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Abstract— We study the motion planning problem for planar
star-shapedmanipulators. These manipulators are formed by
joining k “legs” to a common point (like the thorax of an insect)
and then fixing the “feet” to the ground. The result is a planar
parallel manipulator with k − 1 independent closed loops. A
topological analysis is used to understand the global structure
the configuration space so that planning problem can be solved
exactly. The worst-case complexity of our algorithm isO(k3N3),
where N is the maximum number of links in a leg. Examples
illustrating our method are given.

I. I NTRODUCTION

The canonical robot motion planning problem is known
as the “piano movers’” problem. In this problem, one is
given initial and goal configurations of a “piano” (a rigid
body that is free to move in an environment with fixed rigid
obstacles) and geometric models of the piano and obstacles.
The goal is to find a continuous motion of the piano connecting
the initial and goal configurations. Lozano-Perez studied this
problem in configuration space, or C-space, a space in which
a configuration of the piano maps to a point, a motion maps
to a continuous curve, and the obstacles map to the C-
obstacle,i.e., the set corresponding to overlap between the
piano and an obstacle [3]. The dimension of C-space is equal
to the number of degrees of freedom of the system. The
free space, or C-free, is what remains after removing the
C-obstacle from C-space. In C-space, the motion planning
problem becomes a path planning problem. That is, one must
construct a continuous path connecting the initial and goal
configurations that lies entirely within C-free. Theoretical
results for the piano movers’ problem were first obtained by
Schwartz, Sharir, and Hopcroft [27], [19]. They found that the
problem is PSPACE hard, and proposed an algorithm based
on Collins’ decomposition to find a path. Since the worst-case
running time of Collins’ decomposition algorithm is doubly
exponential in the dimension of C-space, it is impractical.

The more complex generalized movers’ problem, is the
problem in which there are multiple rigid bodies moving
simultaneously in a workspace. The bodies are the links of one
or more robots, and thus may be required to obey constraints
corresponding to their kinematic structures and joint limits.
Given the importance of motion planning problem in robotics,
researchers worked to find more efficient algorithms despite
the depressing complexity results found earlier. The most
efficient exact method known is Canny’s algorithm, which
has time complexity that is only singly exponential in the

dimension of C-space [40]. He also made the important
observation that this bound is worst-case optimal, since the
worst-case number of components in C-space is exponential in
its dimension. Canny’s algorithm is very difficult to implement
- to date no full implementation exists.

In the 1990’s, the intractability of exact motion planning for
general problems stimulated a paradigm shift to randomized
methods. The method of Barraquad and Latome combined
potential field methods with random walk [13]. In essence, a
potential field method defines an artificial potential field on C-
space such that the goal configuration is the global minimum
of the potential function and no saddle points or other local
minima exist. When the function has this property, motion
planning can be done by any gradient following algorithm.
An important class of such functions are navigation functions
[2], [6], [8]. Ideally, the potential function will be a function of
the goal configuration, and the global minimum property will
hold for all possible goal configurations. Since such potential
functions can be difficult to design, Barraquad and Latome
suggested the use of random walks to escape local minima
[13]. This modification yielded a method that is practically
effective and probabilistically complete.

When possibly many motion planning queries must be
handled for a single static environment, a different type of
randomized method has been found to be more efficient than
rerunning the Barraquand-Latombe algorithm for each query.
The probabilistic roadmap method (PRM) of Kavrakiet. al
[42], is an easy-to-implement randomized version of Canny’s
[40]. In this method, a graph is built that approximates the
global structure of C-free. One chooses points at random in
C-space and tests them for collision. Those that are not in
collision are retained as nodes in the roadmap graph. Pairs
of nodes are then tested for connectivity by using a fast
“local” planner. If a pair is found to be connected, then an arc
(containing the connecting path) is placed in the graph between
the corresponding nodes. The roadmap becomes useful for
motion planning after it attains the following two attributes: (1)
a one-to-one correspondence between the graph’s connected
components and those of C-free; (2) for each point in C-free,
it is easy to construct a path to the roadmap. Once the roadmap
is completed, motion planning is essentially reduced to graph
searching.

Because PRMs have been successful in solving problems in
C-spaces with dimension approaching 100, many researchers
have worked to make the method more efficient (e.g., [29],



[30], [31]) and to modify it to solve more challenging types
of problems, such as those with closed kinematic loops,
nonholonomic constraints, dynamics, and intermittent contact
(e.g., [48], [28], [1], [32], [36], [21]). There have also been
efforts to develop randomized methods for use in planning
methods based on a cell decomposition of C-space [22]. Re-
cent research revisited the theoretical basis that could explain
the success of PRMs [33], [34], [35]. These works discussed
the failure probability of finding a path between two given
configurations in terms of several parameters like the path
clearance, the number of sample points, and so on. In [35],
probability measure theory was adopted to develop a more
strict and complete theoretical basis for PRMs. If one reviews
the set of problems for which PRMs have worked well, it
appears that it is important that C-space be “expansive” [7]
and possess a representation from which it is easy to obtain
well-distributed points in C-space.

