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On Geometric Algorithms for Real-Time Grasping
Force Optimization

Guanfeng Liu, Jijie Xu, and Zexiang Li, Member, IEEE

Abstract—Grasping force optimization with nonlinear friction
constraints is a fundamental problem in dextrous manipulation
with multifingered robotic hands. Over the last few years, by
transforming the problem into convex optimization problems
on Riemannian manifolds of symmetric and positive definite
matrices, significant advances have been achieved in this area.
Five promising algorithms: two gradient algorithms, two Newton
algorithms, and one interior point algorithm have been proposed
for real-time solutions of the problem. In this paper, we present
in a unified geometric framework, the derivation of these five
algorithms and the selection of step sizes for each algorithm.
Using the geometric structure of the affine-scaling vector fields
associated with the optimization problem, we prove that some of
these algorithms have quadratic convergence properties, and their
continuous versions are exponentially convergent. We evaluate
the performance of these algorithms through simulation and
experimental studies with the Hong Kong University of Science
and Technology (HKUST) three-fingered hand. This study will
facilitate selection and implementation of grasping force optimiza-
tion algorithms for similar applications.

Index Terms—Affine-scaling vector fields, convergence analysis,
gradient algorithm, interior point algorithm, Newton algorithm,
semidefinite programming, step size selection.

I. INTRODUCTION

AUTOMATIC generation of grasping forces is a central
problem in dextrous manipulation by multifingered

robotic hands. The problem amounts to finding optimal finger
forces by minimizing some suitably defined objective func-
tions while respecting constraints associated with physics of
contact imposed on the fingers. The difficulty of the problem
stems from the fact that both the constraints and the objective
functions are nonlinear, load wrench and grasp configurations
often change with time and real-time solutions are required.
Other applications of the problem include force distributions
for walking robots [1], and coordinated control for multiple
manipulating arms [2], [3].

Early research in this area includes mathematical models of
contact and grasp [4]–[9], and formulation and solution of the
grasping force optimization problem using either linear pro-
gramming-based techniques [5], [1], [10] or nonlinear program-
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ming-based techniques [11]–[14]. In the former case, lineariza-
tion of the friction cones are involved and the computed solu-
tions are, thus, conservative. In the latter case, only offline solu-
tions can be obtained with current hardware platforms and are,
thus, impractical.

A major breakthrough in the study of grasping force opti-
mization was made by Buss et al. [15]. Based on the important
observation that the friction cone constraints are equivalent to
positive definiteness of certain symmetric matrices, they trans-
formed the problem into a convex optimization problem in some
properly defined Riemannian manifolds with linear constraints,
for which several gradient flow type algorithms were developed
for real-time computation of optimal grasping forces [16], [17].
However, when these algorithms were applied to time-varying
contacts and for systems with a modest number of fingers, the
computation task could become excessive. The problem was
significantly improved in Li and Qin [18] by splitting the com-
putation into an online and an offline component and exploring
block matrix inversion techniques with sparse matrices. For ex-
ample, the computation time for a two-fingered manipulation
with rolling contact was reduced from 3 to 0.08 s on a Mo-
torola 68 040 processor [18]. Han et al. [19], [20] further real-
ized that the friction cone constraints can be formulated as linear
matrix inequalities (LMIs) and the grasping force optimization
problem as a convex optimization problem involving LMIs, with
the function as the objective function. The interior
point algorithm [21], [22] is used to provide efficient solutions to
the problem with either fixed or time-varying points of contact,
and also for a modest number of fingers. Recently, Helmke et al.
[23] refined the semidefinite representation of the friction cone
constraints in which the structure constraints of [16], [17] are
eliminated and the corresponding dimension of the optimization
problem is significantly reduced. They proposed an estimation
technique and a recursion method for selecting an appropriate
step size in the gradient algorithms and proved their quadratic
convergence properties.

The work of Han et al. [20], Buss et al. [15], and Helmke et
al. [23] leads to five competing algorithms for the grasping force
optimization problem. In order to facilitate selection, imple-
mentation and application of these algorithms in actual robotic
systems, we aim to study in this paper several important as-
pects of these algorithms. First, after a review of these five al-
gorithms in a common framework, we will address the issue of
step size selection in each of the algorithms. Second, as all algo-
rithms require an initial condition that satisfies the friction cone
constraints and the force balance equation, we will develop a
method for a complete solution of the initial point problem. This
make it possible for automatic generation of grasping forces.
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Fig. 1. k-fingered hand grasping an object.

