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Abstract—This work intends to deal with the optimal kinematic
synthesis problem of parallel manipulators under a unified
framework. Observing that regular (e.g., hyper-rectangular)
workspaces are desirable for most machines, we propose the
concept of effective regular workspace, which reflects simultane-
ously requirements on the workspace shape and quality. The
effectiveness of a workspace is characterized by the dexterity
of the mechanism over every point in the workspace. Other
performance indices, such as manipulability and stiffness, provide
alternatives of dexterity characterization of workspace effective-
ness. An optimal design problem, including constraints on actu-
ated/passive joint limits and link interference, is then formulated
to find the manipulator geometry that maximizes the effective
regular workspace. This problem is a constrained nonlinear
optimization problem without explicitly analytical expression.
Traditional gradient based approaches may have difficulty in
searching the global optimum. The controlled random search
technique, as reported robust and reliable, is used to obtain
an numerical solution. The design procedure is demonstrated
through examples of a Delta robot and a Gough-Stewart plat-
form.

Note to Practitioners—The kinematic/dynamic performance
of a parallel manipulator highly depends on its geometry,
e.g., link lengths, positions of fixed actuator, shape and size of
end-effector. In designing a parallel manipulator, it is a crucial
step to determine the best geometry that satisfies practical design
requirements. For a general parallel manipulator, this paper
provides a unified framework to formulate the optimal design
problem by considering some key kinematic criteria, regularity
and volume of workspace and dexterity. The latter one is closely
related to stiffness and control accuracy. Since the optimal
design problem is a nonlinear optimization problem without
analytic expression, traditional gradient based search algorithms
have difficulty to solve the problem. The controlled random
search technique is used to search the global optimum. The
design procedure is applicable for general parallel manipulators.
Other design criteria, such as stiffness and accuracy, can be
readily included in the design formulation.

Index Terms—optimal design, parallel manipulators, effective
regular workspace, controlled random search.
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PARALLEL manipulators are widely accepted as ideal
candidates for use in manufacturing industries for their

potential superior properties over serial counterparts, such
as low inertia, high stiffness, and high precision. However,
relatively small workspace, complex input-output relationship,
and abundance of singularities in their workspaces negate parts
of above mentioned advantages. Choosing a set of geometric
parameters so as to achieve desired/optimal performance is of
vital significance in robotics research.

Among all kinematic measures, workspace is a basic yet
most important index in design of a parallel manipulator.
In regard to workspace requirements, there are two types of
formulation of the design problem. One is to generate a ma-
nipulator whose workspace contains a prescribed workspace
[1][2][3] [4][5][6]. Gosselin and Guillot [7] presented an
algorithm for the workspace optimization of planar manip-
ulators, where the objective is to obtain a workspace that is
as close as possible to a prescribed one. The other possible
formulation is to find the geometry of a parallel manipulator
that maximizes workspace. A parallel manipulator designed
only for maximum workspace may not however be a good
design in practice. It is possible that the manipulator with
maximum workspace has undesirable kinematic characteristics
such as poor dexterity or manipulability. Stamper, Tsai, and
Walsh [8] indicated this problem through an example of a 3
degree-of-freedom (DoF) translational parallel manipulator.

In order to avoid undesirable effects of workspace max-
imization, researchers introduced other performance indices
into the optimal design problem. Gosselin and Angeles de-
signed a planar [9] and a spherical [10] 3-DoF parallel ma-
nipulator by maximizing the workspace volume while taking
into account the isotropy index. Pham and Chen [11] proposed
to maximize the workspace of a parallel flexure mechanism
subject to the constraints on a global measure and a uniformity
measure of manipulability. In [8] Stamper et al. proposed to
maximize the total volume of well-conditioned workspace,
which is given as the integral of inverse condition number
of the kinematic Jacobian matrix over the workspace. Using
the performance chart, Liu [12] proposed to design a 3-
DoF purely translational parallel mechanism by optimizing
good conditioning workspace, global conditioning index and
global stiffness index. Stock and Miller [13] employed a linear
combination of measures on manipulability and workspace in
the objective function, where coefficients are weights assigned
to the two indices. The optimal design problem then becomes
a mixed multi-criteria optimization problem.

In this paper, we propose a unified formulation for opti-
mal design of parallel manipulators. The design objective is
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to maximize effective regular workspace, defined to be the
regular geometric object, e.g. a cube, a ball, or a cylinder in 3-
dimensional case, every point of which not only is contained in
the manipulator workspace, but also is effective for individual
applications. Chablat et al. [14] presented a similar design
objective termed regular dextrous Cartesian workspace in
performance comparison of two purely translational parallel
machines. The ”dextrous” there imposes an interval constraint
on all singular values of Jacobian in the regular workspace.
In [15], as a special case of effective regular workspace, the
MIW (maximal inscribed workspace) is proposed to analyze
performance of planar 5R parallel mechanisms. In practice a
regular-shaped workspace is desirable. It is well known that
parallel manipulators often have irregular-shaped workspaces
due to their complex kinematic structure. A design solely
for maximal workspace may not have the maximal regular
workspace. Furthermore, a design purely for maximal regular
workspace may also lead to an undesirable result since there
is no criterion guaranteeing the quality of workspace. It is
possible that large zones of the workspace are ineffective and
inapplicable for individual applications. In this paper, dexterity
index is utilized to measure the effectiveness of workspace.
Different indices can be adopted for different applications,
such as stiffness, accuracy, and force/velocity transmission
factors[16][17]. The optimal design problem is formulated
to maximize the volume of regular-shaped workspace while
subject to dexterity constraints.