In this paper, we are particularly interested in planarstar-
shaped manipulators. These manipulators are formed by join-
ing k planar “legs” to a common point (like the thorax of
an insect) and then fixing the “feet” to the ground. The
result is a planar parallel manipulator withk− 1 independent
closed loops. They are important because they arise in parallel
manipulators, walking robots, and dexterous manipulation, and
motion plans are difficult to obtain using PRMs. In such
systems, C-space is often most naturally viewed as a lower-
dimensional space embedded in an ambient space (typically
the joint space). The embedding results from equality con-
straints corresponding to kinematic loop closure. In such
settings, it is difficult to obtain an explicit description of
C-space with minimal number of parameters and a suitable
metric to guide sample generation. These problems make it
difficult to construct a roadmap with the requisite properties,
and hence difficult to solve motion planning problems for
systems with kinematic loops using PRMs. The RLG (random
loop generator) method [4], [5] improves the sampling tech-
niques through estimating the regions of sampling parameters.
However, its efficiency relies on the accuracy of the estimation,
which often varies case by case. Moreover, it ignores the global
structure of C-space, and may fail to sample globally important
regions.

The difficulties associated with applying randomized motion
planning methods to manipulators with closed chains and
the availability of new results in topology [12], [41], [44],
[10] have recently led to renewed interest in exact planning
algorithms. Trinkle and Milgram derived some topological
properties of the C-spaces (the number of components and the
structures of the components) of single-loop closed chains with
spherical joints in a workspacewithout obstacles [45], [44].
These properties drove the design of a complete, polynomial-
time motion planning algorithm that works roughly as follows.

1) Choose a subsetA of the links that can be positioned
arbitrarily, and yet the remaining links can close the
loop;

2) Move the links inA to their goal orientations along an
arbitrary path while maintaining loop closure;

3) Permanently fix the orientations of the links inA;
4) Repeat until all link orientations are fixed.

The main result that guided the algorithm’s design is Theo-
rem 2 in [45]. In generic cases, the C-space is the union of
manifolds that are products of spheres and intervals. The joint
coordinates corresponding to the spheres are those that can
contribute to the subsetA mentioned above and the structure
of the C-space suggests a local parametrization for each step.

Here, the previous methods for C-space connectivity analy-
sis are extended to planar star-shaped manipulators with revo-
lute joints. These manipulators have a common junction point
andk (k > 0) legs connecting the junction to the fixed base.
Following a topological analysis of the global structure of C-
space, the motion planning problem is solved completely in
polynomial time. In Section III, kinematics and singularities
of the manipulator are analyzed. In Section IV, necessary
and sufficient conditions for C-space connectivity and path
existence are derived, based on which a complete polynomial-
time algorithm is developed in Section V. Section VI addresses
path optimization and robustness issues. Section VII shows
simulation results that tests the effectiveness of our algorithm.
Finally VIII ends this paper with a brief conclusion.

II. N OTATION

Manipulator Notation
M - Manipulator
A - Root junction or thorax ofM
oi - Grounding point of footi of M

Mj - Leg j of M with foot fixed atoj

and other end free,j = 1, ..., k
nj - Number of links inMj

lj,i - Length of link i of Mj ; i = 1, ..., nj

θj,i - Angle of link i relative to link i− 1
M̃j(p) - Leg j of M with foot fixed atoj

and other end fixed atp
M̃(p) - Manipulator withA fixed atp

Lj - Sum of lengths of links ofM̃j

Lj,0 - Sum of lengths of links ofMj

Lj(p) - A set of long links ofM̃j(p)
|L∗j (p)| - Number of long links ofM̃j(p)

Workspace Notation
WA - Workspace ofA
dUi - Cell of dimensiond of WA

p - Point in the plane ofM
γ = p(t) - Curve in the plane ofM

f - Kinematic map ofA
fj - Kinematic map of endpoint ofMj

Σ - Critical set off in WA

Σj - Critical set offj

Configuration Space (C-space) Notation
C - C-space ofM

C̃(p) - C-space ofM̃(p)
Cj - C-space ofMj

C̃j(p) - C-space ofM̃j(p)
c - Point in C-space

III. PRELIMINARIES

A star-shaped manipulator is composed ofk serial chains
with all revolute joints (see Fig. 1). LegMj is composed of
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Fig. 1. Star-shaped manipulator withk = 4.

nj links of lengthslj,i, i = 1, ..., nj and joint anglesθj,i, i =
1, ..., nj . At one end (the foot),Mj is connected to ground by
a revolute joint fixed at the pointoj . At the other end, it is
connected by another revolute joint to a junction point denoted
by A. Note that whenk is one, a star-shaped manipulator is
an open serial chain. Whenk is two, it is a single-loop closed
chain.

Assuming that the foot ofMj is fixed at oj , let
fj(Θj) = p denote the kinematic map ofMj , whereΘj =
(θj,1, · · · , θj,nj ) is the tuple of joint angles, andp is the
location of the endpoint of the leg (the thorax end). When
Mj is detached from the junctionA, the image of its joint
space is the reachable set of positions of the free end of the
leg, called the workspaceWj . In the absence of joint limits,
the workspaceWj is an annulus if and only if there exists one
link with length strictly greater than the sum of all the other
link lengths. Otherwise it is a disk. Clearly, the workspaceWA

of A when all the legs are connected toA is given by:

WA =
k⋂

j=1

Wj . (1)

In our study ofC, it will be convenient to refer to several
other C-spaces. The C-space of legMj when detached from
the rest of the manipulator will be denoted byCj . When the
endpoint is fixed at the pointp, leg j will be denoted by
M̃j(p), where the tilde is used to emphasize the fact that
the endpoint has been fixed. Note thatM̃j(p) is a single-loop
planar closed chain, about which much is known (see [45]),
including global structural properties of its C-space, denoted
by C̃j(p) = f−1

j (p).
When the junctionA of a star-shaped manipulator is fixed at

point p, its C-space will be denoted bỹC(p). Since collisions
are ignored, the motions of the legs are independent, and
therefore the C-space of the manipulator (with fixed junction)
is the product of the C-spaces of the legs with all endpoints
fixed atp:

