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A Geometric Theory for Analysis and Synthesis of
Sub-6 DoF Parallel Manipulators

Jian Meng, Guanfeng Liu and Zexiang Li

Abstract— Mechanism synthesis is mostly dependent on the
designer’s experience and intuition and is difficult to automate.
This paper aims to develop a rigorous and precise geometric
theory for analysis and synthesis of sub-6 DoF (or lower mobility)
parallel manipulators. Using Lie subgroups and submanifolds of
the special Euclidean groupSE(3), we first develop a unified
framework for modelling commonly used primitive joints and
task spaces. We provide a mathematically rigorous definition of
the notion of motion type using conjugacy classes. Then, we
introduce a new structure for subchains of parallel manipulators
using the product of two subgroups ofSE(3) and discuss its
realization in terms of the primitive joints. We propose the
notion of quotient manipulators that substantially enriches the
topologies of serial manipulators. Finally, we present a general
procedure for specifying the subchain structures given the desired
motion type of a parallel manipulator. The parallel mechanism
synthesis problem is thus solved using the realization techniques
developed for serial manipulators. Generality of the theory
is demonstrated by systematically generating a large class of
feasible topologies for (parallel or serial) mechanisms with a
desired motion type of either a Lie subgroup or a submanifold.

Index Terms— Lie subgroups, regular submanifolds, motion
type, quotient manipulators, kinematic synthesis.

I. INTRODUCTION

Parallel mechanism design involves interactively solving
two tightly coupled problems: (i) mechanism synthesis and
(ii) dimensional optimization. Over the last two decades or
so, we have witnessed the enormous progresses toward the
second problem, namely for a given mechanism the kine-
matic and singularity analysis ([15], [32], [35], [37], [38],
[49]), the determination and computation of properties such
as workspace and stiffness ([11], [12], [22], [31]), and the
different approaches for formulating and optimizing the vari-
ous performance indices ([14],[41],[48]); we have also seen
numerous architectures or topological configurations being
proposed in the literature, but solutions to the synthesis prob-
lem remains ad hoc or unsystematic. Human experience and
intuitions instead of mathematically rigorous and justifiable
procedures are relied on when a new design problem is called
for. Ambiguity in the design objective and lack of a rigorous
treatment in existing approaches to the synthesis problem has

This research is supported in part by Hong Kong RGC grants No. HKUST
6301/03E, HKUST6187/01E and HKUST 6276/04E, and in part by NSFC
grant No.50029501. We would like to thank Profs. J.M. Hervé, J.M. Selig,
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not only prevented globally optimal solutions in many design
cases, but also rendered the mission of automating design
solutions, an ultimate objective of design, extremely difficult,
if not impossible.

Majority of the parallel mechanism architectures proposed
in the literature have six degree-of-freedom (DoF) ( [27], [39]).
Most industrial applications, however, rarely need it. For ex-
ample, only 3-DoF is needed for an orientation device, 4-DoF
is sufficient for most pick-and-place applications, and 5-DoF
is adequate for every conceivable machine tool application.
Having a mechanism with more DoF than necessary is not
only uneconomical but also increases the programming and
maintenance complexity. The Delta manipulator ([5], [6]) is
perhaps the most famous and successful example of a sub-
6 DoF (or lower mobility) parallel mechanism design. Other
examples include the H4 robot by Pierrot ([42], [43]), the
orientation device by Gosselin ([13], [16]), the haptic devices
by T. Salcudean [48], Tsai’s manipulators [49], and that in
Gao [10], Huang [23], and Merlet [39].

Constraint-synthesis method or its variations derived from
screw (or reciprocal screw) theory has long been the main
tool for parallel mechanism synthesis ([8], [24], [30], [29],
[49], [8]). The emergence of many novel sub-6 DoF parallel
manipulators could be attributed to this approach. However,
it is rather difficult to provide a rigorous and yet concise
proof of the finite motion property of a mechanism using this
approach. Remedies like the finite motion conditions([8]) or
the single loop kinematic chain method([30], [29]) proposed
by the authors are descriptive in nature and work usually on
a case-by-case basis.