The optimal design problem is a multimodal constrained
nonlinear optimization problem with no explicit analytical
expression. Gradient-based algorithms are not suitable for
solving this problem since gradients and Hessians are not
easily evaluated and they generally converge to local minima.
Direct search methods seem to be good candidates. Usually
people use exhaustive search to solve the problem [8][13][4].
Su et al. [18] and Arsenault and Boudreau [19] proposed
genetic algorithm in solving optimal design problems. Re-
cently, interval analysis based approaches have been applied to
solve optimal design problems [14][20]. They can determine
a design parameter space that satisfies all design constraints.
Optimum is thus obtained by sampling the parameter space.
However, the interval analysis based algorithms require ex-
plicitly analytic expressions of all constraints. They can not
deal with constraints with no analytic expression. In our
formulation, it is very difficult, even impossible to express
all constraints in analytic forms. In this paper, the controlled
random search (CRS) technique, which is a direct search
method regardless of form of constraints and requires only
evaluation of objective function and constraints, is applied.

Random search techniques were first proposed by Anderson
[21] in 1953 and later by Brooks [22], Rastrigin [23], and
Karnopp [24]. The random search techniques feature several
advantages [24]. (1) Ease of programming and realization.
Anyone can readily apply the technique in his individual
application without advanced optimization knowledge. (2) Ro-
bustness. Practically, random search techniques are capable of
handling discontinuous, non-differentiable objective functions
with a nonconvex feasible region. (3) Efficiency. Although
reports [25] showed that random search techniques converge

quite slowly in the very close neighborhood of the optimum,
they do converge efficiently to within 0.1% of the optimum.
(4) flexibility. It is easy to modify the search procedure and
combine heuristic knowledge and experience in the algorithm.

The major contributions of the paper are twofold. First,
a unified design framework, including constraints on actu-
ated/passive joint limits and link interference, is proposed.
Second, a robust and reliable optimization approach, the
CRS technique, is applied first time to solve optimal design
problems. The paper is organized as follows. In section II,
we formulate an optimization problem for design of parallel
manipulators. In section III, a basic CRS algorithm and its real
implementation are provided for solving the optimal design
problem. In Section IV, a Delta robot and a Gough-Stewart
platform are used as examples to indicate the design procedure
and technique. A conclusion is drawn in Section V.

II. FORMULATION OF THE OPTIMAL DESIGN PROBLEM

In this paper, we focus on normally actuated parallel
manipulators where the number of actuators is equal to the
number of DoFs of the manipulator. For an m-DoF normally
actuated parallel manipulators, let θ ∈ R

m and ϕ ∈ R
n−m

respectively be sets of actuated and passive joint variables, and
X ∈ R

m the Cartesian coordinate representing the position
and orientation of the end-effector. Given an X , inverse
kinematics maps can be derived as follows.

θi = θi(X,α), i = 1, · · · ,m (1)
ϕi = ϕi(X,α), i = 1, · · · , n−m (2)

where α is the set of kinematic parameters, e.g., the link
lengths, the position of base points of each subchain, the
relative arrangement of each axis, and the size and shape of the
end-effector, etc. In practice, we may only focus on a subset
of those parameters, known as design parameters, while fixing
remaining parameters according to some practical restrictions.
Hereafter α ∈ R

p denotes only the set of design parameters
of interest, where p is the number of design parameters. The
velocity relation can in general be written as

Ẋ = Jθ̇, (3)

where J = J(X, θ, α) is the kinematic Jacobian matrix,
mapping joint rate θ̇ to Cartesian velocity Ẋ.

A. The objective function

In manipulator design, a regular workspace (more specif-
ically, a hyperrectangle) is usually provided as a design
objective based on the types of manufacturing tasks and the
working environment. This regular workspace is required to be
contained in the workspace generated by the resultant manip-
ulator such that it can conduct prescribed tasks. Maximization
of the regular workspace among all possible designs is always
desirable from the manufacturing perspectives.

Let W = W1 ×W2 be a regular workspace for a general
parallel manipulator, where W1 ⊂ R

3 is the translational
workspace and W2 ⊂ SO(3) the orientational workspace. A
measure for W can be derived based on measures for W1 and
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W2. For example, let us assume that W1 is a parallelepiped
with l, w, h being lengths of three independent edges. The size
of regular translational workspace is thus a function of those
quantities. Let Φ1 = Φ1(l, w, h) be a measure for the volume
of W1. The measure for the orientational workspace W2

depends on types of application. For a machining application,
the tilting capability plays a central role while the rotation
about spindle axis is useless. For a dextrous manipulation case,
the rotation about each axis is important. Let Φ2 be a measure
for the volume of W2, a measure on the overall volume of W
is given as

Φ = µ1Φ1 + µ2Φ2, (4)

where µi, i = 1, 2 are constants weighting contributions of W1

and W2, respectively. They are assigned according to different
practical requirements.

Let us consider two special cases for (4). (i) When the
manipulator possesses no rotational motion, i.e., Φ2 = 0, or
W2 is fixed as a prescribed orientation capability, i.e., Φ2 is
constant, the objective function is then reduced to Φ = Φ1.
The objective of the problem is to maximize the translational
regular workspace given that at each point in the translational
regular workspace the manipulator at least possesses an ori-
entational capability of W2. Examples of this type include
design of all kinds of translational parallel manipulators (e.g.,
the 3-UPU manipulator [26], the Delta robot [27], and the
Orthoglide[16]) and k-DoF (k > 3) manipulators where a
prescribed orientational capability is applied. (ii) When the
manipulator undergoes purely rotation, i.e., Φ1 = 0, or W1 is
fixed as a prescribed translational regular workspace, i.e., Φ1 is
constant, the size function is reduced to Φ = Φ2. Examples of
this type include design of orientational parallel manipulators
(e.g., the 3-DoF spherical manipulator) and k-DoF (k > 3)
manipulators where a maximal orientation capability is de-
sirable in a prescribed translational workspace. In this paper,
we demonstrate the design technique using the first case for
optimal design of two typical parallel manipulators.