C̃(p) = C̃1(p) × · · · × C̃k(p)

= f−1
1 (p) × · · · × f−1

k (p)

= f−1(p)





(2)

Mj oj

Σ j

A

p
1

p
2p

3

γ

γ (  )f
j

-1

 (   )f
j

-1
p

2

p
1

 (   )f
j

-1 p
3

 (   )f
j

-1

Fig. 2. Left: The workspaceWj of a three-link open chainMj based at
oj . The critical setΣj of the kinematic mapfj is four concentric circles.
The small circles, figure eights, and points at 12 o’clock show the topology
of the C-spacẽCj(p) of the leg when its endpoint is fixed at a point in one
of the seven regions delineated by the critical circles (one of the four circles
or one of the three open annular regions between them).Right: The inverse
image of the curveγ - a “pair of pants.”

where by analogy,f is a total kinematic map of the star-shaped
manipulator. Loosely speaking, the union of the C-spacesC̃(p)
at each pointp in WA gives the C-space of a star-shaped
manipulator:

C =
⋃

p∈WA

C̃(p). (3)

Several properties of the C-spacesCj and C̃j(p) are highly
relevant and so are reviewed here before analyzing the C-
space of star-shaped manipulators. It is well known that the
C-space ofMj is a product of circles (i.e.,Cj = (S1)nj ) 1. The
workspaceWj contains a critical setΣj which is composed
of all pointsp in Wj for which the Jacobian of the kinematic
mapDfj(Θj) drops rank for someΘj ∈ f−1

j (p). These points
form concentric circles of radii|lj,1±lj,2±· · ·±lj,nj |, as shown
in Fig 2. WhenA coincides with a point inΣj , the links can
be arranged such that they are all colinear, in which case the
number of instantaneous degrees of freedom of the endpoint
of the leg is reduced from two to one.

Now consider the case where the endpoint of legj is fixed
to the pointp. In other words, we are interested in the C-space
C̃j(p) of M̃j(p). In the 12 o’clock position in Fig. 2, points,
circles, and figure eights are drawn to represent the global
structures ofC̃j(p) in the seven regions ofWj . Specifically,
whenA is fixed to a pointp on the outer-most critical circle,
C̃j(p) is a single point. Forp fixed to any point in the largest
open annular region, C-space is a single circle. Continuing
inward, the possible C-space types are a figure eight (on the
second largest critical circle), two disconnected circles, a figure
eight again, a single circle, and a single point (on the inner-
most critical circle).

A detailed analysis of̃Cj(p) with an arbitrary number of
links in M̃j(p) can be found in [45]. The results that will be
particularly useful in the analysis of star-shaped manipulators
follow. First, the connectivity of̃Cj(p) is uniquely determined
by the number of “long links.” Consider the augmented link

1Recall the assumption of no joint limits.



set composed of the links ofMj andojp, which will be called
the fixed base link with length denoted bylj,0. Let Lj be the
sum of all the link lengths including the fixed base link (i.e.,
Lj =

∑nj

i=0 lj,i). Further, letLj(p) be a subset of{0, 1, ..., nj}
such thatlj,α + lj,β > Lj/2; α, β ∈ Lj(p), α 6= β. Over all
such sets, letL∗j (p) be a set of maximal cardinality. Then the
number of long links ofM̃j(p) is defined as|L∗j (p)|, where
| · | denotes set cardinality.

Lemma 1: Kapovich and Milson [41], Trinkle and Mil-
gram [45]
The C-spacẽCj(p) = f−1

j (p) has two components if and only
if |L∗j (p)| = 3, and is connected if and only if|L∗j (p)| = 2 or
0. No other cardinality is possible.

Let us return to the discussion of Fig. 2. ViewingWj as
a base manifold and the C-space corresponding to each end
point location as a fibre, it is apparent that the critical set
Σj partitionsWj into regions over which the C-spaces̃Cj(p)
form a trivial fibration. The implications of this observation
are useful in determining the C-space of more complicated
mechanisms. Consider a modification tõMj(p) that allows the
endpoint to move along a one-dimensional curve segmentγ
within Wj . Then as long asγ is entirely contained in one of the
regions defined by the critical circles,C̃j(γ) = C̃j(p)×I, where
I is the interval. Ifγ crosses a critical circle transversally, then
C̃j(γ) = (C̃j(p1) × I)

⋃ C̃j(p3)
⋃

(C̃j(p2) × I), wherep1 is a
point in one of the two open annular regions containingγ, p2

is a point in the other, andp3 is a point on the critical circle
crossed byγ, and

⋃
denotes the standard “gluing” operation.

In Fig. 2, an exampleγ and the corresponding C-spaceC̃j(γ)
are shown.

IV. A NALYSIS OF STAR-SHAPED MANIPULATORS

For star-shaped manipulators with one or two legs, the
global topological properties of the C-spaceC are fully un-
derstood (for one, see [43]; for two, see [45], [44]). The
goals of this section are to study the global properties of
C when M has more than two legs and to derive necessary
and sufficient conditions for solution existence to the motion
planning problem.