In order to fully automate the entire design process, a
rigorous and yet precise mathematical theory of the synthesis
problem is needed, a theory that provides:

(1) A geometric framework for precise and un-
ambiguous description of the key mechanism
concepts and important design objectives;

(2) A systematic method for generating all feasible
topologies or architectures based on the design
objectives, and computational tools for verify-
ing correctness of the solutions;

(3) Performance metrics on the various task spaces
based on which dimensional optimization prob-
lems could be formulated and efficiently solved.

Reuleaux [46] introduced the notion of lower pairs to model
some commonly used joints by subgroups of the special Eu-
clidean group SE(3). Some commonly occurring task spaces
are also modelled by subgroups of SE(3). There are, however,
certain joints such as the parallelogram joint ([5], [6]) in the
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Delta robot and the U∗-joint ([1], [10]), and certain task spaces
such as that of a 5-axis machining tool or a flight simulator
that lack a group structure and defy descriptions by subgroups.

J. Hervé initiated a major program to study systematic
generation of parallel mechanism topologies that produce
translational type of motions, known as translational parallel
manipulators (TPM). In their pioneering works ([20], [17],
[21], [33]), Hervé and his co-workers realized that the key to
synthesize such a mechanism is the generation of suitable limb
(leg or subchain) topologies. Using the Lie-group-algebraic
properties of SE(3), Lee and Hervé [33] studied the product
of two planar subgroups and their 21 distinct realizations using
two 1-dimensional Reuleaux pairs, the revolute joint R and
the prismatic joint T . They showed that the parallel setting
of three such limbs result in a TPM and gave a systematic
explanation on the generation of some familiar mechanism
topologies. Related effort can also be found in the works of
J. Angeles [1], and Li, Huang and Hervé [34].

Inspired by Hervé’s work, this paper aims to develop a
geometric theory for more precise and complete treatment
of the synthesis problem. Using differentiable manifold and
Lie group theory (differential as well as group aspects of the
problem), the paper aims to provide:

(i) A unified framework for modelling commonly used
(conventional and extended) joints and task spaces using Lie
subgroups and submanifolds of SE(3); A mathematically
precise definition for the notion of motion type;

(ii) A list of all feasible subchain (or limb) topologies using
the products of two Lie subgroups of SE(3), and realizations
of these subchain structures using the notion of quotient
manipulators;

(iii) A systematic method for specifying all possible sub-
chain structures given the desired motion type of the parallel
mechanism;

(iv) Simple computational techniques for verifying finite
motion properties of the derived results.

The paper is organized as follows: In Section II, we de-
velop geometric models for constrained rigid motions, with
commonly used primitive joints and desired task spaces as
examples. We introduce two important classes of regular
submanifolds of SE(3) for modelling joints and task spaces
that lack a group structure; in Section III, we give a precise
definition of motion type and study the synthesis problem for
serial manipulators having a desired motion type; in Section
IV, we study the parallel manipulator synthesis problem; and
in Section V, we compare the synthesis method developed in
this paper with the screw (or reciprocal screw) theory based
method and the Lie-group-algebraic method of Lee and Hervé
[33], and offer a few comments for future works.

II. MODELLING OF CONSTRAINED RIGID MOTIONS

In this section, we develop mathematical models for rigid
motions generated by primitive motion generators (PMGs or
joints), and by end-effectors of both serial and parallel manip-
ulators. We show that Lie subgroups and submanifolds of the
special Euclidean group SE(3) provide a natural framework
for this problem and explore the geometric properties of these

spaces for the synthesis problems in later sections. Readers
are referred to ([25], [28], [40], [47]) for most of the concepts
treated in this section.