It is well-known that given fixed ranges of actuators of
a parallel manipulator, its workspace volume monotonically
depends on its overall dimension i.e., the value α takes. By
considering the constraints due to working environments, we
normalize the manipulator dimension so as to find the best
design among all normalized manipulators with the same
topology. The result is expected to provide an insight and a
basic guidance for practical realization.

q
∑

i=1

αi = τ, (5)

where τ is a given constant, usually 1, and αi ≥ 0, i =
1, · · · , q are geometric parameters, and q ≤ p. The equation
(5) implies that αi ∈ [0, τ ], i = 1, · · · , q.

B. The workspace constraints

A basic requirement for a regular workspace is that it should
be contained in the workspace generated by the resultant
manipulator. The workspace of a manipulator is determined by
the manipulator’s geometry and actuated/passive joint limits.
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Fig. 1. The distance between two links

As well known, a point X is reachable if there exists an
inverse kinematic solution θ in the actuator range. A set W is
reachable means every X ∈W is reachable. Specifically, it is
equivalent to impose the following constraints to every point
X ∈ W ,

ρmin
i ≤ ρi(X,α) ≤ ρmax

i , i = 1, · · · ,m; (6)

where ρmin
i and ρmax

i are respectively the lower and upper
bound for i-th actuator due to actuator limits. The expression
(6) provides a necessary condition for a point to be in the
workspace. However, there may often exist limits for passive
joints.
Given passive joint limits [ϕmin

k , ϕmax
k ], a point X is in the

workspace also means

ϕmin
k ≤ ϕk(X,α) ≤ ϕmax

k , k = 1, · · · , n−m. (7)

Note that in (6) and (7) only one branch of inverse kinematic
solutions is used. A branch of inverse kinematic solutions is
one type of assembly mode. A parallel manipulator normally
works only in one assembly mode to avoid occurrence of
singularities. If we want the manipulator to operate in another
assembly mode, it is necessary to be re-assembled.

Because of the complex architecture of a parallel manip-
ulator, mechanical interference may occur among its links
in motion. It surely reduces workspace. Assume that the
manipulator is composed of t links. For simplicity, each link
is approximated by the minimal cylinder enclosing the link.
Let the radius of the cylinder be Ri and denote by Li the
line segment passing the i-th cylinder axis, i = 1, · · · , t.
Clearly there is no mechanical interference if the distance
between any pair of line segments is larger than the sum of
corresponding radii. Fig. 1 depicts the distance between two
cylinder-modelled links. The following inequalities ensure that
no link interference will occur for a point X .

dist(Li,Lj) ≥ Ri +Rj , i, j = 1, · · · , t; i 6= j, (8)

where dist(Li,Lj) is the function computing the distance
between two line segments Li and Lj . Note Li = Li(X,α).

The set of points satisfying (6)-(8) constitute the workspace
reachable by the resultant parallel manipulator. Therefore, any
point X ∈W should satisfy (6)-(8).

C. The dexterity constraints
In order to guarantee the regular workspace to be effective,

constraints on the dexterity index are introduced to charac-
terize quality of the regular workspace. The dexterity index
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describes the ability of a mechanism to move and apply forces
in arbitrary directions as easily as possible. A frequently-used
measure for dexterity is the inverse condition number of the
kinematic Jacobian matrix, which is defined as

κ(J) =
σmin(J)

σmax(J)
,

where κ(·) denotes the inverse condition number function of
matrices, and σmin(·) and σmax(·) its minimal and maximal
singular value functions, respectively. Thus κ ∈ [0, 1].

This performance measure has been applied in numerous
designs since it characterizes various properties of a manip-
ulator, such as singularity, local kinematic isotropy, relative
control error, and uniformity of Cartesian stiffness. However,
when a robot is capable of mixed motions of translation
and orientation or when it is comprised of both rotary and
prismatic actuators, elements of the kinematic Jacobian bear
different physical units, i.e., the Jacobian is dimensionally in
homogeneous. This measure inherently involves some sort of
tradeoff between orientation and position. Any design based on
it will probably produce misleading results [28]. Here we treat
separately orientation and position dexterity. Let us rewrite the
differential kinematics (3) by

[

Ż

Ψ̇

]

=

[

Jz

JΨ

]

θ̇,

where Ż and Ψ̇ are linear velocity and angular velocity, respec-
tively. Thus, κ(Jz) and κ(JΨ) respectively give measures for
position and orientation dexterity. To guarantee position and
orientation dexterity, they are applied in design by imposing
the following constraints

κ(Jz) ≥ γ1, (9)
κ(JΨ) ≥ γ2, (10)

where γ1 and γ2 are two thresholds for position and orientation
dexterity, which are constants assigned according to practical
design requirements.

Combining constraints (4)-(10), the optimal design problem
for maximization of effective regular workspace is formulated
as following.