Third, quadratic convergence properties for some of the algo-
rithms will be established. Finally, simulation and experimental
studies on the real-time performances and convergence rates of
all five algorithms will be performed. The Hong Kong Univer-
sity of Science and Technology (HKUST) three-fingered hand,
as shown in Fig. 2 will serve as the common platform for all ex-
periments. The software codes implementing all five algorithms
will be made available to the public and can be downloaded from
www.ee.ust.hk/~ liugf/software.

The paper is organized as follows. In Section II, we formulate
the grasping force optimization problem as a pro-
gramming problem. In Section III, we review two Riemannian
metrics on the underlying configuration space and their asso-
ciated gradient vector fields. In Section IV, we formulate the
five candidate algorithms for evaluation in a unified framework,
and discuss selection of step sizes. In Section V, we present two
methods for automatic generation of initial conditions for the
grasping force optimization algorithms. In Section VI, we estab-
lish the quadratic convergence properties of some of the algo-
rithms. In Section VII, we incorporate results from the grasping
force optimization algorithms for eventual computation of fin-
gertip motions in a multifingered hand manipulation system. In
Section VIII, we give simulation and experimental results com-
paring the performance of the five algorithms. Finally, in Sec-
tion IX, we conclude the paper with a brief discussion of future
work.

II. GRASPING FORCE OPTIMIZATION AS A MAX-DET PROBLEM

Consider the task of grasping or manipulating an object
using a -fingered hand, as shown in Fig. 1. Denote by

, the
finger forces of the hand and the grasp map [24].
Static balance of all forces exerted on the object implies that

(1)

where is an external wrench. The physics of contact
imposes a nonlinear quadratic constraint on all finger forces.
For a point contact with friction, we have and

(2)

Fig. 2. HKUST 3-fingered hand manipulating a spherical object.

and for a soft finger contact, , and

(3)

Here, and are the tangential force components, the
normal force, and the moment along the contact normal.

and model the Coulomb friction coefficient and the tor-
sional friction coefficient, respectively, see [15], [17], [20], and
[25] for a detailed modeling of grasping statics and friction cone
constraints.

Buss et al. [15] made an important observation that (2) is
equivalent to positiveness of the following symmetric matrix:

(4)

equation (3) to

(5)

and the totality of the hand constraints to

(6)

where or . Helmke et al. [23] refined the constraint
representation of (2) to the positive definiteness of the 2 2
matrix

(7)

equation (3) to

(8)

where , and the totality of the hand constraints to

(9)
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where . Note that the reduction on problem dimension
due to this reduced representation of constraints in (7) and (8)
is significant. For a two-fingered hand with soft finger contact,

versus , and for a three-fingered hand with fric-
tional point contact, versus . Furthermore, the
structure constraints on the elements of (4) and (5), and then (6)
have been eliminated. We will use representation (9) in the rest
of the paper.

Another observation by Han et al. [20] is that (9) is of the
form LMIs, studied extensively in [21]

(10)

with and a reordering of indexes for the finger forces.
The force balance (1) is translated into a set of linear constraints

(11)

where are symmetric -block diagonal matrices with
dimension , the th component of the external wrench

. We will assume that the ’s, are lin-
early independent, and using the scheme of [23] or the standard
Gram–Schmidt process to orthonormalize the ’s. This will
greatly reduce the computational effort in some algorithms to
be introduced later. Define the set of admissible finger forces
by

is a convex set as it is the intersection of a hyper-plane
(convex) with a convex cone. The formulation of
the grasping force optimization problem is stated as follows.

Problem 1: Max-Det Problem :

(12)

subject to (13)

(14)

or in terms of as

(15)

subject to (16)

(17)

where is a constant weighting matrix with the same
dimension as that of and with

. The first (or the linear) term of the objective
function is used to restrict the normal grasping force
because that may destroy the object as well as the fingers. The
second term, , tends to infinity as any contact force
approaches the boundary of its friction cone and, thus, yields
optimal grasp forces interior to their friction cones. Given the
optimal solution of either problems, the optimal finger force

can be derived accordingly.

