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A General Approach for Optimal Design of Parallel
Manipulators

Y.J. Lou, G.F. Liu, and Z.X. Li

Abstract— This work intends to deal with the optimal kine-
matic synthesis problem of parallel manipulators. A unified
framework is proposed for optimal design of parallel manip-
ulators. By observation that regular (e.g., hyperrectangular)
workspaces are desirable for most machines, we propose the
concept of effective regular workspace, which reflects both re-
quirements on the workspace shape and quality. Dexterity index
is utilized to characterize the effectiveness of the workspace.
Other performance indices, such as manipulability, stiffness, and
minimal natural frequency, can be readily included. The optimal
design problem is then formulated to find a manipulator geom-
etry that maximizes the effective regular workspace. Since the
optimal design problem is a constrained nonlinear optimization
problem without explicit analytical expression, the controlled
random search (CRS) technique, which was reported robust
and reliable, is applied to numerically solve the problem. Some
typical parallel manipulators, the five-bar parallel linkage, the 3-
RRR planar parallel manipulator, the rotational DELTA robot,
and the Stewart-Gough platform are employed as examples to
demonstrated the design procedure.

Index Terms— optimal design, parallel manipulators, effective
regular workspace, controlled random search, dexterity.

I. INTRODUCTION

PARALLEL manipulators are widely accepted as ideal
mechanisms for use in manufacturing industries for their

superior properties over serial counterparts, such as low inertia,
high stiffness, and high precision. However, relatively small
workspace, complex input-output relationship, and abundance
of singularities in their workspaces decline parts of above
mentioned advantages. Choosing a set of geometric param-
eters so as to achieve desired/optimal performance is of vital
significance in robotics research.

Among all kinematic measures, workspace is a basic yet
most important index in design of a parallel manipulator. In
regard to workspace requirements, there’re two types of formu-
lation of the design problem. One is to generate a manipulator
whose workspace contains a prescribed workspace [1][2][3]
[4][5]. Gosselin and Guillot [6] presented an algorithm for
the workspace optimization of planar manipulators, where the
objective is to obtain a workspace that is as close as possible
to a prescribed one. The other possible formulation is to
find the geometry of a parallel manipulator that maximizes
the workspace. A parallel manipulator designed only for
maximum workspace may not however be a good design in
practice. It’s possible that the manipulator with maximum
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workspace has undesirable kinematic characteristics such as
poor dexterity or manipulability. Stamper, Tsai, and Walsh
[7] indicate this problem through an example of a 3-dof
translational parallel manipulator.

In order to avoid the undesirable effects of workspace max-
imization, researchers introduced other performance criteria
into the optimal design problem. Gosselin and Angeles de-
signed a planar 3-DOF parallel manipulator [8] and a spherical
3-DOF parallel manipulator [9] by maximizing the workspace
volume while taking into account the isotropy index. Pham and
Chen [10] proposed to maximize the workspace of a parallel
flexture mechanism subject to the constraints about a global
measure and a uniformity measure of manipulability. In [7]
Stamper et al. proposed to maximize the total volume of well-
conditioned workspace. In the design problem, the objective
function was chosen as the integral of inverse condition
number of the kinematic Jacobian matrix over the workspace,
and the link lengths of each subchain were normalized as
a constraint. In addition to the workspace volume index,
Stock and Miller [11] employed a linear combination of the
manipulability and workspace indices in the objective function,
where the coefficients are weights assigned to the two indices.
The optimal design problem then becomes a mixed multi-
criteria optimization problem.

In this paper, we propose a new optimization problem for
design of parallel manipulators. The design objective is to
maximize so called effective regular workspace. It is defined
as a regular geometric object, e.g. a cube or a ball in 3-
dimensional case, every point of which not only is contained in
the manipulator workspace, but also possesses good dexterity.
In practice a regular-shaped workspace with good dexterity
is always desirable. It is well known that parallel manip-
ulators often have irregular-shaped workspaces due to their
complex kinematic structure. A design solely for maximal
workspace may neither have maximal regular workspace, nor
good dexterity over its workspace. In this paper, we choose
to maximize the regular-shaped workspace while subject to
the dexterity constraints. The optimal design problem is a
multimodal constrained nonlinear optimization problem with
no explicitly analytical expression. Gradient-based algorithms
are not good enough in dealing with this problem since
gradients and Hessians are not readily evaluated. we thus resort
to a direct search method, the controlled random search (CRS)
technique, which was remarked reliable and robust [12].

The paper is organized as follows. In section II, we formu-
late the optimization problem for design of parallel manipu-
lators. In section III we present a basic CRS algorithm and
provide an overall algorithm for solution of the optimization
problem. In Section IV-VII, we use examples of a five-
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Fig. 1. Coordinate systems for a parallel manipulator

bar parallel linkage, a planar 3-RRR parallel manipulator, a
rotational DELTA robot, and a 6-dof Stewart-Gough platform
to indicate the design procedure and technique. We make
Discussions and remarks on the the results and the design
technique in section VIII and draw a conclusion in Section
IX.

II. FORMULATION OF THE OPTIMAL DESIGN PROBLEM

A parallel manipulator, as shown in Fig. 1, consists of
several open subchains connected in parallel to a common
rigid body, known as the end-effector. The ambient space E
of the manipulator is given by the Cartesian product of the
joint spaces of all the joints that make up the manipulator.
We denote by Θ ∈ R

n the local coordinates of E. The loop
closure equations of the manipulator are denoted by

H : E −→ R
m,Θ 7−→ H(Θ) =







h1(Θ)
...

hm(Θ)






= 0. (1)

Note that the loop closure equations are obtained by equating
pairwise the end-effector positions from each of the subchains.
Let θ ∈ R

n−m, θ ⊂ Θ, be the set of joint variables of
all actuators, i.e., the system is normally actuated, and X ∈
R
n−m the Cartesian coordinates representing the position and

orientation of the end-effector. The inverse kinematics problem
is to solve the corresponding θ from a given X using (1). We
denote by ρ this inverse kinematics map.

θi = ρi(X,α), i = 1, · · · , n−m (2)

where α is the set of kinematic parameters, e.g. the link
lengths, the position of base points of each subchain, the
relative arrangement of each axis, and the size and shape of the
end-effector, etc. In practice, we may only focus on a subset
of those parameters, known as design kinematic parameters
(or design parameters for brevity) while fixing the remaining
parameters due to some practical restrictions. Hereafter α ∈
R
p denotes only the set of design parameters we’re interested.

Differentiating (1) yields its differential kinematics which can
in general written as

θ̇ = JẊ, (3)

where J = J(X, θ, α) is the familiar kinematic Jacobian
matrix for parallel manipulators, mapping Cartesian velocity
Ẋ to joint rate θ̇.

A. The objective function

In manipulator design, a regular workspace (more specificly,
a hyperrectangle) is usually provided as a design objective
based on the types of manufacturing tasks and the working
environment. This regular workspace is required to be con-
tained in the workspace generated by the resultant manipulator
such that it can conduct prescribed tasks. Maximization of
the regular workspace among all possible designs is always
desirable from the manufacturing perspects.

Let W = W1 ⊕ W2 ⊂ R
6 be a regular Cartesian

workspace for a general parallel manipulator, where W1 is the
translational workspace while W2 the rotational workspace. A
measure for W can be derived based on that for W1 and W2.
Assume that W1 and W2 are both rectangular parallelepipeds
and li, wi, hi, i = 1, 2, the lengths of three independent edges.
The size of regular workspace is thus a function of those
quantities. Let Φ1 = Φ1(l1, w1, h1) and Φ2 = Φ2(l2, w2, h2)
be two repective measures for the volumes of W1 and W2. A
measure on the overall volume of W is given as

Φ = µ1Φ1 + µ2Φ2, (4)

where µi, i = 1, 2 are weights assigned to the contributions
of W1 and W2, respectively.