Problem 1: Optimal mechanism design
Find a set of optimal design parameters α such that

max
α

Φ(α) (11)

subject to κ(Jz(X, θ, α)) ≥ γ1, (12)
κ(JΨ(X, θ, α)) ≥ γ2, (13)
ρmin

i ≤ ρi(X,α) ≤ ρmax
i , (14)

ϕmin
j ≤ ϕj(X,α) ≤ ϕmax

j , (15)
dist(Lk ,Ll) ≥ Rk +Rl, (16)

q
∑

j=1

αj = τ. (17)

where ∀X ∈ W , i = 1, · · · ,m; j = 1, · · · , n − m; k, l =
1, · · · , t; k 6= l. �

Remark 1: The values of quantities in the right-hand side
of the inequalities should be chosen carefully. Stringent con-
straints may lead to no feasible solution to the optimal design
problem. For example, a large γi is desirable in practical
application. However, when employing a stringent constraint,
there may exist no solution for optimal design of some spe-
cific parallel mechanisms since their topologies may impose
limitations on the dexterity.

III. THE CRS ALGORITHM AND ITS IMPLEMENTATION

Clearly the optimal design problem 1 is a constrained
nonlinear optimization problem. The objective function (11),
the dexterity constraint (12), and the link interference con-
straint (16) have no explicitly analytical expressions with
respect to the set of design parameters α. Gradients and
Hessians are thus not readily computed. Furthermore, the
objective function in the optimal design problem 1 is generally
multimodal, i.e., there may exist many local minima in the
feasible region. Those gradient based optimization algorithms,
e.g., the sequential quadratic programming (SQP) methods,
are known to converge to local minima. Here, we resort to
a direct search method, the random search technique, which
was widely studied as a global optimization technique [29].
The algorithms are robust, i.e., they normally work regardless
of irregularities of the objective function and feasible region.

A. The Controlled Random Search Technique

In 1978, Goulcher and Long [30] proposed a controlled
random search (CRS) method to solve constrained nonlinear
optimization problems. Later this method was improved and
applied in many chemical plants [31]. The basic philosophy of
the method is to select new points by random selection from
normal probability distributions centered at the best previous
value

α(j) = α(j−1)∗ + σξ, j = 1, 2, · · · . (18)

The equation (18) describes how the new points in j-th itera-
tion, α(j), are generated in the neighborhood of the previous
best point α(j−1)∗, where ξ is a vector of random variables
ξi that are subject to normal probability distribution with zero
mean and unity standard deviation as follows.

ξi ∼ N(0, 1), i = 1, · · · , p.

σ = diag(σ1, · · · , σp) is applied to adaptively modify the
standard deviation of the normal probability distribution for
every random variable in each iteration. It is actually the
standard deviation for the vector of random variables σξ.
Therefore, ”control” comes by adjustment of the standard
deviation of the distribution, which explains the name of the
method. Compared with standard optimization techniques, the
random variable ξ can be regarded as a search direction,
while the standard deviation σ serves as a kind of ”step-
length”, which is adjusted automatically during the search in
two situations.

(a) Each time a successful trial has been made. In this
case, standard deviations are set according to σi = K1∆αi,
i = 1, · · · , p, where ∆αi is a positive quantity describing
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the distance between the variable’s current value αi and the
nearest bound of the variable. K1 < 1 is a compression
factor to reduce search interval and maintain searches in the
neighborhood of the best previous point.

(b) After a specified number, typically 100, of consecutive
failure. Failure means that no improvement is made with re-
spect to the objective function. When this occurs, for instance,
as the optimum is approached, the standard deviations are
reduced by

(σi)new = K2(σi)old, i = 1, · · · , p;

where K2 < 1 is a positive number.
The basic algorithm of the CRS technique is described as

follows.
Algorithm 1: The basic CRS algorithm
1) Given search intervals, αi ∈ [αi, αi], set parameters

K1, K2, ε, and max feval denoting the maximum
allowable number of function evaluation;

2) Generate a feasible initial point α(0)∗ by uniformly
random sampling in the given intervals, and compute the
corresponding Φ(0)∗ and σ(0)

i = K1∆α
(0)
i , i = 1, · · · , p.

Set j = 1;
3) Set k = 1.
4) If k > max feval, set σ(j−1)

new = K2σ
(j−1)
old and go to

3); otherwise, generate a new search point by

kα(j) = α(j−1)∗ + σ(j−1)ξ,

verify all constraints at kα(j). Set Φ(kα(j)) = −M if
not all constraints are satisfied, where M is a number
large enough; otherwise, evaluate Φ(kα(j)).

5) If Φ(kα(j)) ≤ Φ(j−1)∗, set k = k + 1, go to 4);
otherwise, set Φ(j)∗ = Φ(kα(j)) and α(j)∗ = kα(j).

6) Check the stopping criterion

|α
(j)∗
i − α

(j−1)∗
i |

Ri

≤ ε, i = 1, · · · , p;

where Ri = αi−αi. If it is satisfied, stop the procedure;
otherwise, set j = j + 1 and go to 3).

Solis and Wets [32] proved global convergence for their
conceptual algorithm. The CRS technique is a realization of
the conceptual algorithm. Their proof needs only minimal
technical assumptions, measurability of the objective function
and the feasible set, that are always satisfied in practice.
Readers are referred to [32] for detailed description.