A. SE(3)and its Lie Subgroups

We assume the reader is familiar with the basic notions
of differentiable manifold (see e.g., [4]). Sn, the unit sphere
in Rn+1, and M(n, R), the set of n × n real matrices, are
examples of a differentiable manifold of dimension n and n2,
respectively. GL(n, R), the set of n×n nonsingular matrices,
being an open subset of M(n, R), is also a differentiable man-
ifold of dimension n2. In addition to its differential structure,
GL(n, R) is also an algebraic group with matrix multiplication
as the group operation, and the group multiplication and
inverse operations are both smooth mappings. It is an example
of what is known as a Lie group, a differentiable manifold
with a compatible group structure (see [4] and [28] for more
details). Other examples of a Lie group include SO(n), the
special orthogonal group, and any algebraic subgroup (i.e.,
closed under group operation) of GL(n, R) (or any Lie group)
that is a closed subset (see Remark 6.19, p.88, [4]).

Our primary interest lies in the special Euclidean group
SE(3), classically defined as the symmetry group of the
three dimensional affine space E3. By regarding E3 as an
orientable Riemannian manifold with a preferred orientation
and a choice of length scale, an element of SE(3) is an
orientation preserving isometry of E3. This coordinate-free
description of SE(3) is used in Hervé [19]. It is customary
in the robotics literature, however, to associate a Cartesian
coordinate frame with E3 and identify it with R3. An element
g of SE(3) is then identified with an (orientation preserving)
isometry of R3,

g(q) = Rq + p

where R ∈ SO(3) and p ∈ R3. This allows us to identify
SE(3) with the semidirect product of SO(3) with R3, denoted
SO(3) � R3, which is defined topologically as the product
of SO(3) with R3 but with the group operation g1 · g2 =
(R1R2, R1p2+p1). If we use the homogeneous representation
for points in R3, then SE(3) can be further expressed as
homogeneous transformations of the form

SE(3) =
{[

R p
0 1

]
| p ∈ R3, R ∈ SO(3)

}
⊂ GL(4, R).

Clearly, SE(3) is a closed subgroup of GL(4, R) as it is
defined by polynomial equations, and is thus a Lie group
of dimension 6 (with its relative topology). The manifold
structure of SE(3) is diffeomorphic to that of SO(3) � R3

with the diffeomorphism

Ψ : SO(3) � R3 → SE(3) : (R, p) �→
[

R p
0 1

]
. (1)

It is well known that an element g ∈ SE(3) also represent
a displacement (or a rigid motion) of a rigid body relative
to a reference or nominal configuration represented by the
identify element e. Consequently, SE(3) is also referred to as
the configuration space of the rigid body. This fact enables us



102

to carry out kinematic analysis and synthesis based on the Lie
group SE(3).

An immediate benefit of the homogeneous or matrix repre-
sentation (of SE(3)) is the relative simplicity in which geo-
metric properties of rigid motions and mechanism kinematics
can be computed. Since there is no natural, or geometrically
determined way for identifying E3 with R3, one has to be
cautious when interpreting the computed results. A conclusion
or result is meaningful only when it is coordinate invariant.
Thus, in one hand, we need to use coordinates for performing
computations, but in another hand, we need to ensure that
results are coordinate independent.

We collect here several important facts concerning a Lie
group G that will be used in later sections.

Associated with a Lie group G is its Lie algebra g, defined
as the tangent space to G at the identity e, i.e, g � TeG,
together with a Lie bracket operation that is bilinear and
satisfies skew-symmetry and Jacobi’s identity. For example,
the Lie algebra so(3) of the rotation group SO(3) consists of
all 3 × 3 skew-symmetric matrices,

so(3) =
{
S ∈ R3×3|ST = −S

}
together with the Lie bracket operation given by the matrix
commutator, [S1, S2] = S1S2 − S2S1. Clearly, so(3) can be
identified with R3 via the map

∧ : R3 −→ so(3) : ω �−→ ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .

The Lie algebra se(3) of SE(3) consists of 4× 4 matrices of
the form

se(3) =
{[

ω̂ v
0 0

]
| ω, v ∈ R3

}
together with the matrix commutator as its Lie bracket oper-
ation. With a slight abuse of notation, we identify R6 with
se(3) via the map

∧ : R6 → se(3) : ξ =
(

v
ω

)
�→ ξ̂ =

[
ω̂ v
0 0

]
∈ se(3).