Let’s consider two special cases for (4). (i) When the
manipulator possesses no rotational motion, i.e., W2 = 0, or
W2 is fixed as a prescribed rotational regular workspace, the
objective function is then reduced to Φ = Φ1. The objective of
the problem is to maximize the translational regular workspace
given that at each point in the translational regular workspace
the manipulator at least possesses a rotational capability of
W2. Examples of this type include design of all kinds of trans-
lational parallel manipulators (e.g., the 3-UPU manipulator, the
DELTA robot, and the Orthoglide) and other k-dof (k > 3)
manipulators as replacement of translational manipulators. (ii)
When no translational motion is allowed, i.e., W1 = 0, or W1

is fixed as a prescribed translational regular workspace, the
size function is reduced to Φ = Φ2. Examples of this type
include design of rotational parallel manipulators (e.g., the 3-
dof spherical manipulator) and its higher-dof replacement. The
objective is to maximize rotational workspace at every point in
W1. In this paper, we demonstrate the design technique using
the first case only for optimal design of some typical parallel
manipulators.

It is a well-known fact that given fixed ranges of actuators
of a parallel manipulator, its workspace volume monotonically
depends on its overall dimension i.e., the value of α. By
considering the constraints due to working environments, we
normalize the manipulator dimension so as to find the best
design among all normalized manipulators with the same
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topology. The result is expected to provide an insight and a
basic guidance for practical realization.

q
∑

i=1

αi = τ, (5)

where τ is a given constant, usually 1, and αi ≥ 0, i =
1, · · · , q are geometric parameters, and usually q ≤ p. (5)
implies that αi ∈ [0, τ ], i = 1, · · · , q.

B. The workspace constraints

A basic requirement for a regular workspace is that it should
be contained in the workspace generated by the resultant
manipulator. specifically, it is equivalent to imposing the
following constraints to every point X ∈W ,

ρmini ≤ ρi(X,α) ≤ ρmaxi , i = 1, · · · , n−m; (6)

where ρmini and ρmaxi are respectively the lower and upper
bound for i-th actuator due to actuator limits and/or me-
chanical interference between links. Any Cartesian point X
is reachable if there exists an inverse kinematic solution θ
in the actuator range. The set of such points constituting
the Cartesian workspace reachable by the resultant parallel
manipulator, which indeed contains the regular workspace W
because of (6). In the design algorithm to be introduced later,
the regular workspace is discretized and (6) is verified only at
nodes in the discretized workspace.

C. The dexterity constraints

In order to guarantee the regular workspace to be effective,
constraints on the dexterity index are introduced into the
design problem to characterize the quality of the regular
workspace. A frequently-used measure for dexterity of a
manipulator is the inverse condition number of the kinematic
Jacobian matrix, which is defined as

κ(J) =
σmin(J)

σmax(J)
,

where κ(·) denotes the inverse condition number function of
matrices, and σmin(·) and σmax(·) its minimal and maximal
singular value functions, respectively. Thus κ ∈ [0, 1].

This performance index has been applied in numerous
designs since it characterizes various properties of a manip-
ulator. This measure not only can report an occurrence of
singularity, but also gives a measure to characterize how
far the manipulator is to the nearest singular configuration.
The inverse condition number also measures the uniformity
of the distribution, or the local isotropy characteristic, of
the Cartesian velocities and end-effector wrenches. In the
force/torque transmission from joints to the end-effector, the
inverse condition number also measures the magnitude of
the relative error of the wrench introduced by the relative
error in joint torques and reflect the sensitivity of the wrench
due to joint torque error. Given a constant relative error on
joint torque, the smaller is the inverse condition number, the
larger is the relative error of wrench. If the stiffness in each
actuated joint are equal, the stiffness matrix describing the

stiffness of the manipulator due to the stiffness at joints is
characterized by the product of the kinematic Jacobian and
its transpose. The inverse condition number of the Jacobian
gives a measure of the uniformity of the Cartesian stiffness.
Note that if we replace the kinematic Jacobian matrix with the
inertial matrix in the dynamic equation, the inverse condition
number thus measures the inertial behavior and the isotropy
of the acceleration performances [13].

However, when a robot is capable of mixed motions of
translational and rotational degrees of freedom or when it is
comprised of both rotary and prismatic actuators, elements
of the kinematic Jacobian bear different physical units. As
a result, a measure such as the inverse condition number
of the Jacobian matrix is of little practical significance. Any
design based on condition number of kinematic Jacobian will
probably produce misleading results. This was first pointed out
by Lipkin and Duffy in [14]. Furthermore, even when physical
units are uniform, the inverse condition number only evaluates
the uniformity of actuator responses given a task-space motion
of unit magnitude and arbitrary direction. The non-uniformity
of actuator capabilities and/or required task-space response is
not taken into account. A usual method to handle this problem
is to introduce the concept of characteristic length [15] by
Tandirci et al. and the Jacobian is then normalized by dividing
a characteristic length out of all translational elements. Ma and
Angeles [16] defined the natural length as the characteristic
length that produces the best performance measure and applied
it in design optimization. When the natural length of a platform
manipulator is not derivable, it is approximated by the average
platform radius. For a serial manipulator the natural length is
calculated by averaging the distances between the operating
point and all actuated joint axes by Angeles[17]. In [18],
the natural length of a serial manipulator was determined by
regarding it as a free design parameter needed to be optimize.
This method was later generalized by Stocco, Salcudean, and
Sassani [19][20] by pre- and post-multiplying the kinematic
Jacobian scaling matrices corresponding to ranges of joint and
task-space variables.

Here we introduce a natural and physically meaningful
way to scale the Jacobian matrix and make it dimensionally
homogeneous by the example of a general Gough-Stewart
platform. As shown in Fig. 2, an inertia coordinate frame
O−xyz is set up on the base, while a body frame P −uvw is
set up on the moving platform with point P being the reference
point. A loop-closure equation for the i-th subchain can be
derived as

−→

OP +
−→

PBi=
−→

OAi +
−→

AiBi, i = 1, · · · , 6. (7)

Let ‖
−→

OAi ‖ = ai, ‖
−→

PBi ‖ = bi, and ‖
−→

AiBi ‖ = ρi,
i = 1, · · · , 6. Differentiating (7) with respect to time yields

v + biω × ri = ρiei × si + ρ̇isi, i = 1, · · · , 6, (8)

where v and ω are respectively the translational velocity of
the reference point P on the moving platform and the angular
velocity of the moving platform both with respect to the
inertia frame. ri and si are both unit vectors representing the
directions along

−→

PBi and
−→

AiBi, respectively, and ei denotes
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Fig. 2. A schematic of the general Stewart-Gough platform

the angular velocity of the i-th subchain with respect to the
inertia frame. To eliminate ei, we dot-multiply both sides of
(8) by si and obtain

s
T
i v + bi(ri × si)

Tω = ρ̇i, i = 1, · · · , 6, (9)

(9) can then be assembled in matrix form as follows.

ρ̇ = JẊ, (10)

where ρ̇ = [ρ̇1, · · · , ρ̇6]
T , a vector of the joint velocities, Ẋ =

[vT ωT ]T the vector of Cartesian velocities, and

J =











s
T
1 b1(r1 × s1)

T

s
T
2 b2(r2 × s2)

T

...
...

s
T
6 b6(r6 × s6)

T











the Jacobian matrix. Clearly the Jacobian J is dimensionally
inhomogeneous since the first three columns represent direc-
tions of legs and are thus unitless and the remainder three
columns carry a unit of length. A natural way of dimensionally
homogenizing J is to divide the elements of the i-th row of the
last three columns by the corresponding bi, i = 1, · · · , 6. Thus
we have a scaled kinematic Jacobian Ĵ , which is dimensionally
homogeneous, as follows.