III. RIEMANNIAN METRICS AND GRADIENT COMPUTATION

Denote by the set of symmetric (or Hermitian)
matrices and the set of symmetric (or Hermitian) positive

definite matrices. is a Riemannian manifold of dimension
on which the cost function (12) is defined. Existing

algorithms for Problem 1 are of the gradient type. To derive the
gradient vectors of (12), we will need to specify the Riemannian
metrics. Two such metrics are specified as follows. First, note
that for all , the tangent space to at is
given by , i.e., . The Euclidean metric on
is defined as

(18)

Similar to the hybrid velocity/force control literature [26]–[28],
by differentiating the constraints (13), we obtain a decomposi-
tion of the total velocity space as

(19)

where

Clearly, the subspace of dimension repre-
sents the set of “allowable velocities” as in the hybrid control
literature. To compute the directional derivative of at

in the direction , we let be such that
. The curve satisfies

and . Thus,

(20)

The gradient vector is defined as

(21)

from which and (20), we obtain

(22)

Denote by the Euclidean projection of onto along .
We now project to the constrained subspace by
writing

(23)

where is the projection of to
. Clearly, because of the orthonormality of the ’s, we have

, and

(24)

To calculate the second Frechet derivative of at ,
we use the curve that satisfies

and . Then,

(25)
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The cost function (12) is easily shown to be convex as

(26)

This allows us to introduce another Riemannian metric on

(27)

The gradient of at with respect to is defined as [29]

(28)

from which we have

Similar to (23), we project to , yielding the con-
strained gradient

(29)

where

Note that the normal subspace of under the new metric
translates into

(30)

It will be clear later that introducing the Riemannian metric
and its respective gradient will be very important when we es-
tablish the equivalence between the Newton algorithm and the
constrained gradient algorithm.

IV. ALGORITHMS FOR GRASPING FORCE OPTIMIZATION AND

STEP SIZE SELECTIONS

The work of Buss et al. [15], Buss et al. [17], Han et al. [20],
and Helmke et al. [23] lead to five algorithms competing for so-
lutions of Problem 1. The main difference of these algorithms
lies in the way that the friction cone constraints are represented
and the step sizes are selected. Because of this, the computa-
tion efficiency of each algorithm is different. In this section, we
formulate these algorithms in a unified framework and discuss
selection of step sizes for each algorithm.

A. Dikin-Type Algorithm

Dikin-type algorithm was first applied by Faybusovich [30]
to solve matrix linear programming problems. In the current
setting, it can be conveniently summarized as [17], [23]

(31)

where denotes the gradient of . Dikin-type algo-
rithm first generates a maximal value such that

and then a line searching method is applied to search an
such that is minimized. can be speci-

fied as

(32)

Lemma 1: If , and is
satisfied for the symmetric , then .

Proof: Note that

(33)

Since

we have that , where is the th eigenvalue
of . Hence, , and
it follows that .

Lemma 2: If , and is
satisfied for the symmetric , then . Here,
is the maximal singular value or the matrix two-norm of .

Proof: Rewrite as (33). Note that

implies that , where
represents the maximal eigenvalue of . Consequently,

, or equivalently .
Note that is closely related to which can be specified

in two ways. First, let

where the metric is given in (27). Then from
and Lemma 1. Second, we introduce

metric as

and let , similarly
from and Lemma 2.

Algorithm 1: Dikin-Type Euclidean Gradient Algo-
rithm: Based on the above discussion and adopting the
Euclidean gradient (24), we have the following algorithm [30]:

(34)

where is obtained through the line searching method

Algorithm 2: Dikin-Type Riemannian Gradient Algo-
rithm: Adopting the gradient (29) yields Dikin-type Rie-
mannian gradient algorithm [17]

(35)

where a line searching method is applied to find the optimal
.
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Remark 1: The norm used in (34) and (35) can be re-
placed by .

B. Newton Algorithm

Another method to optimize is by using the familiar
Newton algorithm [22]

(36)

where is the restriction of to such that
. Since gives the

Riemannian metric on at , as shown in (25) and (27), i.e.,

we have

(37)

Hence, the Newton algorithm (36) is essentially a Riemannian
gradient algorithm. Let .

is convex as is convex, a standard result in
convex analysis [31]. The maximum step size that
ensures is the smallest positive real root of

. A sufficient and necessary
condition for the best step size is

(38)

Since , we have . Based
on the special property of (38), can be estimated in two dif-
ferent ways which lead to two different algorithms, see [23] for
the detail of derivation.