An element ξ̂ of se(3) is called a twist, with twist coordinates

ξ =
(

v
ω

)
∈ R6, and pitch ρ as

ρ =

{
ωT v
||ω||2 , if ω �= 0
∞, if ω = 0.

The exponential map

exp : se(3) → SE(3) : ξ̂ �→ eξ̂ (2)

is a surjective map and defines a local diffeomorphism taking
the zero vector of se(3) to the identity element of SE(3)(see
[40] for an explicit formula of (2)). Physically for fixed ξ,
eθξ̂, θ ∈ R, corresponds to a screw motion along the axis
of ξ [40]. From the property of the exponential map (2), if
(v̂1, · · · , v̂6) is a basis of se(3), then the map

(φ1, · · ·φ6) �−→ exp(φ1v̂1 + · · · + φ6v̂6) (3)

carries a sufficiently small cube {(φ1, · · ·φ6) ∈ R6 | |φi| < ε}
about 0 in R6 diffeomorphically onto an open neighborhood of
e in SE(3). (φ1, · · ·φ6) defines canonical coordinates of the
first kind around the identity element of SE(3). In a similar
manner, the map

(θ1, · · · θ6) �−→ eθ1v̂1 · · · eθ6v̂6 (4)

defines the canonical coordinates of the second kind around
the identity element of SE(3). Canonical coordinates of the
second kind are commonly used in robotics since the forward
kinematic map of an open kinematic chain can be written as
the product of exponentials.

Definition 1: Lie subgroups and Lie subalgebras
A subset H of a Lie group G is a Lie subgroup if it is an
algebraic subgroup, i.e., closed under the group operation, and
a regular submanifold of G. A subspace h of a Lie algebra g
is a Lie subalgebra of g if it is closed under the Lie bracket
operation.

Example 1: Let {ei}6
i=1 be the canonical basis of R6 ∼=

se(3), and denote by {ei, ej} the span of ei and ej . Then, the
following subspaces of se(3) constitute a Lie subalgebra of
se(3): t(z) = {ê3}, t(3) = {ê1, ê2, ê3}, so(3) = {ê4, ê5, ê6}
and x(z) = {ê1, ê2, ê3, ê6}. �

From the theory of differential geometry (see [4]), each
Lie subalgebra of se(3) corresponds uniquely to a connected
component through the identity of a Lie subgroup of SE(3).

Example 2: Fix ξ̂ ∈ se(3), then

H = {eξ̂θ | θ ∈ R}

is a one-parameter subgroup of SE(3), generated by ξ̂.
Identify T (3) with {I} × R3 through (1), and SO(3) with
SO(3) × {0}, then

T (3) = {exp(ê1φ1 + ê2φ2 + ê3φ3) | φi ∈ R, i = 1, 2, 3}

and

SO(3) = {exp(ê4φ1 + ê5φ2 + ê6φ3) | φi ∈ R, i = 1, 2, 3}.

T (3) and SO(3) are referred to as the spatial translational and
rotational subgroup of SE(3), respectively. The Schoenflies
subgroup

X(z) = {exp(ê1φ1+ê2φ2+ê3φ3+ê6φ4) | φi ∈ R, i = 1, · · · 4}

that consists of three translations and one rotation about a fixed
axis is a 4-dimensional subgroup. �

Note that the Lie algebra of the Lie subgroup T (3), SO(3)
and X(z) is, respectively, t(3), so(3) and x(z). Let h be the
Lie algebra of a Lie subgroup H , and hence a Lie subalgebra
of se(3). The exponential map (2) maps diffeomorphically a
neighborhood of 0 ∈ h onto a neighborhood of e ∈ H .