Ĵ =











s
T
1 (r1 × s1)

T

s
T
2 (r2 × s2)

T

...
...

s
T
6 (r6 × s6)

T











.

When all passive joints Bi, i = 1, · · · , 6, are arranged on
a common sphere centered at P , i.e., bi = b for all i, a
homogeneous Jacobian is obtained through dividing the last
three columns of J by a common factor b. This reduces
to the case in [21]. For simplicity we may also divide all
of the last three columns by the average platform radius
b̄ = (

∑6
i=1 bi)/6, which in fact gives an approximation of

PBi, i = 1, · · · , 6, as in [16].
Let ti = ri × si, i = 1, · · · , 6, we rewrite differential

kinematics of the manipulator as follows to see the physical
meaning of this method,

ρ̇ = JdBẊ, (11)

where

Jd =











s
T
1 t

T
1

s
T
2 t

T
2

. . .
s
T
6 t

T
6











and

B =























I 0
0 b1I
I 0
0 b2I
...

...
I 0
0 b6I























with I is a 3× 3 identity matrix. Clearly Jd is dimensionally
homogeneous and B serves as a scaling matrix. We further
rewrite the velocity relation as follows,

ρ̇ = Jd
˙̂
X, (12)

where
˙̂
X = [vT , b1ω

T ,vT , b2ω
T , · · · ,vT , b6ω

T ]T .

Note that biω is the tangential velocity of joint Bi, i =
1, · · · , 6, with respect to the inertia frame, due to the rotational
motion of the moving platform. Each pair (v, biω) in ˙̂

X
represents a vector of linear velocity at joint Bi, which is
composed of the translational velocity v and the tangential
velocity biω due to angular velocity ω. It is therefore a natural
way to deal with the dimensional inhomogeneity problem by
dividing the last three columns of the Jacobian J the distances
from the joints on the moving platform to the reference point
correspondingly.

With the scaled Jacobian Ĵ , the dexterity constraints can be
expressed as follows.

κ(Ĵ) ≥ γ, (13)

where γ is a constant number specified by users.
Combining (4)-(6) and (13), we formulate the following

optimal deisgn problem for maximizing the effective regular
workspace.

Problem 1: Optimal Mechanism Design
Find a set of optimal design parameters α such that

max
α

Φ(α) (14)

subject to κ(Ĵ(X, θ, α)) ≥ γ, (15)
ρmini ≤ ρi(X,α) ≤ ρmaxi , (16)
ϕmink ≤ ϕk(X,α) ≤ ϕmaxk , (17)
q

∑

j=1

αj = τ. (18)

where ∀X ∈ W and i = 1, · · · , n−m. ϕmink and ϕmaxk are
both constants and define a range for the k-th passive joint.
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III. ALGORITHMS FOR THE OPTIMAL DESIGN PROBLEM

Clearly the optimal design problem 1 is a constrained
nonlinear optimization problem. Two kinds of deterministic
algorithms are usually applied to solve this problem. One is
the sequential approximation method. Typical representatives
of this method are the sequential quadratic programming
(SQP) methods. Based on Lagrangian methods, the solution
x∗ of the nonlinear optimization problem can be obtained by
solving , at successive approximations x(i) to x∗, a sequence
of corresponding quadratic programming (QP) subproblems.
These SQP methods are some of the most efficient algorithms
available today. The Dynamic-Q method proposed by Snyman
and Hay [22] is also in the category of the sequential approxi-
mation method. They are all gradient based methods involving
computations of gradient vectors of the objective function and
the constraints. Even the computation of Hessian is necessary
for applications of SQP methods. The other approach is
the transformation methods [23], by which the constrained
optimization problem is transformed into an unconstrained one
and solved via various unconstrained optimization techniques.
A typical representative of this method is the penalty function
approach, where extra penalty parameters are introduced.

By observation, neither the objective function (14) nor the
dexterity constraint (15) has an explicitly analytical expression
with respect to the set of design parameters α. The gradient
vectors are thus not readily computed. Furthermore, the ob-
jective function in the optimal design problem 1 is generally
multimodal, i.e., there may exist several local minima in
the feasible region. Those gradient based optimization algo-
rithms are known to converge to local minima. Here, without
transformation of the optimization problem, we resort to a
direct search method, the random search technique, which was
widely studied as a global optimization technique [24]. The
algorithms are robust, i.e., they normally work regardless of
irregularities of the objective function.

A. The Controlled Random Search Technique

Random search techniques were first proposed by Anderson
[25] in 1953 and later by Brooks [26], Rastrigin [27] and
Karnopp [12]. Proposals employing random search technique
proliferated in the engineering literature. They range from
simply simultaneous sampling techniques to more elaborate
procedures that involve a coupling of sequential sampling with
heuristic hill-climbing methods. The simutaneous sampling
procedure is of course very inefficient. Many adaptive or
heuristic methods [28][29][30][31][32] [33][34] were thus
proposed to improve the efficiency. Solis and Wets [32] and
Gelfand and Mitter [35] provided global convergence proofs
for two different conceptual algorithms. Random search Tech-
niques have been applied in various fields, such as chemical
engineering [36], control[37], circuit design [38], and antenna
optimization [39]. Karnopp [12] and other researchers recog-
nized advantages of random search techniques as follows. (1)
Ease of programming and realization. Anyone can readily
apply the technique in his individual application without
advanced optimization knowledge. (2) Robustness. Practically
random search techniques are insensitive to type of objective

functions as well as to shape of feasible regions. They’re
capable of handling of discontinuous, non-differentiable objec-
tive functions with a nonconvex feasible region. Some of the
techniques are also insensitive to the initial search conditions,
such as initial point [40]. (3) Efficiency. Although reports
[41] showed that random search techniques converge quite
slowly in the very close neighborhood of the optimum, they
do converge efficiently to within 0.1% of the optimum. And
(4) flexibility. It is easy to modify the search procedure and
combine heuristic knowledge and experience in the algorithm.

In 1978, Goulcher and Long [40] proposed a controlled
random search (CRS) method to solve constrained nonlinear
optimization problems. Later this method was improved and
applied in many chemical plants [36]. The basic philosophy of
the method is to select new points by random selection from
normal probability distributions centered at the best previous
value.

α(j) = α(j−1) + σξ. (19)

The equation (19) describes how the new points in j-th itera-
tion, α(j), are generated in the neighborhood of the previous
best point α(j−1), where ξ is a vector of random variables
ξi that is subject to normal probability distribution with zero
mean and unity standard deviation as follows.

ξi ∼ N(0, 1), i = 1, · · · , p.

σ = diag(σ1, · · · , σp) is applied to adaptively modify the
standard deviation of the normal probability distribution for
every random variable in each iteration. It is actually the
standard deviation for the vector of random variables σξ.
Therefore, ”control” comes by adjustment of the standard
deviation of the distribution, which explains the name of the
method. Compared with standard optimization techniques, the
random variable ξ can be regarded as a search direction,
while the standard deviation σ serves as a kind of ”step-
length”, which is adjusted automatically during the search in
two situations.

(a) Each time a successful trial has been made. In this
case, standard deviations are set according to σi = K1∆αi,
i = 1, · · · , p, where ∆αi is a positive quantity describing
the distance between the variable’s current value αi and the
nearest bound of the variable. K1 < 1 is a compression
factor to reduce seach interval and maintain searches in the
neighborhood of the best previous point.

(b) After a specified number, typically 100, of consecutive
failure. Failure means that no improvement is made with re-
spect to the objective function. When this occurs, for instance,
as the optimum is approached, the standard deviations are
reduced by

(σi)new = K2(σi)old, i = 1, · · · , p;

where K2 < 1 is a positive number.
The basic algorithm of the CRS technique is described as

follows.