1) Local Analysis:As a direct generalization of the critical
set of a single leg, we define the critical set of a star-shaped
manipulator as a subsetΣ of WA such that for everyp ∈ Σ,
there exists a configurationc such that at least one of the
Jacobians{Df1(c), · · · , Dfk(c)} drops rank. By definition we
have:

Σ =

(
k⋃

i=1

Σi

)⋂
WA. (4)

An advantage of this definition is thatΣ can be used to stratify
WA such that each stratum is trivially fibred. Figure 3 shows
a star-shaped manipulator with two legs. The critical setΣ
is the boundary of the lune formed by the intersection of the
outer critical circles of their individual workspaces. For every
point interior to the lune, the fibre is two circles (the direct
product of two points with one circle). The fibres associated

Mj oj

Σ j

A

Mj+1

oj+1

Σ j+1

WA

Fig. 3. The workspaceWA of A for a star-shaped manipulator withk = 2
is the intersection of the workspaces ofA for each leg considered separately.
The critical setΣ is composed of the black circular arcs where they bound
or intersect the gray area.

o
j

oj+1

oj+2

Fig. 4. Workspace (shaded gray) of a star-shaped manipulator with three legs.
The critical set partitionsWA into 12 two-dimensional, 32 one-dimensional,
and 21 zero-dimensional chambers.

to the vertices of the lune are single points, which correspond
to simultaneous full extension of the two legs.

Fig. 4 shows a possible workspace for a star-shaped ma-
nipulator with three legs. The critical set defines 65 distinct
sets dUi of varying dimensiond, where i is an arbitrarily
assigned index that simply counts components. We will refer
to these sets aschambers. There are 12 two-dimensional, 32
one-dimensional, and 21 zero-dimensional chambers, each of
which is trivially fibred. Removing the0Ui from Σ partitions
it into open one-dimensional chambers1Ui, i = 1, · · · ,1m.
Removing0Ui and1Ui from WA yields open two-dimensional
sets2Ui, i = 1, · · · ,2m, for which the following relationships
hold:

Σ =




0m⋃

i=1

0Ui


⋃




1m⋃

i=1

1Ui


 (5)

WA − Σ =

2m⋃

i=1

2Ui. (6)

Proposition. 1: For all d = 0, 1, 2 and i, f−1(dUi) =
dUi× f−1(p), wherep is any point indUi and the operator×



denotes the direct product. Gluing thef−1(dUi) for all i and
d gives the total C-spaceC.

Proof: Whend = 0, 0Ui contains a single point, the result
follows. Whend = 1, 1Ui belongs to one critical circle of
one leg, sayM̃j . Any two pointsp1, p2 ∈ 1Ui are related by a
Euclidean rotationp2−oj = R(p1−oj), indicating thatC̃j(p1)
and C̃j(p2) are homotopic. Thus̃Cj(p) for all p ∈ 1Ui have
equivalent topological structure. For the other legsM̃l, l 6= j,
according to [44] (Lemma6.1 and Corollary6.5) C̃l(p) for all
p ∈ 1Ui have equivalent topological structures as1Ui is free of
critical points ofM̃l(p). Thusf−1(p) = C̃1(p)× · · · × C̃k(p)
for all p ∈ 1Ui have equivalent topological structures. The
case whend = 2 can be proved by applying Lemma6.1 and
Corollary 6.5 of [44] to all legs. ¥

Proposition 1 and the fact thatdUi is a simply connected set,
reveal that each component off−1(dUi) is a direct product of
one component of̃Cj(p), j = 1, · · · , k, with a d-dimensional
disk. Using|L∗j (p)|, j = 1, · · · , k and Lemma 1, one can show
that the number of components off−1(dUi) is 2k0 , where
k0 ≤ k is the number of legs for which|L∗j (p)| = 3.

2) Local Path Existence:Before considering the global
path existence problem, consider motion planning between two
valid configurationscinit and cgoal for which the junctionA
lies in the same chamber. Since the fibre over every point
in dUi is equivalent, path existence amounts to checking the
component memberships of the configurationscinit andcgoal.

For a single legM̃j(p), if the number of long links|L∗j (p)|
is not three, then any two configurations of̃Mj(p) are in the
same component. When|L∗j (p)| = 3, choose any two long
links and test the sign of the angle between them (with full
extension taken as zero). There are two possible signs, one
corresponding toelbow-upand the other toelbow-down. If for
two distinct configurations of̃Mj , A lies in the same chamber,
there is a continuous motion between them while keepingA
in this chamber, if and only if the elbow sign is the same
at both configurations (naturally, one must perform the sign
test with the same two links and in the same order for both
configurations). Considering all the legs together, a continuous
motion of A in dUi exists if and only if a motion exists for
each leg individually. The previous discussion serves to prove
the following result.

Proposition. 2: Restricted tof−1(dUi), two configurations
c1, c2 ∈ f−1(dUi) are path connected if and only if for each
leg M̃j with |L∗j | = 3 in dUi, the elbow angle ofM̃j has the
same sign atc1 andc2.

Proposition 2 completely solves the path existence problem
if WA consists of a single chamber. However, things become
complex whenWA has more than one chamber.

3) Singular Set and Global C-space Analysis:Recall that
the C-spaceC is a union of f−1(dUi), d ∈ {0, 1, 2}, i =
1, · · · , dm and thatf−1(p), p ∈ dUi for d 6= 2 and all i is a
set containing at least a singularity off . Combining the local
C-space and singular set analysis yields the global structure
of C-space.

Proposition. 3: For all p ∈ Σj , f−1
j (p) is a singular set

containing isolated singularities. If a singularity separates its
neighborhoodV in f−1

j (p), then it is these singularities which
glue the two separated components inf−1

j (q) whereq ∈ WA−
Σj is a point sufficiently close top.

Proof: First it is obvious thatf−1
j (p) contains isolated

singularities for there are finite ways to colinearize all the
links of a close chain. Second, let

γ : (−ε, ε) → WA, γ(0) = p

be a curve that is transverse toΣj . According to Corollary
6.6 of [44], the distance functions(γ(t)) =

∫ t

0
|γ̇|dt defines a

Morse function onf−1
j (γ)

s ◦ fj : f−1
j (γ) → R.