Algorithm 3: Newton Algorithm With the Estimated Step
Size: One approximation of is given by

(39)

where

Applying the standard Lyapunov-type argument yields the con-
vergence of this algorithm.

Algorithm 4: The Newton Algorithm With the Recur-
sive Step Size Estimation: can also be estimated
through iteration. We construct a monotone increasing se-
quence through the recursion

such that

if and only if

It is easy to show that such a sequence will converge to a fixed
point of , i.e., . The iteration can be
constructed as follows:

where and are the first- and second-order
derivatives of the cost function with respect to

where .
In fact, if is known (as given later), then can be

derived by using the line or bisection searching method.

C. Interior Point Algorithms for the Max-Det
Problem Subject to LMIs

An alternative approach to the grasping force optimization
problem, given by Han et al. [20], is to solve the
problem of (15). The affine constraints can be elimi-
nated by substituting to (16)

where
is a special solution, a matrix whose
columns forming a basis for the null space of ,

, and ,
with the th element of . Under this

transformation, (15) is translated to the standard
problem subject to LMIs [21]:

(40)

(41)

(42)

where

Here, we have the freedom of arbitrarily selecting ’s,
. The only requirement is that the matrices

, , be linearly independent. One
particular choice is that and , ,
see [32] for details on other related parameters. We consider
the central path of the problem (40)–(42)

The central path will converge to , the optimal solution
of (40), as goes to . We summarize the path-following inte-
rior point algorithm as follows, see [21] for a similar algorithm
using the primal-dual properties of the problem.
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Algorithm 5: Interior Point Algorithm: Input: given strictly
feasible , , and the tolerance ;

Output: the optimal solution for the problem
(40):

Step 1) compute using the Newton algorithm;
Step 2) if , output ;
Step 3) else and increase , go to Step 1.

Remark 2: Problem (40) also provides a way to generate
that may be used in the Newton algorithm. This is done

through

V. INITIAL POINT ALGORITHMS

The algorithms we discussed above still require an initial
point that satisfies , or that satisfies .
Automatic generation of a valid initial condition or is cru-
cial for real-time generation solution of the grasping force opti-
mization problem.

A. Han et al. Method

Han et al. [20] provided a partial solution to this problem by
translating it into another problem subject to LMIs

(43)

(44)

(45)

where and . Note that
in (45) is a base matrix added artificially. Algo-

rithm 5 can be applied to solve this problem with the following
initial condition:

where denotes the minimum eigenvalue of .
Once the optimal value of , the vector

is then a valid initial point for (40), as seen
from (45). In [25], we gave an example showing that this method
can sometimes suffer from singularity problems and proposed
the following gradient method when the system is singular.

B. Gradient Method

In (41), the matrix is a linear combination of constant
base matrices, a distinct property based on which we can derive
the gradient flow of its minimal eigenvalue [25]. Let
be the minimal eigenvalue of .

Theorem 1: Gradient Flow of : The monotone in-
creasing flow of is given by

...

where is the unit eigenvector of corresponding to the
minimal eigenvalue.

Proof: See [25].
Algorithm 6: Gradient Algorithm for a Valid Initial Condi-

tion:

The performance of this algorithm depends on the step size .

VI. CONVERGENCE ANALYSIS

Denote by

the domain of Problem 1 which is assumed to be bounded in
all of the following discussions. Since both and are
convex, Problem 1 is termed a convex optimization problem,
and possesses a unique optimal solution, denoted
[31]. It is not difficult to prove that

Theorem 2: is an optimal solution of Problem 1 if and
only if

or

Proof: Since when goes to the
boundary of , the unique optimal solution . Hence,
at this point we have

(46)

or equivalently

The equivalence between and
can be established according to (29) and (30)

Algorithm 2, 3, 4 can be conveniently summarized in a uni-
fied form

(47)

which satisfies the following two remarkable common proper-
ties: (1) if ; (2) has a
unique fixed point satisfying . The only
difference lies in the selection of the step size . Note that if
we replace in (47) by , we obtain Algo-
rithm 1. These two important properties allow us to prove the
following result.
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Theorem 3: By Algorithm 1–4

Proof: Note that the sequence , is mono-
tone decreasing and bounded from below. Therefore