Algorithm 1: The basic CRS algorithm
1. Given search intervals, αi ∈ [αi, αi], set parameters
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K1, K2, ε, and max feval denoting the maximum allowable
number of function evulation;

2. Generate a feasible initial point α(0) by uniformly random
sampling in the given intervals, and compute the corresponding
Φ(0) and σ(0)

i = K1∆α
(0)
i , i = 1, · · · , p. Set j = 1;

3. k = 1.
4. If k > max feval, set σ(j−1)

new = K2σ
(j−1)
old and go to 3;

otherwise, generate a new search point by

kα(j) = α(j−1) + σ(j−1)ξ.

5. If Φ(kα(j)) ≤ Φ(j−1), set k = k+ 1, go to 4; otherwise,
set Φ(j) = Φ(kα(j)) and α(j) = kα(j).

6. Check the stopping criterion

|α
(j)
i − α

(j−1)
i |

Ri
≤ ε, i = 1, · · · , p;

where Ri = αi − αi. If it is satisfied, end the procedure;
otherwise, set j = j + 1 and go to 3.

Solis and Wets [32] proved global convergence for their con-
ceptual algorithm, which includes the CRS technique. Their
proof needs only minimal technical assumptions, measurability
of the objective function f and the feasible set S, that
are always satisfied in practice. Readers are referred to the
Appendix for detail.

B. The Overall Algorithm

Although the size of maximal effective regular workspace
depends uniquely on the design parameters, the real imple-
mentation of search of the size involves finding not only the
optimal design parameters but also the location of maximal
effective regular workspace. There are two schemes to realize
the search.

Basicly the first search scheme can be accomplished by
two layers of optimization iteration. The outer layer is simply
to find the optimal value Φ∗ according to the inner layer,
the objective function is evaluated at different given design
parameters α. Given a set of design parameters α, the inner
layer find the maximal size of the effective regular workspace
by the following idea. Assume that the shape of the regular
workspace is given, say, a cube. Take a point O as its center.
Increase the side length of the cube until any of the constraints
(15)- (18) is violated. Thus we obtain the maximal size
Φ∗(O) corresponding to center O. Repeating the procedure
by choosing different centers and comparing different Φ∗(O),
the maximal size corresponding to the design parameters α,
Φ∗(α), is therefore obtained. Both the outer and inner layers of
optimization iterations can be realized by the CRS technique.

In the other scheme the center of the effective regular
workspace is directly regarded as part of design parameters.
The search of the center of the maximal effective workspace
and the search of the optimal design parameters are accom-
plished simultaneously. There is no difference in result for
those two schemes. In the implementation the latter one is
employed.

Fig. 3. A schematic for the five-bar parallel linkage

IV. EXAMPLE 1: OPTIMAL DESIGN OF A FIVE-BAR
PARALLEL LINKAGE

The five-bar parallel linkage has been applied as a micro-
probing device [42] and a haptic interface [43]. We consider
to design a five-bar parallel linkage as that in [19]. As shown
in Fig. 3, all the joints are revolute, and only joints A and E
are actuated. A Cartesian coordinate system is set up with the
originO coinciding with the midpoint of AE. Let ‖DE‖ = b1,
‖AB‖ = b2, ‖CD‖ = c1, ‖BC‖ = c2, and the fixed link
‖AE‖ = 2a. The joint C, with coordinate X = (x, y), is
regarded as the reference point of end-effector. The set of
design parameters is α = [a, b1, b2, c1, c2]

T .
By geometry of the mechanism, the loop closure equations

are derived as follows.

(x− a− b1 cos θ1)
2 + (y − b1 sin θ1)

2 = c21; (20)
(x+ a− b2 cos θ2)

2 + (y − b2 sin θ2)
2 = c22. (21)

By differentiating the loop closure constraints (20) and (21)
with respect to time t, we obtain an instantaneous relationship
between the joint rate θ̇ and the Cartesian velocity Ẋ.

JxẊ = Jθθ̇, (22)

where Ẋ = [ẋ, ẏ]T , θ̇ = [θ̇1, θ̇2]
T ,

Jx =

[

x− a− b cos θ1 y − b sin θ1
x+ a− b cos θ2 y − b sin θ2

]

and

Jθ =

[

by cos θ1 − (x − a)b sin θ1 0
0 by cos θ2 − (x + a)b sin θ2

]

.

Since the five-bar parallel linkage is a planar positioning de-
vice, there is no rotational workspace. Therefore the objective
function Φ = Φ1. We consider a square shape for the regular
workspace and define Φ = l, where l denotes a half of the side
length of the effective square workspace. In the simulation, the
manipulator size is normalized by a+b1+b2+c1+c2 = 1. The
actuation limits are given as θ1 ∈ [−π

3 ,
2π
3 ] and θ2 ∈ [π3 ,

4π
3 ].

Assume the two rotary actuators are of the same model, which
is common in practice, we don’t need to scale the Jacobian
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a b1 b2 c1 c2 xc yc Φ∗ = l∗

0.0070 0.2351 0.2363 0.2593 0.2623 0.0120 0.2368 0.180725

TABLE I
OPTIMAL DESIGN PARAMETERS AND THE OPTIMUM FOR THE FIVE-BAR

PARALLEL LINKAGE

since the Jacobian J = J−1
θ Jx is dimensionally homogeneous.

Suppose a dexterity constraint is given as κ(J) ≥ 0.4. Thus
the optimal design problem for maximal effective regular
workspace becomes

Problem 2: Optimal design of a five-bar parallel linkage
Find a set of optimal design parameters α such that

max
α

l

subject to κ(J(X, θ, α)) ≥ 0.4,

−
π

3
≤ θ1(X,α) ≤

2π

3
,

π

3
≤ θ2(X,α) ≤

4π

3
,

a+ b1 + c1 + b2 + c2 = 1.

a, b1, b2, c1, c2 ∈ [0, 1]

where ∀X ∈ W .
Here the center of the square-shaped workspace (xc, yc) is
regarded as independent variables. considering the size con-
straint, there’re totally 6 independent variables.

Table I gives the optimum of the objective function and
its corresponding optimal design parameters and the center.
It is easy to find that the resultant optimal design parameters
suggest two geometrically identical subchains since b1 ≈ b2
and c1 ≈ c2. Therefore we consider another design with an
assumption of identical subchains. Let bi = b and ci = c, i =
1, 2. The center of square workspaces is specified as (0, yc)
because of the symmetric architecture. And the manipulator
is normalized by a+ b+ c = 1. By redoing the optimization
we obtain optimal design parameters and the corresponding
optimal objective as shown in Table II.

In order to measure space utilization of a manipulator, we
define a space utilization index (SUI) as the ratio of the side
length of the maximum effective workspace to the total length
of a subchain, which generally characterizes the size of a
manipulator. In the case of the design of the nonsymmetric
five-bar parallel linkage, the space utilization index is given
as

SUI =
2l∗

a+ b1 + c1
or

2l∗

a+ b2 + c2
. (23)

Thus SUI = 71.5%. For the symmetric design case, SUI =
2l∗/(a+ b+ c) = 74.2%, which is larger than that of the non-
symmetric design case. This shows a symmetric architecture
is desirable for our design requirements.

Fig. 4 shows the workspace generated by the optimal
symmetric design, where the region enclosed by the square
is the maximum effective square workspace. A distribution of
inverse condition number of J in the maximal effective square
workspace is shown in Fig. 5-(a). And Fig. 5-(b) shows its
contour plot. From the figure of workspace containment, we

a b c yc Φ∗ = l∗

0.0029 0.4788 0.5182 0.4715 0.371155

TABLE II
OPTIMAL DESIGN PARAMETERS AND THE OPTIMUM FOR THE FIVE-BAR

PARALLEL LINKAGE GIVEN IDENTICAL SUBCHAINS
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The effective regular workspace and the workspace generated by the optimal geometry

Fig. 4. The workspace generated by the optimal geometry

find a little portion of the effective regular workspace lies out
of the workspace generated by the resulting optimal linkage
with constraints of actuation limits. Also the minimal inverse
condition number in the effective regular workspace is 0.3966,
which is a little smaller than the prescribed value γ = 0.4.
Both constraints (15) and (16) are violated. This is simply
because we use only typical discrete points in the Cartesian
regular workspace to represent constraints on all points over
the regular workspace (15) and (16). This of course introduces
some errors. However, the errors are rather small and they’re
even acceptable in real engineering design. Furthermore, we
can eliminate the effects of discretization of regular workspace
by applying a little bit stricter constraints of (15) and (16), say
a little bit larger γ and a little bit smaller ranges for actuation.