Note that 0 is a singular value ofs ◦ fj and the isolated
singularities off−1

j (p) are also singularities ofs ◦ fj . The
result of Morse theory applying tos ◦ fj yields that (s ◦
fj)−1(0) = f−1

j (p) is given by attaching a handle to(s ◦
fj)−1(ε0) = f−1

j (q) for a sufficiently smallε0 and q a point
sufficiently close top. The Proposition follows. ¥

Next, we establish necessary and sufficient conditions for
the connectivity ofC. Let J be the index set such that for all
j ∈ J , |L∗j | = 3 for at least one chamberdUi. We prove the
following theorem.

Theorem 1: SupposeWA =
⋃2

d=0

(⋃dm
i=1

dUi

)
. ThenC =

f−1(WA) is connected if and only if:
1) WA is connected;
2) Σj

⋂
WA 6= ∅ for all j ∈ J .

Proof: (i) “Necessity:” SinceC is a fibration of the base
manifoldWA, it can have one component only whenWA has
one component. Thus item1 of Theorem 1 is required. Second,
in order thatC be connected, for each legMj restricted to
WA, the C-spaceC̃j(WA) = f−1

j (WA) must be connected.
By definition, for all j ∈ J , there exists a chamberdUi such
that |L∗j | = 3. The result of Proposition 3 means thatC̃j(WA)
is connected only ifWA

⋂
Σj 6= ∅.

(ii) “Sufficiency:” Item 1 and 2 imply that̃Cj(WA) are path
connected for allj. Moreover,C is a fibration overWA. The
result follows. ¥

Fig. 5 illustrates the global connectivity for an exampleWA

corresponding to a star-shaped manipulator with two legs and
a workspace for which there are two chambers2U1 and 2U3

where leg 1 has three long links and another chamber2U4

where both legs have three long links. Among these chambers,
1U1 and1U2 belong toΣ1, and1U3 belongs toΣ2. According
to Theorem 1, the C-space is path connected. In this example,
the C is the product of the two structures shown.

Corollary 1: Two configurationsc1 andc2 of a star-shaped
manipulator are in the same component if and only if

1) f(c1) andf(c2) are in the same component ofWA;
2) For each legj with |L∗j | = 3 for all chambersdUi in the

component ofWA which containsf(c1) andf(c2), the
elbow sign is same at bothc1 andc2.
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Fig. 5. C-space of a star-shape manipulator with two legs. For simplicity,
only the portion off−1(γ) is shown, whereγ is a continuous curve inWA

that visits all chambers.

Remark 1: As a matter of fact,Σ completely determines
the connectivity of C-space. When computing a path between
two given configurations, often motions of the junction to
points onΣ are incorporated to allow the adjust the signs of the
leg angles. However, inevitable deviations of the junction from
Σ caused by numerical errors, make it impossible to adjust the
sign of legs while fixing its end point. For these reasons, points
in 2D chambers are preferred for sign adjustment.

V. A POLYNOMIAL -TIME , EXACT, COMPLETE

ALGORITHM

Our algorithm consists of two main routines,PathExists
and ConstructPath . The logical flow of PathExists
is illustrated in Figure 6. Its input is the topology and link
lengths of a star-shaped manipulator and two valid configu-
rations,cinit and cgoal. The output is the answer to the path
existence question. Below we will show that the complexity of
PathExists is O(k3N3), whereN is the maximum number
of links in a leg andk is the number of legs.

The approach taken is to computeWA and then, for each
leg with its end point constrained to lie inWA, to determine
if its initial and goal configurations are path connected. Since
the C-space of a leg is guaranteed to be connected if one
of its critical circles Σj intersectsWA, the most straight
forward way to test connectivity is to explicitly perform the
intersections. However, since there are as many as2nj−1

critical circles, any algorithm based on this approach will
have worst-case complexity that is at least exponential in
N . The key contribution ofPathExists is a polynomial-
time algorithm for checking the existence of an intersection
betweenWA and a critical circles - even though there is an
exponential number of these circles.

1. ConstructWA We computeWA in three steps.
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Fig. 6. Logical flow and complexity of the major steps ofPathExists .

Step 1: Compute the boundary circles ofWj . In general,
Wj is an annulus. The radius of its outer boundary circle
is rmax =

∑nj

i=1 lj,i, while that of its inner boundary circle,
rmin, can be determined by comparinglmax := maxi lj,i and
rmax−lmax. If lmax > rmax−lmax, thenrmin = 2lmax−rmax,
else,rmin = 0;
Step 2: Decompose the whole plane into cells using all
boundary circles of all legs (e.g., the line sweeping algorithm
can do this), and construct the cell adjacency graph;
Step 3: Pick a point from the interior of each cell, compute
its distance from each base point, and compare the distance
with the radii of the two boundary circles ofWj . The set of
cells which can be reached by all legs constituteWA.
The complexity of this 2-D cell decomposition algorithm is
O(k2 + kN).

2. Are pinit andpgoal in same component ofWA? As an
immediate consequence of the cell decomposition, this can
be answered directly by searching the cell graph.

3. ComputeJ This step is used to filter out easy solution
existence checks, based on the cardinality and members of the
setsL∗j (pinit) andL∗j (pgoal). For each legM̃j(pinit), compute
Lj (see Section III) and find the three longest links of the
set{lj,0, ..., ljnj

}. Denote these links by(pinit; λj,1, λj,2, λj,3).
Do the same for(pgoal) and define(pgoal; λj,1, λj,2, λj,3).
This requiresO(N) work. Finally, |L∗j (p(·))| = 3 if and
only if λj,2 + λj,3 > Lj/2. If L∗j (pinit) = L∗j (pgoal) and
|L∗j (pinit)| = 3, and if the signs of the long links are different
at cinit andcgoal, then addj into J . ComputingJ is O(kN).