Given g ∈ SE(3), denote by Lg and Rg, the left and the
right translation map, respectively, and Ig = Lg ◦ Rg−1 =
Rg−1 ◦ Lg the conjugation map,

Ig : SE(3) → SE(3) : h �→ ghg−1. (5)
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The differential Lg−1∗ of Lg−1 defines the body velocity of a
rigid motion g(t) ∈ SE(3), t ∈ (−ε, ε),

V̂ b = Lg(t)−1∗ · ġ(t) =
[

RT Ṙ RT ṗ
0 0

]
=

[
ω̂ v
0 0

]
and the differential Rg−1∗ of Rg−1 defines the spatial velocity
of the rigid motion, i.e., V̂ s = Rg−1∗ · ġ. The spatial and body
velocities are related to each other by the differential Ig∗ of
the conjugation map,

V̂ s = Ig∗(V̂
b) = g · V̂ b · g−1 or V s = AdgV

b

where for g = (R, p), the Adjoint map

Adg =
[

R p̂R
0 R

]
is the matrix representation of Ig∗ with respect to the twist
coordinates.

Example 3: Change of coordinate frames
Let gi(t) ∈ SE(3), t ∈ (−ε, ε), i = 1, 2 be the representation
of a rigid motion with respect to two different coordinate
frames that are related to each other by g0 ∈ SE(3). Then,
the following relations hold

g2(t) = g0g1(t)g−1
0

and
V2

b = Adg0V
b
1 .

�
Definition 2: Conjugate subgroups

Let H be a Lie subgroup of SE(3). Then, for a given g ∈
SE(3), the conjugate subgroup of H is a subgroup defined by

Ig(H) = {ghg−1 | h ∈ H}.
Two Lie subgroups H1 and H2 are said to be equivalent

(or belong to the same conjugacy class) if ∃g ∈ SE(3) such
that H1 = Ig(H2). Clearly, if H1 and H2 are equivalent, then
their Lie algebras are related by h1 = Ig∗(h2) = Adg(h2).

Example 4: Let H = {eξ̂θ | θ ∈ R} be a one-parameter
subgroup of screw motions about the axis of a fixed ξ̂ ∈ se(3).
Then, given g = (R, p),

Ig(H) = {e(Adgξ)∧θ|θ ∈ R}

corresponds to the one-parameter subgroup of screw motions
about a displaced twist axis (Adgξ)∧ ∈ se(3). Since the pitch
of a twist is Adg-invariant, i.e., ρ(ξ) = ρ(Adgξ),∀g ∈ SE(3),
screw motions with the same pitch are thus equivalent. For
example, let

T (z) = {eê3α | α ∈ R}

denote the set of 1-DoF translations along direction z, then
T (v) := Ig(T (z)),v = Rz, represents 1-DoF translations
along direction v. Similarly, if

R(o, z) = {eê6θ | θ ∈ [0, 2π]}

models the set of pure rotations about the z-axis (passing
through the origin), then R(p,ω) := Ig(R(o, z)), ω = Rz,

represents pure rotations about an axis with direction ω = Rz,
and passing through p. �

Example 5: Let

C(o, z) = {exp(ê3φ1 + ê6φ2) | φi ∈ R, i = 1, 2},

then, C(p,ω) := Ig(C(o, z)) represents the set of cylindrical
motions about an axis passing through p and with direction
ω = Rz. Similarly, let

PL(z) = {exp(ê1φ1 + ê2φ2 + ê6φ3) | φi ∈ R, i = 1, 2, 3}

be the set of planar rigid motions about the xy-plane, then
PL(ω) := Ig(PL(z)), ω = Rz, represents the set of planar
rigid motions about the plane with normal direction ω. In
Example 2, let S(o) := SO(3) be the set of rotations about the
origin, and g = (I,N). Then, S(N) := Ig(S(o)) represents
all rotations about point N . �

Remark 1: Comments on Notations
In the above examples, R(o, z) denotes rotations about the
z−axis (passing through the origin), and R(p,ω) a generic
member of its conjugacy class. We will use the notation SO(2)
(or simply R) for the conjugacy class of R(o, z) or R(p0,ω).
R(o, z) is also referred to as the normal form of SO(2). When
there is no confusion, we will use SO(2) to denote both the
conjugacy class and its normal form subgroup. Likewise, the
meanings of {T (z), T (v), T (1) or T}, {C(o, z), C(p,ω), C},
{PL(z), PL(ω), SE(2)} and {S(o), S(N), SO(3)} are self-
explanatory.