Let

If , can not be the invariant set under (47) as

according to the second property of (47). Therefore

Second, we see that

constitutes a set of closed neighborhoods of which satisfy

There is only one point contained in all these sets. A standard
result from real analysis shows that

This will become more clear if we consider the continuous
version of (47)

(48)

with being assumed to be constant, e.g., . Since (48) is
a first-order O.D.E., we will obtain a unique integral curve
given an initial point . Define

can be proved to be a diffeomorphism from to [33].
Moreover, satisfies the following first-order O.D.E.:

Therefore, the integral curve is given by

and

(49)

since as seen from (46), we have

(50)

Previous discussion shows the convergence of Algorithm 1–4.
The same result of Algorithm 5 can be found in [21]. How-
ever, this is not complete. Experimental results [15], [17], [20]
have shown that some algorithms based on Problem 1 have
better convergence rates than those nonlinear programming al-
gorithms [11]. This motivates us to analyze the convergence
rates of these five algorithms. There are two quantities by which
we can measure how much deviates from . The first one is
the distance between and

becomes a metric space by defining . The other is the
length of the gradient vector

as implied by Theorem 2. Helmke et al. [23] used to prove
the quadratic convergence of Algorithm 3 and 4. However, their
approach relies on a condition that the differential is Lips-
chitz continuous in a neighborhood of that requires a quite
complicated proof. Here, , with its beautiful geometric struc-
ture, is utilized to prove the convergence of Algorithm 2–4. Let

be the affine scaling vector fields [33]

because , as given in (29), explicitly depends on
and , . Consider the action of on

This action is transitive and isometric on .
Proposition 1: With the Riemannian metric defined as (27),

the group acts on by isometries.
Proof: Under the action of , ,

, and . From
(27), we have

The affine scaling vector field processes another important
property:

(51)
where , and , . This can
be shown through replacing in (29) by and simpli-
fying the left-hand side of (51).

Combining the above two results, we are able to
calculate ,

.
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Fig. 3. Control diagram for a k-fingered hand manipulating an object.

Proposition 2:

where and . denotes
the Frobenius norm.

Proof: Let , by (51) we have

Then, by Proposition 1, we have

Since

and the Riemannian metric at identity degenerates to the trivial
metric, we have

the results follows.
With these preparations, we are able to prove the main result

about the convergence of Algorithm 2–4.
Theorem 4: Under the recursion

we have

Proof: See Appendix A.
Remark 3: If , we conclude that Algorithms 2,

3, and 4 have at least quadratic convergence rates since we have
searched a better step size than just 1 in

Remark 4: As for the continuous version (48) is considered,
converges exponentially to the optimal solution as seen

from (49) and (50).

VII. HAND KINEMATICS AND CONTROL

Based on the results of previous sections, we propose in this
section a control algorithm for a multifingered robotic hand to
manipulate an object from an initial configuration to a desired
final configuration without dropping it. The control objectives to
be achieved are desired motions of the object, optimal contact
configurations and desired optimal grasping forces computed
by the grasping force optimization algorithms. The control in-
puts to be specified are the velocities of the fingertips, which
are in turn realized by some well-known joint-level control algo-
rithms. See [18] and Fig. 3 for the control system architecture of
the HKUST hand. In the following, we will derive the fingertip
velocities from the velocities of the object, desired motion of the
contact points, and the desired finger forces.

As shown in Fig. 1, we define the following coordinate
frames: is the palm frame fixed to the hand palm, and
the frame fixed to the center of the mass of the object. For
each finger in the hand, attach a frame to the fingertip, and
local frames and to the object and the th finger at the
point of contact, respectively. Please refer to [24] and [8] for
further notations and the various kinematic relations about the
multifingered manipulation system.

Denote the forward kinematics map of frame relative to
frame . The forward kinematics of the th finger-object system
is expressed as

(52)

where , are constant transformations. Dif-
ferentiating (52) yields

where is the contact velocity of finger with re-
spect to the object. To simultaneously control finger forces and
contact locations, we split the contact velocity into two
components and as follows. First, is speci-
fied along the direction of contact coordinates variation through
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Montana’s kinematics of contact. For a frictionless point con-
tact model, we have

for a point contact with friction model, we have

and for a soft finger contact model, we have

Here, following the notation in [24], a contact configuration of
finger is described by .
and are the local coordinates of contact rel-
ative to the object and the finger, respectively. denotes the
contact angle. ( , , ) and ( , , ) are, respec-
tively, the geometric parameters of the object and the finger at
the th point of contact, and and are given by

and

Note that the rate of change of the contact coordinates can be
specified by minimizing some grasp quality functions as in [18],
[34], and [35]. A general design methodology for grasp quality
measures is given in [36]. The second component of of
the contact velocity is chosen to be perpendicular to and

is used to regulate finger force through a compliance
control scheme , where is a compli-
ance matrix.