From the optimal design parameters in Table I, the manipu-
lator demonstrates two nearly identical subchains in geometry,
which verifies that our usual symmetric five-bar linkage is
a good design. Also the design parameter a tends to zero,
which implies the coincidence of the actuation points A and
E. This is consistent with our common sense that when a
parallel manipulator degenerates to a serial one, it gives a
largest workspace. In practice a minimal value of a should be
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Fig. 5. (a) Inverse condition number in the maximal effective regular
workspace; (b) A contour plot for the inverse condition number in the maximal
effective regular workspace.
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Fig. 6. A schematic of the 3-RRR planar parallel manipulator

provided as a lower bound for search such that the resultant
optimal manipulator is practically realizable.

V. EXAMPLE 2: OPTIMAL DESIGN OF A 3-RRR PLANAR
PARALLEL MANIPULATOR

The five-bar parallel linkage is a planar translational ma-
nipulator that doesn’t possess orientational motion. Here we
consider a planar parallel manipulator involving motions of
both translation and rotation, a 3-RRR planar parallel manip-
ulator, which was widely-studied in many literatures [8]. Note
the underlined ”R” denotes an actuated revolute joint.

A schematic of the 3-RRR planar parallel manipulator is
shown in Fig. 6. All joints are of the revolute type, and the
three actuators A1, A2, A3 are fixed. The manipulator consists
of 3 subchains, namely AiBiCi, i = 1, 2, 3, which connect
to the moving platform C1C2C3 in parallel. Only joints Ai,
i = 1, 2, 3 are actuated, while Bi and Ci, i = 1, 2, 3 are
all passive joints. As shown in Fig. 6, a Cartesian coordinate
system is set up with the origin being coincident with pointA1.
A loop closure equation can thus be derived for each subchain
as follows.

−→

AiG +
−→

GCi=
−→

AiBi +
−→

BiCi, i = 1, · · · , 3, (24)

where G is the reference point on the moving platform
C1C2C3. Let ai = ‖AiBi‖, hi = ‖GCi‖, i = 1, · · · , 3,
a velocity vector-loop equation is obtained by taking the
derivative of (24) with respect to time and some simple
manipulations:

b
T
i v + φ̇kT (hi × bi)hi = θ̇ik

T (ai × bi)ai, (25)

for i = 1, · · · , 3, where v is the translational velocity of the
reference point G on the moving platform, φ̇ is the angular
velocity of the moving platform, both with respect to the fixed
frame, and ai, bi, hi, and k are all unit vectors along

−→

AiBi,
−→

BiCi,
−→

GCi, and z-axis, respectively. Stacking the three scalar
equations in (25), we have differential kinematics in matrix
form as follows.

JxẊ = Jθ θ̇, (26)

where Jx and Jθ are forward Jacobian and inverse Jacobian,
respectively, and X = [x y φ]T , θ = [θ1 θ2 θ3]

T , Ẋ =
[vT φ̇]T , and θ̇ = [θ̇1 θ̇2 θ̇3]

T , and

Jx =





b
T
1 k

T (h1 × b1)h1

b
T
2 k

T (h2 × b2)h2

b
T
3 k

T (h3 × b3)h3





and

Jθ =





k
T (a1 × b1)a1 0 0

0 k
T (a2 × b2)a2 0

0 0 k
T (a3 × b3)a3



 .

The kinematic Jacobian can thus be obtained by J = J−1
θ Jx.

Clearly the Jacobian J is dimensionally inhomogeneous since
elements in Jθ bear uniform physical units, while in Jx the
elements of the first two columns are unitless and those in the
third columns have a unit of length. By discussions in Section
II-C, we homogenize the Jacobian J by dividing the elements
in its third column with corresponding hi and therefore obtain
a dimensionally homogeneous Jacobian Ĵ .

For ease of manufacturing and general-purpose applications,
a symmetric structure is applied for the 3-RRR parallel ma-
nipulator as in [8], i.e. (i) all three subchains are identical
in geometry; (ii) the three actuated joints are arranged in
such a way that they, as vertices, constitute an equlateral
triangle ∆A1A2A3; and (iii) the triangle consisting of the
three passive joints on the moving platform as its vertices is
equilateral. Let ai = a and bi = b for i = 1, · · · , 3, and
‖AiAj‖ = c, i, j = 1, · · · , 3, i 6= j. Thus the vector of
design parameters becomes α = [a b h c]T . The manipulator
size is normalized by a + b + h = 1. Let’s consider a
regular workspace W with a prescribed rotational workspace
[−φ0, φ0] and a prescribed square shape for the translational
workspace W1. This requires that at each point of W1 the
manipulator at least has a orientational capability of [−φ0, φ0].
In the simulation φ0 = 30o. Given the center of ∆C1C2C3

being taken as the reference point G, the maximal effective
regular workspace will centered at [ c2 ,

√
3c
6 , 0], which coincides

with the center of ∆A1A2A3 at φ = 0. This is because
the translational workspace of the symmetric manipulator is
symmetric about the center of ∆A1A2A3 at φ = 0. By
taking Φ = l, where l denotes a half of the side length
of the effective square translational workspace, we formulate
the optimal design problem for maximization of the effective
regular workspace as follows.

Problem 3: Optimal design of a 3-RRR planar parallel
manipulator
Find a set of optimal design parameters α such that

max
α

l

subject to κ(Ĵ(X, θ, α)) ≥ 0.2;

−
π

3
≤ θ1(X,α) ≤

π

3
;

π

3
≤ θ2(X,α) ≤ π;

π ≤ θ3(X,α) ≤
5π

3
;

a+ b+ h = 1;

a, b, h ∈ [0, 1], c ∈ [0, 2];
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a b h c Φ∗ = l∗

0.5279 0.4718 0.0003 1.0157 0.205750

TABLE III
OPTIMAL DESIGN PARAMETERS AND THE OPTIMUM FOR THE 3-RRR

PLANAR PARALLEL MANIPULATOR

0.3
0.4

0.5
0.6

0.7
0.8

0

0.1

0.2

0.3

0.4

0.5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Inverse condition number of the 3−RRR planar parallel manipulator at φ=0o

y

In
ve

rs
e 

co
nd

iti
on

 n
um

be
r

(a)

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

x

y

Contour plot of the inverse condition number of the 3−RRR planar parallel manipulator at φ=0o

0.3

0.4

0.4

0.40.5

0.5

0.5

0.5

0.
5

0.5

0.5

0.5

0.6

0.6

0.6

0.6
0.6

0.
6

0.7

0.7

0.7

0.7

0.8

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

(b)

Fig. 7. (a) Inverse condition number of Ĵ at φ = 0o; (b) Contour plot of
the inverse condition number of Ĵ at φ = 0o.

where ∀X ∈ W . Note that actuation limits are provided for
practical reasons.
The optimal design parameters and its corresponding maximal
size of the effective square translational workspace is given
in Table III. Note the resulting manipulator has a moving
platform with very small size (h = 0.0003), which indicates
a zero-size of the moving platform is desirable for the max-
imization of effective regular workspace. This coincides with
design results in [8].