Lie subgroups of SE(3) provide an important class of
model spaces for rigid motions generated by mechanisms.
An interesting question to ask is, can we classify, up to a
conjugation, all Lie subgroups of SE(3)? J.M. Selig [47]
gave a classification directly at the group level. Hervé ([20],
[21]) enumerated all subgroups of SE(3), and gave a complete
description for all motion types modelled by these subgroups.
One can also derive this classification, as in ([2], [19]), by first
classifying all Lie subalgebras of se(3) and then applying the
exponential map to the results. Figure 1 shows a listing of all
10 types1 of proper Lie subgroups of SE(3), with dimensions
ranging from 1 to 4. Within each box, the upper part denotes
the Lie subalgebra of the corresponding Lie subgroup in its
normal form; the lower part denotes the conjugacy class of the
Lie subgroup. Enclosed in the parenthesis are generic members
of the conjugacy class. A line connecting a Lie subgroup to a
lower dimensional subgroup indicates inclusion under normal
form situations (Note that the relations may fail to hold if the
subgroups are not in their normal forms, e.g., T (v) /∈ C(o, z)
if v �= z).

Of the 10 proper Lie subgroups, there are three 1-
dimensional subgroups, namely, SO(2), T (1) and Hρ that
represent screw motions of zero, infinity, and non-zero finite
pitches, and provide a model for rigid motions generated by
a revolute, prismatic and helical joint of pitch ρ, respectively.
These joints are referred to as lower pairs by Reuleaux [46].
Other lower pairs include the cylindrical subgroup C, the

1Helical motions of distinct pitches belong to different conjugacy classes.
They are related to each other by rescaling. Thus, for simplicity, we will not
distinguish them here.
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Fig. 1. A classification of Lie subgroups of SE(3). The upper part of each box denotes the Lie subalgebra of the corresponding Lie subgroup in its normal
form, and the lower part denotes the conjugacy class. Enclosed in the parenthesis is a generic member of the conjugacy class.

planar subgroup SE(2) and the rotation subgroup SO(3). The
four subgroups T (3), SO(3), SE(2) and X are used to model
end-effector motions of some common manipulators, e.g, T (3)
for Cartesian or the Delta manipulator, and X for the SCARA
and the H4-parallel manipulator.

There is often a need to determine the intersection of two
Lie subgroups (e.g., Hervé [20]). From the property of the
exponential map, if the intersection of the Lie algebras of
these two Lie subgroups is equal to the Lie algebra of another
subgroup, then the intersection agrees with the latter Lie
subgroup. We illustrate this point with an example.

Example 6: Show that the following identity holds, at least
in a neighborhood of the identity element e:

PL(ω) ∩ S(N) = R(N,ω).

The Lie algebras of PL(ω) and S(N) are given by, respec-
tively,

pl(ω) =
{[

u
0

]
,

[
v
0

]
,

[
0
ω

]}
and

s(N) =
{[

N × u
u

]
,

[
N × v

v

]
,

[
N × ω

ω

]}
,

where u,v form a basis of the plane perpendicular to ω. Their
intersection is simply

pl(ω) ∩ s(N) =
{[

N × ω
ω

]}
which is just the Lie algebra r(N,ω) of R(N,ω). �

Example 7: Isotropy Subgroups
Let X be a subset of R3 (e.g., a point, a line or a plane), and
define the isotropy subgroup GX of X by

GX = {g ∈ SE(3) | gX = X}
i.e., GX consists of rigid transformations leaving X fixed or
invariant. Let X be the point N , then GX = S(N); X the line
passing through p and with direction v, then GX = C(p,v),
and X the plane with unit normal ω, then GX = PL(ω). The
Schoenflies subgroup X(ω) can be viewed as the isotropy
subgroup of a point at infinity. �

Example 8: Sim+(3): The Group of Similarity Trans-
formations
The group of similarity transformations of R3, denoted
Sim+(3), consists of matrices of the form

{g · sλ := g

[
1
λI 0
0 1

]
| g ∈ SE(3), λ > 0}.