Summarizing our discussion, we propose the following con-
trol algorithm for the desired finger velocity:

(53)

where is the desired rate of change of the contact coordinates,
as specified by minimizing some grasp quality functions, is
the desired finger force computed from the grasping force opti-
mization algorithm. In real implementation, is directly mea-
sured through tactile sensors, and the remaining components of

are computed by inverting Montana’s kinematic equations of
contact. is obtained through force/torque sensors integrated
with the fingers (see Fig. 2). Fig. 3 shows the block-diagram of
this controller.

TABLE I
COMPARISON OF REAL-TIME PERFORMANCE OF THE FIVE ALGORITHMS

UNDER TWO DIFFERENT REPRESENTATIONS OF FRICTION CONE CONSTRAINTS

TABLE II
COMPARISON OF REAL-TIME PERFORMANCE OF THE FIVE ALGORITHMS FOR

GRASPING FORCE OPTIMIZATION

VIII. SIMULATION AND EXPERIMENTAL RESULTS: A
COMPARATIVE STUDY

In this section, we perform simulation and experiments to
evaluate the real-time performance of the proceeding algorithms
for grasping force optimization.

A. Simulation Results

We first apply the five algorithms to a 3-fingered hand
grasping a spherical object (see Fig. 2) and compare their
computation time from a given initial force to the optimal
grasping force under given tolerances. To show how the dif-
ferent representations of the friction cone constraints affect the
real-time performance of the optimization algorithms, we use
two different representations of the friction cone constraints,
the Bush, Moore, and Hashimoto (BHM) representation [15]
and the Helmke, Hueper, and Moore (HHM) representation
[23]. The simulation results are shown in Table I. From Table I,
we conclude that using the HHM representation, we can reduce
the computation time in Algorithm 1–4 to almost one fifth
that of the BHM representation, and in Algorithm 5 to about
one half. This is because we only increase the dimension of
the base matrices to which the interior point algorithm is not
sensitive, but not the number of independent variables (finger
forces). Moreover, we implement the five algorithms on two
simulation systems with different setups to show how the ex-
ternal environment, such as tolerances, operation systems and
processors, affect the real-time performance of the algorithms.
The simulation results are shown in Table II. We conclude
from this study that among the five algorithms, Dikin-type
Euclidean gradient algorithm (Algorithm 1) and the interior
point algorithm (Algorithm 5) have obvious advantage for
real-time applications. It is possible for slow algorithms to have



852 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 12, NO. 6, NOVEMBER 2004

Fig. 4. Algorithm 1. (a) Trajectory of the cost function. (b) Trajectory of the best step size. (c) Trajectory of the error Tr((P (k + 1)� P (k)) ).

Fig. 5. Algorithm 1. (a) Trajectory of the forces of finger 1. (b) Trajectory of the forces of finger 2. (c) Trajectory of the forces of finger 3.

Fig. 6. Algorithm 2. (a) Trajectory of the cost function. (b) Trajectory of the best step size. (c) Trajectory of the error Tr((P (k + 1)� P (k)) ).

less iterations because the speed also relies on the computation
time of each iteration.

It should be noted that the computation time in the last column
of Table I was recorded in the experiments where the object was
manipulated from an initial point to a final one. It also includes
the part on kinematics computation and trajectory generation,
which highly depends on the used kinematics and the planning
algorithms.