B. The Real Implementation

The basic CRS algorithm provides a unified framework to
solve optimization problems. The basic procedure is first to
generate a point by the normal distribution around the previous
best point, then to verify all constraints at this point, if all
constraints are satisfied, evaluate the objective and compare it
with the previous best objective. If there is no improvement
or not all constraints are satisfied, generate a new point and
repeat verification of constraints and evaluation of objective;
otherwise, replace the previous best point/objective by the
current point/objective and continue execution of generation,

verification, evaluation, and comparison iteratively.
In implementation of the algorithm, users only need to

specify the evaluation of objective functions and constraints
in step 4) for individual problems. For the optimal design
problem 1, it involves searching the maximal size of effective
regular workspace at a generated value of α. Although the
maximal size of effective regular workspace depends uniquely
upon the design parameters, the search of the maximal size
really involves finding the location of maximal effective regu-
lar workspace. Take a cubic effective workspace for instance,
a usual scheme for searching of its maximal size is that (a)
first choose a point in Cartesian workspace that satisfies all
constraints as the center of the cubic workspace. If there is no
such point, the maximal size of the cubic effective workspace
is zero. And (b) take an adequately large side length and
decrease it gradually until all constraints are fulfilled. This
obtained value is therefore the largest side length of the cubic
effective workspace corresponding to the center chosen in
(a). By varying cube centers, different largest side lengths
are obtained correspondingly. The maximal value of all those
largest side lengths gives the maximal size for the cubic
effective workspace corresponding to the generated value of
α. If this maximal size is larger than the previous best, it and
its current value of α will be stored to substitute the previous
best. Otherwise, it will be discarded. Then, a new value of α
will be generated by (18), and an execution of step (a) and (b)
will give another largest side length corresponding to the new
value of α. This search scheme involves execution of step (a)
and (b) iteratively.

Another scheme is much simpler in philosophy. It regards
the location of the effective regular workspace as part of design
parameters, which are generated by (18) along with all other
design parameters. When a value of the new set of design
parameters α is generated, the corresponding maximal size can
be searched by step (b). The search for the center of the max-
imal effective workspace and other optimal design parameters
are conducted simultaneously. There is no difference in result
for those two schemes. In the implementation the latter one is
employed and the bisection technique is applied in search of
the maximal size (step (b)).

Generally the randomly generated values of α do not
satisfy the normalization equality (17). A simple treat-
ment is used to deal with the problem. Assume α =
[α1, · · · , αq, αq+1, · · · , αp], where the first q variables are
geometric parameters appearing in the equality constraint (17)
with αi ∈ [0, ti], i = 1, · · · , q. Without loss of generality,
we take α2, · · · , αq as independent parameters, α1 = τ −
∑q

i=2 αi, and τ ≥ ti, i = 1, · · · , q. The number of indepen-
dent design parameters is reduced to p − 1. Let us denote
the set of independent parameters by α̃ := [α̃1, · · · , α̃p−1] =
[α2, · · · , αp]. Values of α̃ are generated uniformly (when
initialization) or by (18) (otherwise). In the implementation,
the following treatment is applied to deal with the randomly
generated new points α̃. α2 = α̃1, and for i = 2, · · · , q − 1,

αi+1 =

{

α̃i, if τ −
∑i−1

k=1 αk ≥ ti

(τ −
∑i−1

k=1 αk)α̃i/ti, if τ −
∑i−1

k=1 αk < ti
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Fig. 2. Architecture of the Delta robot
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Fig. 3. The i-th subchain of the Delta robot

α1 = τ −
∑q

i=2 αi, and αk+1 = α̃k, k = q, · · · , p − 1.
It is guaranteed that the normalization equality and interval
constraints are satisfied. α = [α1, · · · , αp] is then applied in
evaluation of the objective and constraints. The α in Algorithm
1 should be considered as the set of independent parameters
α̃. The computed α in the treatment is used only to evaluate
the objective and constraints.

In problem 1, the constraints (12)-(16) should be satisfied
at every point of the regular workspace. In numerical com-
putation, however, it is impossible to verify the constraints
at all points. As people usually do, we discretize the regular
workspace and only verify the constraints at the discretized
nodes. This may lead to that some constraints are not satisfied
at some points for a searched result. The effect can be reduced
or eliminated by a finer discretization and/or assigning more
stringent bounds in (12)-(16).

IV. SIMULATIONS AND RESULTS

In this section, a Delta robot and a Gough-Stewart platform
are employed as examples to demonstrate the design proce-
dure.

A. Optimal design of a Delta robot

The Delta robot, as shown in Fig. 2, is a spatial paral-
lel manipulator undergoing purely translational motion. This

architecture was invented by Clavel [27] and is well-known
due to its very high speed. The mechanism consists of a
base, a moving platform, and three identical subchains. All
subchains have a common RRPaR topology from base to
the moving platform, where R denotes a revolute joint, Pa

a parallelogram, and the underscored ”R” an actuated rev-
olute joint. Three actuated joints on the base are arranged
symmetrically at the three vertices of an equilateral triangle,
So are the three passive joints on the moving platform. The
kinematic parameters are depicted in Fig. 3, where a denotes
the length of arms AiBi, b the length of the parallelogram, and
R = ‖OAi‖, r = ‖PCi‖, i = 1, · · · , 3, with O and P being
centers of the base and the moving platform, respectively.

Let us attach an inertia frame to the base center O such that
the base is in the xy-plane and OA1 points along the +x-axis.
The +z-axis is arranged to point up and to be perpendicular
to the base plane. From the geometry of the mechanism, a
loop-closure constraint can be derived for each subchain as
follows.

−−→
OP =

−−→
OAi +

−−−→
AiBi +

−−−→
BiCi +

−−→
CiP , (19)

for i = 1, · · · , 3. Note that the vector equation (19) is com-
posed of three scalar equations with three kinematic variables
θi, βi, and γi. Given the coordinate of the reference point P ,
X = (x, y, z)T , we can solve inverse kinematics for θi, βi,
and γi from (19). By eliminating passive joint variables from
(19), we derive loop-closure equations relating the actuated
joint variable θ = (θ1, θ2, θ3)

T to X .