Fig. 7-9 show distributions and contour plots of inverse
condition number in the maximal effective square workspace
when φ = 0o, −30o, and 30o, respectively. The minimal
value of κ over the maximal effective workspace is 0.1999,
which is a little smaller than the prescribed one, 0.2. Fig. 10
shows the translational workspace cross section generated by
the resulting optimal design at φ = 0o. The shaded square
region represents the cross section of the maximal effective
translational workspace at φ = 0o. It is completely contained
in the manipulator’s workspace and is far from the boundary,
which indicates that only the dexterity constraint (15) takes
effect. since the size of the moving platform is very small, it
affects little on translational workspace. Therefore, workspace
cross sections generated at different orientations are almost the
same.
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VI. EXAMPLE 3: OPTIMAL DESIGN OF A ROTATIONAL
DELTA ROBOT

In this section we consider a spatial parallel manipulator
with purely translational motion, the rotational DELTA robot,
as shown in Fig. 11. This architecture was invented by Clavel
[44] and is well-known due to its very high speed. The
mechanism consists of a base, a moving platform, and three
identical subchains connecting them together in parallel. All
the three subchains have the same RRPaR topology from base
to the moving platform, where R denotes a revolute joint, Pa a
parallelogram, and the underscored ”R” an actuated revolute
joint. The three actuated joints on the base are arranged
symmetrically, i.e. they, each being a vertex, constitute an
equilateral triangle. So do the three passive joints on the
moving platform. The kinematic parameters are depicted in
Fig. 12 for a rotational DELTA robot, where ai denotes the
length of upper leg AiBi, bi the length of the parallelogram,
and Ri = ‖OAi‖, ri = ‖PCi‖, i = 1, · · · , 3, with O a point
on the base and P a reference point on the moving platform.

Let ai = a, bi = b, Ri = R, ri = r, i = 1, · · · , 3 for
our symmetrical arrangement with identical subchains and O
and P be centers of the base and moving platform equilateral
triangles, respectively. An inertia frame is set up with the
origin coinciding with the base center O, the base triangle
being in the xy-plane, and OA being in the +x-axis. The +z-
axis points up and is perpendicular to the base triangle. The
reference point P = (x, y, z) represents the motion of the
moving platform. It is easy to derive three loop constraints as
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Fig. 11. A schematic of the rotational DELTA robot

Fig. 12. A subchain of the rotational DELTA robot

follows.

(x+ (d− a cos θi) cosϕi)
2 + (y + (d− a cos θi) sinϕi)

2

+(z + a sin θi)
2 − b2 = 0 (27)

for i = 1, · · · , 3, where θi is the i-th actuator angle, and
d = R − r. In the expressions ϕi denotes the relative angle
displacement between the i-th subchain and the +x-axis. In
our symmetric arrangement, ϕi = (i− 1) 2π

3 for i = 1, · · · , 3.
Differentiating the loop constraints (27) with respect to time

t we obtain the relationship JxẊ = Jθθ̇ between joint rate and
Cartesian velocities with

Jx =





vT1
vT2
vT3



, (28)

where vi = [x + (d − a cos θi) cosϕi, y + (d −
a cos θi) sinϕi, z + a sin θi]

T , i = 1, · · · , 3, and

Jθ = −diag(d1, d2, d3), (29)

where di = (x cosϕi + y sinϕi + d)a sin θi + za cos θi for
i = 1, · · · , 3. Thus we have a dimensionally homogeneous
kinematic Jacobian J = J−1

θ Jx. If all actuators are identical
and force/velocity requirements on x, y, z-axis are the same,
we don’t need to scale the Jacobian and use it directly in the

optimization.
In the design we consider a cubic shape for the regular

workspace W and let Φ = l, where l is the side length of the
cubic workspace. The center of the resultant maximal effective
regular workspace is indetermined and is regarded as design
parameters. However, the center should be in the z-axis, i.e.
(0, 0, zc), since the manipulator is symmetric with respect to
the z-axis. Therefore a set of design parameters is determined,
α = [a b d zc]

T , and the manipulator size is normalized using
a + b + d = 1. Certain limits are imposed on the actuated
and passive joints as in [45]. (a) −40o ≤ γi ≤ 40o due to
constructional constraints on the parallelogram’s articulations;
(b) 45o ≤ θi + βi ≤ 180o is imposed in order to avoid
interference between the upper legs and the parallelogram
rods when the angle is acute and to avoid ambiguities in
computation; and (c) −30o ≤ θi ≤ 100o is chosen. Given a
requirement on the dexterity of the resulting manipulator and
combining all other requirements, the optimal design problem
is formulated as follows.

Problem 4: Optimal design of a rotational DELTA robot
Find a set of optimal design parameters α such that

max
α

l

subject to κ(J(X, θ, α)) ≥ 0.4;

−30o ≤ θi(X,α) ≤ 100o;

45o ≤ θi + βi ≤ 180o;

−40o ≤ γi ≤ 40o, i = 1, · · · , 3;

a+ b+ d = 1;

a, b, d ∈ [0, 1], z ∈ [−1, 0];

where ∀X ∈ W .
The optimal values of design parameters and the corresponding
maximal size of effective regular workspace are given in Table
IV. We can see that d tends to zero, which indicates that a
same size of the base and the moving platform is desirable for
maximization of the effective regular workspace. This tallies
with our intuition.

Fig. 13-15 show distribution of inverse condition number
at cross sections of z = zc, z = zc − l∗, and z = zc + l∗

of the maximal effective cubic workspace. The minimal κ
in the maximal effective regular workspace is 0.3997, which
is a little less than the prescribed one, 0.4. Considering the
joint limits, the workspace generated by the DELTA robot is
the intersection of a right hexigonal prism with infinite hight
and three identical revolution volumes with different axes,
as shown in [44]. Fig. 16 shows workspace cross sections
generated by the resulting DELTA robot respectively at z =
zc − l∗ and z = zc, while Fig. 17 shows the workspace cross
section at z = zc+ l∗. The regions enclosed by squares in the
figures correspond to cross sections of the maximal effective
regular workspace. Clearly, in the Fig. 16 only the limits on
γi take effects, while in the Fig. 17 the workspace constraints
become effective. In the Fig. 16 the maximal effective reg-
ular workspace cross sections are perfectly contained in the
resulting workspace, while in the Fig. 17 the cross section
of the maximal effective regular workspace goes beyond the
boundary of the resulting workspace a little. This and the
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a b d zc Φ∗ = l∗

0.5837 0.4064 0.0099 -0.6889 0.129578

TABLE IV
OPTIMAL DESIGN PARAMETERS AND THE OPTIMUM FOR THE DELTA

ROBOT
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Fig. 13. (a) Inverse condition number of J at z = zc; (b) Contour plot of
the inverse condition number of J at z = zc.

small minimal κ are simply because only some representative
discrete points (in this example, only 9 points, the 8 vertices
and the center) are chosen to express the constraints. However,
an adjustment of the bounds of the constraints or a selection
of more representative points will lead to better results.

VII. EXAMPLE 4: OPTIMAL DESIGN OF A GENERAL
STEWART-GOUGH PLATFORM

In this section we consider to optimally design a commonly-
used Stewart-Gough platform, as shown in Fig. 18, which is
capable of 6-dof motion consisting of a 3-dof translational and
a 3-dof orientational motion. The manipulator is composed
of two platforms, the base (the lower one) and the moving
platform (the upper one), and six identical extensible legs in
parallel connecting them together. Each leg consists of three
joints, which in serial are SPS from base to the moving
platform, where S denotes a spherical joint while P is a
prismatic joint. Both the spherical joints are passive. Only the
P -joint is actuated to extend/retract the leg. Note the first S-
joint can be substituted by a universal joint without changing
motion of the moving platform.