Second, we like to understand that under the same conditions
(tolerances, external forces, contact coordinates, cost functions
and initial finger forces), whether all these five algorithms will
converge to the same optimal solutions. The simulation results
obtained using the Dikin-type Euclidean gradient algorithm are
shown in Figs. 4 and 5, those using the Dikin-type Riemannian

gradient algorithm in Figs. 6 and 7, those using the Newton al-
gorithm with the estimated step size in Figs. 8 and 9 , those
using the Newton algorithm with the recursive step size estima-
tion in Figs. 10 and 11, and those by using the interior point
algorithm in Figs. 13 and 14. Comparing these figures, we con-
clude that using these five algorithms, (1) the five cost functions
and the finger forces converge to the same optimal values ; (2)
the number of iterations it takes each algorithm to achieve the
optimal solutions, so-called the convergence rate of each algo-
rithm, are different. As shown in Table III, Algorithms 2, 4 and,
5 have the best convergence rates. (3) the convergence rate is one
but not the only factor, which affects the real-performance of the
optimization algorithms. Comparing the results in Tables II and
III, it is obvious that Algorithm 2 has be best convergence rate,



LIU et al.: GEOMETRIC ALGORITHMS FOR REAL-TIME GRASPING FORCE OPTIMIZATION 853

Fig. 7. Algorithm 2. (a) Trajectory of the forces of finger 1. (b) Trajectory of the forces of finger 2. (c) Trajectory of the forces of finger 3.

Fig. 8. Algorithm 3. (a) Trajectory of the cost function. (b) Trajectory of the best step size. (c) Trajectory of the error Tr((P (k + 1)� P (k)) ).

Fig. 9. Algorithm 3. (a) Trajectory of the forces of finger 1. (b) Trajectory of the forces of finger 2. (c) Trajectory of the forces of finger 3.

but its real-time performance is not the best for both BHM and
HHM representation. The optimal step sizes shown in Figs. 4(b)
and 6(b) are obtained through line searching, those in Fig. 8(b)
through the estimation (39), and those in Fig. 10(b) through the
iteration given in Algorithm 4. The iteration of and that
lead to the best step size at the first step [about 0.43, as also
shown in Fig. 10(b)] are given in Fig. 12. We can also conclude
from these figures that the best step size will approach to 0 by the
line searching method, and to 1 by either the estimation method
or the recursive method, which coincides the theoretic analysis
of these algorithms [15], [23]. The interior point algorithm [21]
also utilizes the line searching method when each time calcu-
lating a point in the central path using the Newton method.

The parameters used in the simulations are
(or the gravity of the object is

), , , ,
and . The radius of the spherical

object is . in
Algorithm 5 to ensure that .

B. Experimental Hardware and Software

All these five algorithms have been evaluated with the
HKUST 3-fingered hand (see Fig. 2). Each finger of the
HKUST hand consists of a Motorman K-3S robot, equipped
with a force/torque sensor and a 16 16 tactile array fingertip.
A VME-based multiprocessor control system with three 8-axis
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Fig. 10. Algorithm 4. (a) Trajectory of the cost function. (b) Trajectory of the best step size. (c) Trajectory of the error Tr((P (k + 1)� P (k)) ).

Fig. 11. Algorithm 4. (a) Trajectory of the forces of finger 1. (b) Trajectory of the forces of finger 2. (c) Trajectory of the forces of finger 3.

Fig. 12. Algorithm 4. Trajectory of � and � in the first step.

TABLE III
COMPARISON OF THE CONVERGENT RATE OF THE FIVE ALGORITHMS

digital signal processor (DSP) motion control boards for
joint-level control and two Motorola 68 040 processors for
object-level motion and grasping force control is utilized,

Fig. 13. Algorithm 5. Trajectory of the cost function.

along with a VxWorks real-time operating system and a Sun
workstation. Force/torque data is sampled at 1000 Hz (1 ms).
The two CPUs work in parallel, with one running one of the five
algorithms (according to the choice by the user) for grasping
force generation and the other for planning and generation
of contact coordinates and object motion. Synchronization
of the tasks run in the two CPUs are realized through shared
semaphores.
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Fig. 14. Algorithm 5. (a) Trajectory of the forces of finger 1. (b) Trajectory of the forces of finger 2. (c) Trajectory of the forces of finger 3.

Fig. 15. (a) Finger 1: trajectory tracking of f . (b) Finger 2: trajectory tracking of f . (c) Finger 3: trajectory tracking of f .

There are two software modules for grasping force optimiza-
tion. First, the force-opt module, consisting of the five algo-
rithms (Algorithms 1–5), is used to compute an optimal grasping
force at a fixed contact point. Second, the force-opt-call
module, is used to calculate the grasp map , a special solution

, and the null matrix of . In this module, we also com-
pute a set of constant base matrices and use
either the Han et al.’s method or the gradient method to com-
pute a valid initial point (either or ). Then, we call the
force-opt module for an optimal grasping force. We make the
final executable file by linking the math library clapack written
in C with the object files of the above two modules using ld68 k.
We choose ld68 k to generate executable codes which are com-
patible with Motorola 68 040 processors.