(x− (d+ a cos θi) cosϕi)
2 + (y − (d+ a cos θi) sinϕi)

2

+(z + a sin θi)
2 − b2 = 0, (20)

for i = 1, · · · , 3, where d = R − r and ϕi denotes the angle
made by the i-th subchain and the +x-axis. In our symmetric
arrangement, ϕi = (i− 1) 2π

3 for i = 1, · · · , 3.
Differentiating the loop constraints (20) with respect to time

t we obtain differential kinematics between the actuated joint
rates and Cartesian velocities, JxẊ = Jθθ̇, where

Jx =





vT
1

vT
2

vT
3



, (21)

with vi = [x−(d+a cos θi) cosϕi, y−(d+a cosθi) sinϕi, z+
a sin θi]

T , i = 1, · · · , 3, and

Jθ = −diag{h1, h2, h3}, (22)

with hi = (x cosϕi + y sinϕi − d)a sin θi + za cos θi for
i = 1, · · · , 3. Therefore, J = J−1

x Jθ.
In the design a cubic shape is chosen for the regular

workspace W . Denoting by 2l the side length of the cubic
workspace, we take the objective Φ = l to represent the
workspace volume. The center of the resultant maximal ef-
fective regular workspace is undetermined and its coordinates
are regarded as design parameters. Since the manipulator is
symmetric with respect to the z-axis, the center should be
in the z-axis. In other words, it has the form of (0, 0, zc).
According to above analysis, a set of design parameters is
thus determined, α = [a b d zc]

T . The manipulator size
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is normalized by subchain normalization a + b + d = 1.
In this example, mechanical interference constraints (16) and
manufacturing constraints are implicitly included by imposing
the following constraints on the actuated and passive joints as
in [33].

1) −40o ≤ γi ≤ 40o due to constructional constraints on
the parallelogram’s articulations;

2) 45o ≤ θi + βi ≤ 180o is imposed in order to avoid
interference between the arms and the parallelogram
rods when the angle is acute and to avoid ambiguities
in computation;

3) −30o ≤ θi ≤ 100o is chosen.
If for some applications the lower bound of dexterity is given
as 0.4, by combining all other requirements together, the
optimal design problem is formulated as follows.

Problem 2: Optimal design of a Delta robot
Find a set of optimal design parameters α such that

max
α

l

subject to κ(J(X, θ, α)) ≥ 0.4;

−30o ≤ θi(X,α) ≤ 100o;

45o ≤ θi + βi ≤ 180o;

−40o ≤ γi ≤ 40o, i = 1, · · · , 3;

a+ b+ d = 1;

a, b, d ∈ [0, 1], zc ∈ [−1, 0];

where ∀X ∈ W . �

By applying the CRS algorithm, the optimal values of design
parameters and the corresponding center and side length
of the maximal effective cubic workspace are obtained for
γ = 0.2, 0.3, 0.4, 0.5 and given in Table I. Fig. 4 shows
a scaled 3D model of the resulting optimal mechanism for
γ = 0.4. We note that d tends to zero for any value of
γ, which implies that an identical size of the base and the
moving platform is desirable for maximization of the effective
regular workspace. We next verify workspace containment and
inverse condition number constraints of the resulting optimal
mechanism for the case of γ = 0.4.

By considering the joint limits, the workspace generated by
the Delta robot is the intersection of a right hexagonal prism
with infinite height and three identical revolution volumes
with different axes, as shown in [27]. Fig. 5-(a), 6-(a), and 7-
(a) show workspace cross sections generated by the resulting
Delta robot at z = zc−l

∗, z = zc, and z = zc+l
∗, respectively.

The shaded squares in the figures correspond to cross sections
of the maximal effective cubic workspace. In the Fig. 5-(a) and
6-(a), the maximal effective regular workspace cross sections
are perfectly contained in the resulting workspace, while in the
Fig. 7-(a) the cross section of the maximal effective regular
workspace touches the workspace boundary of the resulting
workspace, where the workspace constraints take effect.

Fig. 5-(b), 6-(b), and 7-(b) show distribution of inverse
condition number at cross sections, respectively in the planes
z = zc − l∗, z = zc, and z = zc + l∗ of the maximal effective
cubic workspace. In the former two cross sections, all inverse
condition numbers are larger than the prescribed threshold, 0.4.

a b d zc Φ∗ = l∗

γ = 0.5 0.5322 0.4300 0.0377 -0.6523 0.1136
γ = 0.4 0.5837 0.4064 0.0099 -0.6889 0.1296
γ = 0.3 0.6137 0.3855 0.0008 -0.7093 0.1434
γ = 0.2 0.6162 0.3709 0.0129 -0.7109 0.1542

TABLE I
OPTIMAL RESULTS FOR THE DELTA ROBOT

Fig. 4. A CAD model of the resulting Delta robot

The minimal κ in the cube is 0.3997, which occurs in the cross
section z = zc+l∗. This minimal κ is less than, but very close
to the threshold. As shown in Fig. 7-(b), the minimal κ is NOT
at the boundary of the maximal effective regular workspace.
The condition number constraint (12) is violated. This error is
introduced due to discretization of the regular workspace. In
this example, the constraints were verified at only 9 points, the
8 vertices and the center of a cube. However, the introduced
error is rather small and acceptable for an engineering design.