Assume that the six joints on the base are coplanar and
constitute a semiregular hexagon, so do the six joints on
the moving platform. Their relative arrangement is shown in
Fig. 18. An inertia frame O − xyz is set up at the center
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Fig. 16. (a) xy workspace cross section at z = zc − l∗; (b) xy workspace
cross section at z = zc.

of the base with the z-axis pointing vertically upward. A
body frame P − uvw is attached to the center of the moving
platform with the w-axis normal to the platform, pointing
outward. The frames are set up such that the x-axis passes
both midpoints of A1A2 and A4A5 perpendicularly, and u-axis
passes both midpoints of B1B2 and B4B5 perpendicularly. At
the home position the body frame is assumed to have the same
orientation as the inertia frame.

We denote the lengths of the extensible legs by ρ1, · · · , ρ6

with ρi = ‖AiBi‖, i = 1, · · · , 6. Let ‖OAi‖ = a, ‖PBi‖ = b,
i = 1, · · · , 6. Let Ci be the mid-point of AiAi+1, and
Di be the mid-point of BiBi+1, i = 1, · · · , 6. Therefore
∠CiOCi+1 = π

3 , ∠CiOCi+2 = 2π
3 , and ∠DiODi+1 = π

3 ,
∠DiODi+2 = 2π

3 , i = 1, · · · , 6. Here we identify Aj with
Ai given j = i + 6n and i, j, n all natural numbers.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x

y

x−y Workspace at z=l*

Fig. 17. xy workspace cross section at z = zc + l∗
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Fig. 18. A schematic for the commonly used Stewart-Gough platform

Let ϕ = 1
2∠BiPBi+1, i = 1, 3, 5, and ϑ = 1

2∠AiOAi+1,
i = 2, 4, 6. Assume A0 = [a 0 0]T and B0 = [b 0 0]T , we
find the coordinate for Ai with respect to frame O − xyz,

Ai = Rz(ξi(ϑ))A0, i = 1, · · · , 6 (30)

where Rz(·) is a transformation matrix representing a rotation
about the z-axis a certain angle, and ξi(ϑ) denotes the angle
made by the +x-axis and the vector OAi counterclockwise
and is a function of ϑ. Similarly, with respect to the body
frame P − uvw, the coordinates of Bi are given as follows.

Bbi = Rw(ζi(ϕ))B0, i = 1, · · · , 6 (31)

where Rw(·) denotes a rotation about the w-axis a certain
angle, and ζi(ϕ) represents the angle made by the +u-axis
and the vector PBi counterclockwise. Note the superscript b
denotes a coordinate with respect to the body frame.

The configuration of the moving platform can be described
by both the position of the reference point P = (x, y, z) and
the orientation of the moving platform (φ,β,ψ), which are the
ZYX Euler angles. The orientation of the body frame P−uvw
is obtained by the following sequence of rotations from the
inertial frame O − xyz, first rotate frame P − uvw about the
u-axis in the body frame an angle φ (roll), then about the
v-axis in the (resulting) body frame an angle β (pitch), and
finally about w-axis in the (resulting) body frame an angle ψ
(yaw). The orientation matrixs can be represented by

R =





cβcψ −cφsψ + sφsβcψ sφsψ + cφsβcψ
cβsψ cφcψ + sφsβsψ −sφcψ + cφsβsψ
−sβ sφcβ cφcβ



 .

Here sφ, cφ are abbrevations for sinφ and cosφ, respectively,
and similar for the other terms. Therefore the homogeneous
transformation from positions in body frame to the inertia
frame is described by the transformation matrix as follows.

g =

[

R p
0 1

]

where p = [x y z]T , the position of the P with respect to
the inertia frame O − xyz. The homogeneous expression of

the coordinate of Bi with respect to the inertia frame can
expressed as follows.

Bhi = gBbhi (32)

where the superscript h denotes an homogeneous expression
and Bbhi represents the homogeneous expression of Bb

i , which
is obtained by appending an element 1 to the end of Bb

i . There-
fore a loop-closure equation can be derived from ‖AiBi‖ = ρi
or

ρ2
i = AiB

T
i AiBi = (gBbhi −Ai)

T (gBbhi −Ai).

Let Fi = (gBbhi −Ai). Differentiating the equation above for
i = 1, · · · , 6 and stacking them together, we obtain differential
kinematics of the Stewart-Gough platform.

Jρρ̇ = JxẊ (33)

where ρ̇ = [ρ̇1, · · · , ρ̇6]
T , Ẋ = [ẋ ẏ ż φ̇ β̇ ψ̇]T , Jρ =

diag{ρ1, · · · , ρ6} and

Jx =















FT
1

∂g
∂x

b1 FT
1

∂g
∂y

b1 FT
1

∂g
∂z

b1 FT
1

∂g
∂φ

b1 FT
1

∂g
∂β

b1 FT
1

∂g
∂ψ

b1

FT
2

∂g
∂x

b2 FT
2

∂g
∂y

b2 FT
2

∂g
∂z

b2 FT
2

∂g
∂φ

b2 FT
2

∂g
∂β

b2 FT
2

∂g
∂ψ

b2

...
...

...
...

...
...

FT
6

∂g
∂x

b6 FT
6

∂g
∂y

b6 FT
6

∂g
∂z

b6 FT
6

∂g
∂φ

b6 FT
6

∂g
∂β

b6 FT
6

∂g
∂ψ

b6















where bi = Bbhi . Therefore the kinematic Jacobian can be
derived by J = J−1

θ Jx. Since the Jacobian J is dimensionally
inhomogeneous, the elements in the last three columns of J
are divided by b and a dimensionally homogeneous Jacobian
Ĵ is obtained, as discussed in Section II-C.

Similar to the example of the 3-RRR parallel manipulator,
the effective regular workspace of the Stewart-Gough platform
is composed of two portions, the translational one W1 and
the rotational one W2. Here we maximize the translational
portion while fix the rotational portion as a prescribed
rotational workspace. In other words, for every point in the
translational portion, the manipulator is required to have a
rotational workspace at least containing the rotational portion.
Here we require the manipulator at least have a rotational
capability of W2 = [φ0, φ1]× [β0, β1]× [ψ0, ψ1] in W1, where
φ0 and φ1 are respectively the lower and upper bounds for
the Euler angle φ, and similar case for the other terms. This
is a usual requirement in practical design.

Let’s still consider a cubic shape for the translational
regular workspace W1 and let l be its side length, the
objective function is thus Φ = l. The actuation limits are
normalized and given as ∆ρi ∈ [0, 1], i = 1, · · · , 6. A
constraint on the manipulator size is given as a+ ρ0 + b = λ,
where ρ0 is the leg length at home position (where all leg are
half actuated), and λ a given constant representing the relative
size of the manipulator with respect to the actuation length.
In the simulation, λ = 2. The center of the maximal cubic
workspace is given as (0, 0, zc, 0, 0, 0)T since the manipulator
is architecturally symmetric about the z-axis. Thus the set
of design parameters is α = [a b ρ0 ϑ ϕ zc]. The dexterity
requirement is given as κ ≥ γ with γ = 0.2. The optimal
design of a Stewart-Gough platform is given as follows.
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a b ρ0 ϑ ϕ zc Φ∗ = l∗

0.6153 0.0631 1.3216 1.0419 1.0416 1.1955 0.2914

TABLE V
OPTIMAL DESIGN PARAMETERS AND THE OPTIMUM FOR THE

STEWART-GOUGH PLATFORM

Problem 5: Optimal design of a Stewart-Gough plat-
form
Find a set of optimal design parameters α such that

max
α

l

subject to κ(Ĵ(X, θ, α)) ≥ 0.2;

ρ0 − 0.5 ≤ ρi(X,α) ≤ ρ0 + 0.5;

a+ b+ ρ0 = 2;

a, b, zc ∈ [0, 2], ρ0 ∈ [0.5, 2], ϑ, ϕ ∈ [0,
π

3
];

for all X ∈ W and i = 1, · · · , 6.
Using the CRS algorithm, we obtain the optimal values of the
design parameters and their corresponding optimum as shown
in Table V. If we define the actuation efficiency as ratio of the
size of the maximum effective regular workspace to the range
of the actuated joints, we can see that the actuation efficiency
is 2 × l∗ ≈ 0.58, which is relatively high. The values of ϑ
and ϕ are both very close to π/3, which suggests that both
the base and the moving platform degenerate to equilateral
triangles and the corresponding joints coincide pairwise. In
the optimal geometry, the size of the moving platform, b,
tends to zero. This really reflects the requirement of workspace
maximization.