4. Does the set of long links vary for allj ∈ J? If and only
if q ∈ WA exists such thatL∗j (q) 6= L∗j (pinit), then it is
possible to make the long links colinear and thus change the



signs of their relative angles. This can be done by computing
a point q ∈ WA on the boundary of the cell that contains
pgoal and keeps the same setL∗j (p) for all p in this cell. This
boundary is characterized byλj,2 +λj,3 = Lj/2. Sincelj,0 is
the only link whose length varies along withp, this boundary
must be one or two circles (called inner and outer circles,
respectively) whose radii, denoteddmax anddmin, depend on
the link lengths of the leg. LetLj,0 =

∑nj

i=1 lj,i and suppose
the four longest links atpgoal are (λj,1 > λj,2 > λj,3 > λj,4)
with λj,2 +λj,3 > Lj/2, we deduce the radii of the boundary
circles for four different cases:
Case 1: iflj,0(pgoal) = λj,1, thendmax = 2(λj,2+λj,3)−Lj,0,
anddmin = max{Lj,0 − 2λj,3, 2(λj,3 + λj,4)− Lj,0}.
Case 2: iflj,0(pgoal) = λj,2, dmax = 2(λj,1 + λj,3) − Lj,0,
anddmin = max{Lj,0 − 2λj,3, 2(λj,3 + λj,4)− Lj,0}.
Case 3: iflj,0(pgoal) = λj,3, dmax = 2(λj,1 + λj,2) − Lj,0,
anddmin = max{Lj,0 − 2λj,2, 2(λj,2 + λj,4)− Lj,0}.
Case 4: Otherwise,dmax = min{2(λj,2 + λj,3)−Lj,0, Lj,0 −
2λj,2}, anddmin = 0.
If there is no overlap between the two boundary circles and
the component ofWA that containspinit and pgoal, then no
path exists betweencinit andcgoal. Otherwise, path exists and
we obtain way pointspj for all leg j ∈ J . Computingdmax,
dmin, and the way pointspj is O(kN).

The basic idea ofConstructPath is that when moving
from cinit to cgoal, those legsj ∈ J may require a change
in the signs of relative angles between long links, which is
always possible at the way pointpj or other critical points of
the corresponding leg. A natural approach then is to use two
motion generation primatives:accordion moveandsign-adjust
move. The former moves the thorax endpoint (atA) along
a specified path segment with all legs moving compliantly
so that all loop closures are maintained. The latter keeps the
endpoint fixed at a way pointqj ∈ Σj (e.g.,qj = pj or other
critical points) while moving legj into a singular configuration
and then to a nearby configuration with the sign of the relative
angle between a pair of long links in this leg chosen to match
those ofcgoal.

The input ofConstructPath is WA and its cell graph,
cinit, cgoal, and the set of way pointspj ∈ WA, j ∈ J
computed during the execution ofPathExist .
1. Construct an initial pathConstructPath explores the

cell graph ofWA, and constructs a path inWA connecting
pinit to pgoal and visiting all of the way points. Since there
are at mostk way points, this can be done inO(k3) time (the
path hask + 1 segments each withO(k2) arcs).
2. Constructguardsand insert the guards into the pathNo-

tice that when one accordion moves a leg in a cell in which
the number of long links is not3 (called one-component cell),
neither the signs of concatenating angles, nor the sign between
any pair of links in this leg will be kept invariant. Thus even
the sign between a pair of long links is adjusted to the desired
one at a way point, it still could change if the leg keeps moving
in a one-component cell. For this reason, we setguards for
legs which have three long links atpgoal. These are the set of
pointsqj , each of which is the last intersection point between
the above constructed path inWA and the boundary of the two-

component cell of legj containingpgoal. Thus the number of
guards (qj ’s) may be more than the number of way points
since the number of legs that have three long links atpgoal

may be more than the cardinality ofJ . Next theguardsare
inserted into the path. Later when we construct the path inC,
sign-adjust moves are only performed atguardsqj (but notpj)
for after that the thorax endpoint gets into the two-component
cell and the sign between a pair of long links will not change
during accordion moves, i.e., the leg will always remain in the
right component of its C-space. Assuming each arc in the path
is approximated by a fixed number of line segments, finding
guards isO(k3).
3. Accordion moves and sign-adjust movesThe path inC

then is produced by using accordion moves along the path and
sign-adjust moves at theguards. At eachguard, one checks
the sign between a pair of long links of the corresponding
leg. If it does not match the goal one, then the junction point
is fixed while a sign-adjust move is executed, otherwise, the
accordion move continues. OnceA is coincident withpgoal,
one is assured by the previous steps, that withA fixed at
pgoal, the configuration of each leg is in the same component
of its current C-spacẽCj(pgoal) as cgoal. The final move can
be accomplished using a special accordion move algorithm
found in [45]. At this stage, we remark that finding the set of
way pointspj and planning an initial path visiting allpj is
necessary for otherwise, an arbitrary path betweenpinit and
pgoal may not intersect the boundary of the two-component
cell of a leg that containspgoal.

The complexity of the accordion move algorithms reported
in [45] areO(N3). Since the path hasO(k3) line segments the
complexity of ConstructPath is O(k3N3). Note that ac-
cordion move algorithms with the required behavior can be de-
signed to beO(N2), so the complexity ofConstructPath
could be reduced.