B. Optimal design of a general Gough-Stewart platform

A Gough-Stewart platform, as shown in Fig. 8, is composed
of a fixed base, a moving platform, and six identical SPS
legs. Here S denotes a spherical joint while P is a prismatic
joint, and the base and the moving platform are assumed to
be semi-hexagonal as conventional design of the manipulator.
The moving platform is controlled by driving the P -joints to
extend/retract legs. The leg geometry is determined by the
minimum leg length, which is measured when all actuators are
zero actuated, and the stroke. Since only a few set of possible
strokes are available for commercial linear actuators, we may

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

x

y

(a) (b)

Fig. 5. (a) Workspace cross section at z = zc − l∗; (b) contour plot of the
inverse condition number of J at z = zc − l∗.
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Fig. 6. (a) Workspace cross section at z = zc; (b) contour plot of the inverse
condition number of J at z = zc.
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Fig. 7. (a) Workspace cross section at z = zc + l∗; (b) contour plot of the
inverse condition number of J at z = zc + l∗.

choose it beforehand and modify other design parameters to
adapt it. We therefore normalize the stroke by unity. From
Fig. 8, the geometry of the manipulator is defined by five
parameters, namely,

a: the radius of the circle on the base where the S joint Ai

lie;
b: the radius of the circle on the moving platform where the

S joint Bi lie;
ϑ: half the angle between two far S joints on the base;
ϕ: half the angle between two far S joints on the moving

platform;
ρ0: the leg length when the manipulator is at its home

position, where all actuators are at their half stroke.

An inertia frame O-xyz is set up at the base center with z-axis
pointing vertically upward. A body frame P -uvw is similarly
attached to the center of the moving platform with the w-axis
normal to the platform, pointing outward. The frames are set
up such that the x-axis passes perpendicularly both midpoints
of A1A2 andA4A5, and u-axis passes both midpoints of B1B2

and B4B5 perpendicularly. At the home position the body
frame is assumed to have the same orientation as the inertia
frame.

The configuration of the moving platform can be described
by both the position of the reference point P = (x, y, z)
and the orientation of the moving platform (β, φ, ψ), which
are the ZY X Euler angles (yaw, pitch, and roll angles).
Let the inverse kinematics map for the actuated joints be
ρi = ρi(X,α), i = 1, · · · , 6, and the differential kinematics
map be

[

Ż

Ψ̇

]

=

[

Jz(X, ρ, α)
JΨ(X, ρ, α)

]

ρ̇, (23)

Fig. 8. A schematic for the Gough-Stewart platform

tool tip

tool tool

z ww

Fig. 9. Tilting angle η for a machine tool

where ρ̇ = [ρ̇1, · · · , ρ̇6]
T , Ż = [ẋ ẏ ż]T , Ψ̇ = [ψ̇ φ̇ β̇]T ,

X = [x, y, z, ψ, φ, β]T , and ρ = [ρ1, · · · , ρ6]
T . Since the

Gough-Stewart platform is capable of both translational and
rotational motion, we separately treat position and orientation
dexterity, as discussed in section II-C.

The effective regular workspace of the Gough-Stewart plat-
form is composed of two portions, the translational one W1

and the orientational one W2. Let’s consider the Gough-
Stewart platform for machine tool applications. Suppose a
spindle is attached to the reference point P and the spindle axis
coincides with the w-axis. A practical workspace requirement
is that the spindle (so the tool) be able to access a regular
translational workspace with good tilting capability. The tilting
capability of a machine tool is usually characterized by the
tilting angle η, which is the maximum angle made by the
spindle axis (w-axis) and z-axis that the machine is able to
reach at every point in the regular workspace, as illustrated in
Fig. 9. It is thus desirable to maximize the regular translational
workspace constrained by a fixed threshold η0 for tilting angle.

• The objective: A cube with side length 2l in R
3 is des-

ignated as the translational workspace W1. The objective
function is chosen as Φ = l , which is constrained by
the tilting capability η ≥ η0 with η0 = 30o in the
simulation. The center of the maximal cubic workspace
is taken as [0, 0, zc, 0, 0, 0]T since the manipulator is
architecturally symmetric about the z-axis. Thus the set
of design parameters is determined, α = (a b ρ0 ϑ ϕ zc).
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• Constraints on dexterity: The translation and orientation
dexterity constraints are imposed with γ1 = 0.2 and γ2 =
0.2.

κ(Jz) ≥ 0.2 κ(JΨ) ≥ 0.2

• constraints due to actuated joint limits: As discussed
above, the strokes are normalized by unity, i.e., the leg
lengths ρi is constrained by

ρ0 − 0.5 ≤ ρi(X,α) ≤ ρ0 + 0.5, i = 1, · · · , 6.

• constraints due to passive joint limits: Assume the ball
joint range is [0,B], the constraints due to ball joint limits
are given as follows.

0 ≤ Angle(Lw
j ,L

w
j0) ≤ B;

0 ≤ Angle(Lb
j ,L

b
j0) ≤ B;

where L
w
j and L

w
j0 are line segments representing the

pose of leg j at current configuration and the home
configuration, respectively. The superscripts w and b are
used to indicate in which frame the line segment is
expressed: w for the world frame O-xyz and b for the
body frame P -uvw. When there is no confusion, we
eliminate the superscript w for elements expressed in
the world frame. Angle(Lw

j ,L
w
j0) and Angle(Lb

j ,L
b
j0)

thus compute pivot angles of base ball joint and moving
platform ball joint on the j-th leg, respectively. We take
B = 55o in the simulation.

• Constraints due to leg interference:

dist(Lk ,Ll) ≥ 2R, k, l = 1, · · · , 6; k < l,

where we assume an identical radius R for all legs. In
the simulation R is two percents of the stroke, R = 0.02.

• Constraints on manipulator size: A constraint on the
manipulator size is imposed as

a+ ρ0 + b = λ,

where λ is a given constant representing the relative size
of the manipulator with respect to the stroke. In the
simulation, λ = 2.

