point (drawn as star) for l&y(the leg with its base anchored
10 at the center of two circles drawn as dashed lines) for adjusting the sign of
this leg.

Fig. 15. All legs use the Trinkle-Milgram algorithm to achieve their goal
configurations with the junctiom fixed.
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way point. The last intersection point of this path with the boundary circle of
the two component cell that contaipg,,, is the guard (drawn as diamond).

Fig. 16. Manipulator’s initial configuration (drawn red, junction drawn as
small square) and goal configuration (drawn blue).
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Fig. 20. With the junctionA at g2, the joint angles of le@ can be adjusted
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Fig. 21. All legs use an accordion move to move the junctibto its goal
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location. The signs of the joint angles are preserved guaranteeing that legs 2

will be in the correct C-space component ontés fixed at the goal position.
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All legs use the Trinkle-Milgram algorithm to achieve their goal
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