Here, sλ is a scaling transformation. Let gλ ∈ Sim+(3), then
‖gλ(q1−q2)‖ = 1

λ‖q1−q2‖, and gλ transforms any Euclidean
figure (subset of points) into a proportional (or similar) figure.
It is clear that SE(3) is a normal subgroup of Sim+(3) and
differs from it by a scaling transformation. We will need the
similarity group to give a precise definition of motion type
later. �

Example 9: Conjugcy Subgroups Under Similarity
Transformations
Note that a transformation g in SE(3) leaves the pitch of
a screw motion invariant. Thus, helical motions of distinct
pitches belong to different conjugacy classes under elements
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Fig. 2. Composite joint: A plane-hinged Parallelogram

of SE(3). On the other hand, a similarity transformation
gλ ∈ Sim+(3) leaves all but the helical Hρ and the Yρ

subgroups of SE(3) (see Figure 1) invariant. In the latter
cases, we have

gλHρ(o, z)g−1
λ = Hρ/λ(p,ω), and gλYρ(z)g−1

λ = Yρ/λ(ω).

Hence, there are exactly 10 conjugacy subgroups of SE(3)
under the group of similarity transformations. �

B. Submanifolds and Quotient Spaces of SE(3)

The Lie subgroups of SE(3) shown in Figure 1 can be used
to model the majority of rigid motions generated by primitive
joints and end-effectors of robotic manipulators. There are,
however, important exceptions in which the generated rigid
motions can not be modelled by Lie subgroups. There are
obvious needs to broaden the class of modelling spaces to
include submanifolds of SE(3), e.g., (1) End-effector motions
of a 5-axis machine tool; (2) End-effector motions of a heli-
copter simulator with 1-DoF translation and 3-DoF rotations;
and (3) rigid motions generated by composite joints, such as
the plane-hinged parallelogram shown in Figure 2, and the U∗-
joint shown in Figure 3. In the first case, observe from Figure
1 that there is no Lie subgroup of dimension 5 at all. Hence, no
5-DoF motions can be modelled by Lie subgroups of SE(3).
In the remaining cases, we will see that the model spaces for
these rigid motions form only submanifolds of SE(3).

According to [4], there are three types of submanifolds
(immersed, embedded, and regular), with the last being the
most natural and important (actually the last two types of
submanifolds are the same). We will use regular submanifolds
as our extended model spaces to complement that of Lie sub-
groups. Hence, a submanifold in the sequel will be understood
as a regular submanifold.

Example 10: Consider the plane-hinged parallelogram in
Figure 2, that is utilized in the Delta manipulator design. Let
ω be the unit vector normal to the parallelogram, and v the
vector of link 2 or 4 at the home position, then the set of rigid
motions generated by the parallelogram has the form

Pa(ω,v) =
{[

I (eω̂θ − I)v
0 1

]
| θ ∈ (−π

2
,
π

2
)
}

.

One can show that Pa(ω,v) is diffeomorphic to an open subset
of S1 in R3, and thus an 1-dimensional submanifold of SE(3).

Fig. 3. Composite joint: A U∗-joint

A parallelogram produces linear motions along an open subset
of the unit circle S1 if ‖v‖ = 1. �

Example 11: A U -joint consists of two consecutive R
joints with orthogonally intersecting axes. The set of rigid
motions generated by a U -joint that has its axes initially
aligned with the x− and y− axes has the form

U(o, x, y) = R(o,x) · R(o,y)

=
{[

ex̂αeŷβ 0
0 1

]
, α, β ∈ [0, 2π]