Combining the objective and constraints together, the optimal
design problem of a Gough-Stewart platform is formulated as
follows.

Problem 3: Optimal design of a Gough-Stewart plat-
form

a b ρ0 ϑ ϕ zc Φ∗ = l∗

0.5860 0.2105 1.2035 1.0027 0.9397 1.0940 0.2596

TABLE II
OPTIMAL RESULTS FOR THE GOUGH-STEWART PLATFORM

Find a set of optimal design parameters α such that

max
α

l

subject to κ(Jz(X, ρ, α)) ≥ 0.2;

κ(JΨ(X, ρ, α)) ≥ 0.2;

ρ0 − 0.5 ≤ ρi(X,α) ≤ ρ0 + 0.5;

0 ≤ Angle(Lw
j ,L

w
j0) ≤ 55o;

0 ≤ Angle(Lb
j ,L

b
j0) ≤ 55o;

dist(Lk ,Ll) ≥ 0.04;

η(X, ρ, α) ≥ 30o;

a+ b+ ρ0 = 2;

a, b, zc ∈ [0, 2], ρ0 ∈ [0.5, 2],

ϑ, ϕ ∈ [0,
π

3
];

for all X ∈W , i, j, k, l = 1, · · · , 6 and k < l. �

By applying the CRS algorithm, the optimal design parameters
and the corresponding maximal side length are obtained, as
shown in Table II. Fig. 10-(a) shows a scaled model of the
resulting manipulator at its home configuration. The inclusion
of link interference constraints leads to a more practical
realization, while a sole maximization of effective regular
workspace with no consideration on mechanical interference
[34] results in a zero radius of the moving platform (b ≈ 0)
and coincidence of the close S-joints pairwisely (ϑ, ϕ ≈ π/3),
both on the base and the moving platform. This implies
that both the base and the moving platform degenerate to
equilateral triangles.

Fig. 10-(b) shows workspace cross sections generated by
the resulting manipulator at z = zc − l∗, zc, and zc + l∗,
respectively. The shadowed square, which is contained in all
three cross sections, is the corresponding cross section of
the maximal effective regular workspace. At cross section
z = zc + l∗, the maximal effective workspace touches the
workspace boundary produced by the resulting manipulator.

Fig.11 shows distribution of the dexterity indices κ(Jz)
and κ(JΨ) at cross section z = zc of the resulting maximal
effective regular workspace with zero tilting angle. Fig. 12
shows a worst case for κ(Jz), where the minimal κ is very
close to the prescribed threshold 0.2. This indicates that the
dexterity constraint (12) becomes active.

C. Discussion and Comparison

Usually people solve the optimal design problem 1 by
exhaustive search as follows [8][13][4].

• Discretize the design parameter space P = {P1, · · · , Pt};
• For each Pi, i = 1, · · · , t, discretize the regular

workspace, check all constraints and compute the objec-
tive function;
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Fig. 10. (a) A scaled model of the resulting Gough-Stewart platform; (b)
workspace cross sections of the optimal manipulator.

(a) (b)

Fig. 11. Contour plots of (a) κ(Jz) and (b) κ(JΨ) at z = zc and η = 0.

• Find the largest objective and the corresponding best
value for design parameters.

Clearly, this method involves discretization of both design
parameter space and workspace. The search accuracy highly
depends on fineness of discretization. Once a fine discretiza-
tion is applied, however, the search will be very slow. Our
proposed technique need only to discretize workspace. It
searches the optimum in the continuous design parameter
space. Also the CRS technique features a fast convergence
rate when search points are not in the vicinity of the optimum.
Therefore, the proposed technique is expected to improve the
convergence rate greatly. Let’s investigate the convergence of
the two methods when they’re applied to solve Problem 2,
optimal design of a Delta robot. The design parameter space
P = {(a, b, zc)|a, b ∈ [0, 1], zc ∈ [−1, 0]} is discretized by
step 0.01. By using a notebook computer with an Intel Pen-
tium(M) processor of 1.3G Hz and the Matlab environment,
the exhaustive search took 3.1776e+003 seconds to attain the
optimum 0.1287 with optimal parameters (0.58, 0.41, -0.69).

(a) (b)

Fig. 12. Contour plots of (a) κ(Jz) and (b) κ(JΨ) at z = zc + l∗ and
η = −30o about the direction (−

√
3

2
, 1

2
, 0).

Fig. 13. A typical CRS convergence process for the optimal design problem
of the Delta robot

In contrast, the CRS algorithm took only 138.3290 seconds,
4.35% of running time of the exhaustive search, to reach the
real optimum 0.1296.

A typical CRS convergence process for optimization of
the Delta robot is shown in Fig. 13. The CRS algorithm
converged after 23 iterations (improvements). It is noted that
the algorithm converges extremely fast initially. It takes only
253 function evaluations, which is less than 15% of the total
effort, to approach the objective of 0.12872, which is about
99.3% of the optimum. The optimization process, however,
becomes slow in a close neighborhood of the optimum.

V. CONCLUSION

In this paper, we presented a systematic procedure for
optimal design of parallel manipulators. A unified and practical
formulation for maximization of effective regular workspace
was proposed. By investigating the nature of the optimal
design problem, a direct search method, the CRS technique,
was introduced to solve the problem. Optimal design of a Delta
robot and a Gough-Stewart platform were carried out and the
results show the effectiveness of the design procedure. The
CRS algorithm was proved efficient and reliable and can be a
good alternative to solve optimal design problems of parallel
manipulators.
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