C. Experimental Results

In the experiments, we verify the performance of the inte-
grated algorithm (53) in manipulating an object along a desired
trajectory under rolling contact. In the first experiment, the
object is required to move 100 mm along the twist (0,0,1,0,0,0),
i.e., manipulate the object along the axis of the spatial frame,
in 10 s. We test the force and position (of the object) tracking
performance of the system by (53). Other parameters are

, ,
, ,

and . Fig. 15 shows the -component
contact force response of the three contacts where the desired

force trajectories are obtained by Algorithm 1 (or the other
algorithms). It should be noted that the curves of the desired
contact forces shown in these figures are given by optimal
contact forces at the three contact curves. The initial contact
forces of the three fingers, from either the Han et al.’s method
or the gradient method, are also shown in these figures. Note
that the –component contact force is changed through the op-
timization algorithm since we only consider its contribution in
the cost function by choosing and . The trajectory tracking
results of the manipulated object are shown in Fig. 19(a) and
(b). It is clearly shown from the experimental results that the
tracking error of contact forces is less than 1.0 N, and the
object displacement error is less than 1.0 mm. In the second
experiment, the object undergoes the same motion but stops
in 7 s. We test the performance of the system in tracking the
desired trajectory of the grasp configuration (derives from the
grasp quality function). Figs. 16(a), 17(a), and 18(a) show the
desired curves of the local coordinates of the three contacts
on the object, from which we can see that the three fingers
are planned to locate at three symmetric points (regarded as
the optimal grasp configuration) of the great circle .
Figs. 16(b), 17(b), and 18(b) give the trajectory tracking results
of , , respectively. The desired curves
are obtained from by inverting Montana’s contact kine-
matics equations [8], [24], while the actual trajectories
are detected through tactile sensors. The contact angles ,

, are planned to be constant in the experiments.
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Fig. 16. (a) Finger 1: desired trajectory of v . (b) Finger 1: trajectory tracking of v .

Fig. 17. (a) Finger 2: desired trajectory of v . (b) Finger 2: trajectory tracking of v .

Remark 5: Currently, our algorithm can only be used for
manipulation systems with fingers of 6 degree-of-freedoms. In
future works, we wish to extend it to systems with fingers of
less than 6 degree-of-freedoms by taking into account additional
kinematic constraints.

IX. CONCLUSION

In this paper, starting from Buss et al.’s matrix inequalities,
Helmke et al.’s reduced matrix inequalities, and Han et al.’s
LMI of friction cone constraints, we formulated grasping force
optimization as a convex optimization problem subject to either

matrix inequalities or LMIs, and studied five algorithms pro-
posed in these previous works. In particular, we made a detailed
analysis on the selection of appropriate step sizes in each algo-
rithm and their effects on convergence. By observing that all the
five algorithms need a valid initial point to start the recursion,
we proposed two methods for searching such an initial solution.
We then proved the quadratic convergence of some of the algo-
rithms by exploring the geometric structures of the affine scaling
vector fields associated with them. We compared the real-time
performance and the convergence rates of the five algorithms
under different processors, operation systems, and representa-
tions of friction cone constraints through simulation. Finally, we
verified the effectiveness of the manipulation controller through
experiments.
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Fig. 18. (a) Finger 3: desired trajectory of v . (b) Finger 3: trajectory tracking of v .

Fig. 19. (a) Trajectory tracking of the object. (b) Trajectory tracking error of the object.

APPENDIX

PROOF OF THEOREM 4

Proof

The iteration can also be written as

First, we consider the case , then

for some and therefore

By Proposition 2, we have

which is less than , where
and . Second, note

that

Both sides timing to the left and the right yields
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Substituting it into yields

If , we have from (51) that

where and . Let
. Then, by Proposition 1 and (51), we

have

and is given by

which is again . But now it is evaluated with respect
to and . Applying the results we have derived for
yields

(54)

By Proposition 1, the right-hand side of (54) is
simply ,

. Finally, by (51), the
right-hand side of (54) is given by

which is exactly . Hence,

The result follows.
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