Overall, our path planning algorithm isO(k3N3).

VI. PATH OPTIMIZATION AND ROBUSTNESS

The above algorithm can be refined with path optimization
and the consideration of robustness. It is obvious that in our
algorithm the way points and thus the path between two
given configurations is not unique if these exists a path. So
a natural problem is path optimization in the sense of finding
the shortest path. Here optimization is multidimensional since
both the choice of way points, the order of way points, and the
path between two consecutive way points could be optimized.

SinceC is a fibration overWA, a meaningful optimization
problem is to construct a shortest path inWA (corresponding
to the minimal motion of the thorax endpoint) that connects
pinit and pgoal and visits allpi, followed by determining the
minimal motion of all legs that maintains all loop closure
constraints.

The former problem is generally a nonconvex and nonlinear
optimization problem, sinceWA could be nonconvex, and
the objective function (the distance function) as well as the
constraints are nonlinear. Letp(t) be this path withp(0) =



pinit andp(1) = pgoal. The problem can be described as

min
∫ 1

0
‖dp‖

p(t) ∈ WA,∀t ∈ [0, 1]
pi ∈ {p(t)}, ∀i

pi ∈ Aδ(i)

whereAj , j ∈ J is the boundary arcs of the two-component
cell of leg j that containspgoal. δ(J) is a permutation ofJ
with δ(J) = J . Solving this problem exactly is extremely
hard, but a random search method can be used to obtain a
good approximate solution.

To solve the latter problem, we notice that for a local motion
dp = [dx, dy] of the thorax endpoint,dΘT

j dΘj is minimized
if and only if.

dΘj = J+
j dp

where Jj = ∂fj

∂Θj
is the Jacobian of legj, and

J+
j =JT

j (JjJ
T
j )−1dθj .

Another important issue about our planning algorithm is
robustness. The sign-adjust move of legj performed at a guard
qj is only feasible whenCj(qj) is connected. Sinceqj ∈ Σj

which is only 1-D, a small perturbation of the junction point
in WA (e.g., due to numerical errors) will violate the condition
p ∈ Σj . Whenp moves into a two-component cell, then the
sign-adjust move will fail. A remedy to this is to modify the
path of the thorax in the neighborhood ofqj ∈ Σj so that a
point q′j in the interior of a one-component cell is reached.
After the sign of legj is adjusted to the desired one withp
fixing at q′j , we apply a constrained accordion move algorithm
to ensure that the legj stays in the right component ofCj(p)
just before its thorax endpoint enters the two-component cell
containingpgoal.

VII. E XAMPLES

In this section, we demonstrate the correctness and com-
plexity of our algorithm through two examples: a manip-
ulator with three three-link legs, and a manipulator with
three five-link legs. Movies of the motion plans are very
helpful in understanding the figures. They can be found at
http://www.stanford.edu/˜phwu1/multiloop .

In the first example, two of the three legs of the manipulator
have three long links whenA is fixed atpgoal. Figure 7 shows
the manipulator in its starting and goal configurations. Our
algorithm predictsJ = ∅. Then the algorithm constructs a
path inWA from pinit to pgoal, drawn as the dark solid lines
in Fig. 8. This path intersects the boundary circles of the
two-component cells of legsj containingpgoal several times,
among whichqj , j = 1, 2 are the last ones. These two points
are the guards (drawn as

diamonds in Fig. 9) where sign-adjust moves are performed.
At qj , j = 1, 2, we check the sign of a pair of long links

of leg j and see if it matches its sign at the goal. If not, we
fix the other two legs and adjust the sign of the chosen long
links in leg j. In this particular example, we chose the two
longest links as the pair of long links. Before leavingqj via
the next accordion move, the pair of long links of legj was
moved to the elbow-opposite configuration (recall that there
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Fig. 7. Manipulator’s initial configuration (junction on the right, drawn red)
and goal configuration (junction just below the top left, drawn blue.) The
boundary circles ofWj are drawn as dashed green lines.
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Fig. 9. The two guard points are the last intersection points between the
path ofA and the boundary circles of two two-component cells.
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Fig. 10. All legs use an accordion move to move the junctionA to the first
guardq1 of leg 1.
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Fig. 11. With the junctionA at q1, the joint angles of leg1 can be adjusted
to achieve the signs required at the goal configuration. All other legs are fixed
in place.
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Fig. 12. All legs use an accordion move to move the junctionA to the
second guardq2 of leg 2.

are two configurations for these two links, one is “elbow up”,
the other is “elbow down”), which has exactly the same sign
as the goal configuration. The Trinkle-Milgram algorithm [45]
is used to plan such a motion between the two elbow-opposite
configurations. Figures 10, 11, 12 13, 14, and 15 show the
progress of the manipulation plan as the steps of the complete
planning algorithm are carried out.

Next, we apply our algorithm to a bit more complex
example, a star-shaped manipulator with three five-link legs.
The initial and goal configurations of the manipulator and the
motion of the manipulator that achieve the goal configuration
are shown in Figs. 16, 17, 18, 19, 20, 21, and 22. Among
which, 16, 17, and 18 respectively show the initial and goal
configurations of the manipulator, the computed way point for
a leg (leg2 in our numbering scheme) that has two components
at pinit andpgoal (i.e., J={2})., the path for the junction point
that connectspinit, the way point, andpgoal, and the guard
which is the last intersection point between this path and the
boundary circle of the two-component cell.

The computation time for path existence for star-shaped
manipulators with less than 10 legs, and legs of less than 10
links is typically from less than 1 second to a few seconds
when run in a Matlab, P4, WindowsXP system.