Fig.19 shows distribution of the dexterity index κ(Ĵ) at
xy cross section of the resulting maximal effective regular
workspace at (z, φ, β, ψ) = (zc, 0, 0, 0). Fig.20-23 show
distribution of the dexterity index at other four cross sections,
where the minimal κ is equal to or very near γ = 0.2.
Especially in Fig. 21 and 23, where respectively z = zc − l∗

and z = zc + l∗ while (φ, β, ψ) = (−20o, 20o, 20o), κmin =
0.2000. This indicates that the dexterity constraint (15) takes
effect in those cases. Fig. 24 shows the cross sections of
the workspace generated by the resulting manipulator at z =
zc − l∗, zc − l∗/2, zc, zc + l∗/2, zc + l∗ when (φ, β, ψ) =
(0, 0, 0). The shadowed square, which is well contained in all
five cross sections, is the corresponding cross section of the
maximal effective regular workspace. Fig. 25 and 26 show
two worst cases of workspace containment when (φ, β, ψ) =
(20o,−20o,−20o) and (−20o,−20o, 20o). In those cases, the
maximal effective workspace touches the workspace boundary
produced by the resulting manipulator.

VIII. DISCUSSIONS AND REMARKS

From the optimal results in the simulation, we can see
that the sizes of moving platform are all very small, which
indicates that a zero-size moving platform is desirable for the
maximization of effective regular workspace. This coincides
with the results by Gosselin and Angeles [8] for workspace
maximization of a 3-RRR planar parallel manipulator. In the
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example of the five-bar parallel linkage, the length of the base
link is required to be zero.

In the examples of the five-bar parallel linkage, the 3-RRR
planar parallel manipulator, and the DELTA robot, their min-
imal inverse condition number in the corresponding maximal
effective regular workspace are all a little bit smaller than
the prescribed one. In addition, the maximal effective regular
workspaces of the optimal geometries of the five-bar parallel
linkage and the DELTA robot exceed a little the workspace
boundary generated by the corresponding optimal manipu-
lators. Both constraints on workspace and inverse condition
number are violated. This is simply because we discretize the
Cartesian regular workspace and use the obtained nodes to
represent constraints on all points over the regular workspace.
This of course introduces errors. However, the errors are rather
small and they’re even acceptable in engineering design. On
the other hand, we can reduce or eliminate the effects of
discretization of regular workspace by applying a little bit
stricter constraints of (15) and (16), say a little bit larger γ
and a little bit smaller ranges for actuation.

In the simulation, the algorithm performed robustly. It con-
verged regardless initial points. The simulation was conducted
in the Matlab environment using a notebook computer with an
Intel Pentium(M) processor of 1.3G. Also the running time is
acceptable. Table VI shows some typical running times and
independent variables of the previous design examples.
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zc,z = zc + l∗/2, and z = zc + l∗ when (φ, β, ψ) = (20o,−20o,−20o)
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Fig. 26. xy workspace cross section at z = zc − l∗, z = zc − l∗/2, z =
zc,z = zc + l∗/2, and z = zc + l∗ when (φ, β, ψ) = (−20o,−20o, 20o)

IX. CONCLUSION

In this paper, we presented a systematic procedure for
kinematic synthesis of parallel manipulators. First, a novel
and practical formulation for maximization of effective regular
workspace was proposed. Then, we proposed a physically
meaningful method for dealing with the dimensional inhomo-
geneity problem of the kinematic Jacobian. Finally, by the
nature of the optimal design problem, the CRS technique
was provided to solve the problem. It is reliable and robust.
Kinematic synthesis of four typical parallel manipulators were
carried out and the results show the effectiveness of the design
procedure.

Example 1 1.1 2 3 4
No. ind. var. 3 6 3 3 5
running time (s) 140.1210 481.8330 267.5240 248.0370 14916

TABLE VI
RUNNING TIME FOR SIMULATIONS OF DIFFERENT MANIPULATORS
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APPENDIX I
CONVERGENCE PROOF BY SOLIS AND WETS

Solis and Wets [32] Considered a general minimization
problem as follows.

Problem 6: Given a function f : R
p → R and a subset

S ⊂ R
p, find a point α ∈ S which minimizes f on S or at

least which yields an acceptable approximation of the infimum
of f on S.
They proposed a conceptual algorithm to solve the problem
above. Clearly the CRS algorithm is in this category.

Algorithm 2: The conceptual algorithm of Solis and
Wets [32]

step 0: Find α(0) ∈ S and set k = 0;
step 1: Generate ξ(k) from the sample space (Rp,B, Pk),

where B is the Borel σ-algebra on R
p;

step 2: Set α(k+1) = D(α(k), ξ(k)), choose Pk+1, set
k = k + 1 and return to step 2.
Here the map D : S × R

p → S satisfies the following
condition.

(H1) f(D(α, ξ)) ≤ f(α) and if ξ ∈ S, f(D(α, ξ)) ≤ f(ξ).

The Pk are probability measures corresponding to distribution
functions of the k-th iteration defined on R

p. The condition
(H1) means that the map D can always produce a point
D(α, ξ) which has a value of the objective function f no larger
than the current minimum.
To exclude global minima that will be impossible to detect it
is assumed that the global minimum of f(α) is the essential
infimum f∗

e of f(α). The convergence to a point in the
optimality region Rε,M is considered where

Rε,M =

{

{α|α ∈ S, f(α) < f∗
e + ε}, if f∗

e is finite

{α|α ∈ S, f(α) < M}, if f∗
e = −∞

and ε > 0, M < 0.
(H2) For any (Borel) subset A of S with ν(A) > 0, we

have that
∞
∏

k=0

[1 − Pk(A)] = 0,

where ν is a non-negative measure defined on the (Borel)
subsets B of R

p with ν(S) > 0. Typically ν(A) is simply the
n-dimensional volume of the set A, more generally ν is the
Lebesgue measure. It means that given any subset A of S
with positive ”volume”, the probability of repeatedly missing
the set A, when generating the random samples ξ(k), must
be zero. This requires that the sampling strategy, which is
determined by the choice of the Pk, cannot rely exclusively
on distribution functions concentrated on proper subsets of
S of lower dimension (such as discrete distributions) or that
consistently ignore a part of S with positive ”volume” with
respect to ν.

Theorem 1: Convergence Theorem
Suppose that f is a measurable function, S is a measurable
subset of R

p and (H1) and (H2) are satisfied. Let {α(k), k =
0, · · · ,∞} be a sequence generated by the algorithm. Then

lim
k→∞

P{α(k) ∈ Rε,M} = 1, (34)

where P{α(k) ∈ Rε,M} is the probability that at step k, the
point α(k) generated by the algorithm is in Rε,M .
Proof: From (H1) if follows that α(k) or ξ(k) implies that
α(l) ∈ Rε,M for all l ≥ k + 1. Thus

P{α(k) ∈ Rε,M} = 1−P{α(k) ∈ S−Rε,M} ≥ 1−

k
∏

i=0

(1−Pi(Rε,M ))

and hence

1 ≥ lim
k→∞

P{α(k) ∈ Rε,M} ≥ 1− lim
k→∞

k−1
∏

i=0

(1−Pi(Rε,M )) = 1

where the last equality follows from (H2). This completes the
proof.
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