VIII. C ONCLUSION

In this paper, we studied the global structural properties of
planar star-shaped manipulators. Via the analysis of the critical
set Σ, we derived the global connectivity of the C-space,
and necessary and sufficient conditions for path existence.
Based on these results, we devised a complete polynomial
algorithm for motion planning. Simulation examples were used
to illustrate the key ideas behind the motion planning problem
of planar star-shaped manipulators.



−10 −5 0 5 10
−6

−4

−2

0

2

4

6

8

10

12

14

x

y

Fig. 13. With the junctionA at q2, the joint angles of leg2 can be adjusted
to achieve the signs required at the goal configuration. All other legs are fixed
in place.
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[20] L.E. Kavraki, P. Švestka, J.C. Latombe, and M.H. Overmars,Proba-
blistic Roadmaps for path planning in high-dimensional configuration
space. IEEE Transactions on Robotics and Automation, 12(4):566-580,
1996.

[21] S. M. LaValle and J. J. Kuffner,Rapidly-exploring random trees:
Progress and prospects. In B. R. Donald, K. M. Lynch, and D.
Rus, editors, Algorithmic and Computational Robotics: New Directions,
pages 293-308, A K Peters, Wellesley, MA, 2001.

[22] F. Lingelbach,Path Planning using Probabilistic Cell Decomposition.
IEEE International Conference on Robotics and Automation, PP. 467-
472, 2004.

[23] S.M. LaValle, M.S. Branicky and S.R. Lindemann,On the Relationship
between Classical Grid Search and Probabilistic Roadmaps. The
International Journal of Robotics Research, Number 23, Volume 7/8
(2004):673-692.

[24] S. R. Lindemann and S. M. LaValle,Current issues in sampling-based
motion planning. In P. Dario and R. Chatila, editors, Proc. Eighth Int’l
Symp. on Robotics Research. Springer-Verlag, Berlin, 2004. To appear.

[25] J. Yakey, S. M. LaValle, and L. E. Kavraki,Randomized path planning
for linkages with closed kinematic chains. IEEE Transactions on
Robotics and Automation, 17(6):951–958, December 2001.

[26] J.P. Merlet,Parallel Robots. Kluwer Academic Publishers, 2000.
[27] J.T. Schwartz and M. Sharir,On the piano movers II. General techniques

for computing topological properties on real algebraic manifolds. Adv.
Appl. Math., vol.4, PP. 298-351, 1983.

[28] L. Han and N.M. Amato,A kinematics-based probabilistic roadmap
method for closed chain systems. in Algorithmic and Computational



−10 −8 −6 −4 −2 0 2 4 6 8 10
−6

−4

−2

0

2

4

6

8

10

12

14

x

y

Fig. 15. All legs use the Trinkle-Milgram algorithm to achieve their goal
configurations with the junctionA fixed.

−50 −40 −30 −20 −10 0 10 20 30
−50

−40

−30

−20

−10

0

10

20

x

y

Fig. 16. Manipulator’s initial configuration (drawn red, junction drawn as
small square) and goal configuration (drawn blue).

Robotics: New Directions, B.R. Donald, K.M. Lynch, and D. Rus, Eds.
AK Peters, Wellesley, PP. 233-246, 2001.

[29] N. Amato, B. Bayazit, L. Dale, C. Jones, and D. Vallejo,OBPRM: An
obstacle-based PRM for 3d workspaces. in Robotics: The Algorithmic
Perspective, P. Agarwal, L. Kavraki, and M. Mason, Eds. Natick, MA:
A.K. Peters, 1998, PP. 156-168.

[30] V. Boor, M. Overmas, and A.F. van der Stappen,The Gaussian sampling
strategy for probabilistic roadmap planners. IEEE International
Conference on Robotics and Automation, 1999.

[31] R. Bohlin and L. Kavraki,Path planning using lazy PRM. IEEE
International Conference on Robotics and Automation, PP. 521-528,
2000.

[32] J.J. Kuffner and S.M. LaValle,RRT-Connect: An Efficient Approach
to Single-Query Path Planning. IEEE International Conference on
Robotics and Automation, PP. 995-1001, 2000.

[33] D. Hsu, R. Kindel, J.-C. Latombe,Randomized Kinodynamic Motion
Planning with Moving Obstacles. International Journal of Robotics
Research, Vol 21, No. 3, PP. 233-255, 2002.

[34] L. Kavraki, M.N. Kolountzakis, and J.-C. Latombe,Analysis of Proba-
bilistic Roadmaps for Path Planning. IEEE Transactions on Robotics
and Automation, Vol. 14, PP. 166-171, 1998.

−50 0 50
−60

−50

−40

−30

−20

−10

0

10

20

30

40

x

y

Fig. 17. A way point (drawn as star) for leg2 (the leg with its base anchored
at the center of two circles drawn as dashed lines) for adjusting the sign of
this leg.
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Fig. 18. A path for the junction that connectspinit andpgoal that visits the
way point. The last intersection point of this path with the boundary circle of
the two component cell that containspgoal is the guard (drawn as diamond).
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Fig. 19. All legs use an accordion move to move the junctionA to the guard
q2 of leg 2.
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Fig. 20. With the junctionA at q2, the joint angles of leg2 can be adjusted
to achieve the signs required at the goal configuration. All other legs are fixed
in place.
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Fig. 21. All legs use an accordion move to move the junctionA to its goal
location. The signs of the joint angles are preserved guaranteeing that legs 2
will be in the correct C-space component onceA is fixed at the goal position.
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Fig. 22. All legs use the Trinkle-Milgram algorithm to achieve their goal
configurations with the junctionA fixed.
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