}
,

which is a 2-dimensional submanifold of SO(3) and thus
SE(3). �

Example 12: A generalization of the plane-hinged paral-
lelogram to 3 dimensions is the U∗-joint introduced in [1]
and [10]. The U∗-joint consists of three identical subchains
symmetrically arranged in parallel as shown in Figure 3. Each
subchain in turn consists of two U -joints, where the second
and the third R joints and the first and the fourth R joints are,
respectively, parallel to each other. The configuration space of
the U∗-joint has the form

U∗(ω1,ω2,v) = {
[

I (eω̂1αeω̂2β − I)v
0 1

]
,

α ∈ (0, 2π), β ∈ (−π/2, π/2)}
where ω1, ω2 are the direction vectors of the first two axes
of the subchain, and v is the direction vector of the link that
connects the two U -joints of the subchain, all at the home
position. For simplicity, we assume that ω1 ⊥ ω2 ⊥ v. Note
that U∗(ω1, , ω2,v) is diffeomorphic to an open subset of S2

in R3, and thus a 2-dimensional submanifold of SE(3). The
U∗-joint generates 2-DoF linear motions along the unit sphere
S2 provided that ‖v‖ = 1. �

There are two special families of regular submanifolds that
are of paramount importance in our study. They are referred to
as category I and II submanifolds, respectively, and are given
by Proposition 1 and 2.

Proposition 1: Category I Submanifolds
Let M1 and M2 be a regular submanifold of T (3) and

SO(3), of dimension n1 and n2, respectively. Then, M1 ·M2 (
or M2 ·M1) is a regular submanifold of SE(3), of dimension
n1 + n2.
Remark: The · product above is to be viewed as the product
of two sets of homogeneous transformations. In general, M1 ·
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Subgroups: Submanifolds:
DoF Normal form Conjug. Applications Normal form Conjug. Applications

2 T2(z) T2(v) Planar Cart. motion R(o, z)T (x) R(p, ω)T (v)
C(o, z) C(p, ω) Cylindrical motion U(o,x,y) U(p, ω1, ω2) Pan-tilting motion

3 T (3) T (3) Spatial Cart. motion U(o,x,y)T (z) U(p, ω1, ω2)T (v) Tricept’s proximal 3-DoF module
PL(z) PL(ω) Planar rigid motion U(o,x,y)T (z) U(p, ω1, ω2)T (v) Telescopic leg
S(o) S(N) Rotational motions R(o, z)T2(y) R(p, ω)T2(v) Wafer handling

4 X(z) X(ω) SCARA motion T2(z)U(o,x,y) T2(v)U(p, ω1, ω2) Haptic device
T2(z)U(o, z,x) T2(ω1)U(p, ω1, ω2)
T (z)S(o) T (v)S(N) Helicopter simulator

5 T (3)U(o,x,y) T (3)U(p, ω1, ω2) 5-axis machining
T2(z)S(o) T2(v)S(N)

TABLE I

MODELS OF END-EFFECTOR MOTIONS BY LIE SUBGROUPS AND CATEGORY I SUBMANIFOLDS OF SE(3)

M2 �= M2 · M1.
Proof: See Appendix A.

In conjunction to Lie subgroups, certain category I subman-
ifolds of SE(3) are used to provide models for end-effector
(or task space) motions of a manipulator. For example, by
taking the product of the submanifolds (T (v), T2(u), T (3))
of T (3) with the submanifolds (R(o,ω), U(o,ω1,ω2), S(o))
of SO(3), we arrive at the model spaces given by the right
half column of Table I, whereas the left half column displays
commonly used Lie subgroup motion of dimensions ranging
from 2 to 4.

Example 13: Model spaces for task motions
The set of rigid motions generated by a five-axis machine tool
can be described by

T (3) · U(o,x,y)

or in a general configuration by

Ig(T (3) · U(o,x,y)) = T (3) · U(q,ω1,ω2), ω1 ⊥ ω2.

Similarly, the set of rigid motions generated by a wafer
handling robot can be modelled by

T (z)R(o, z)T (x) = R(o, z)T2(y)

�
Proposition 2: Category II Submanifolds

Let H1 and H2 be a closed Lie subgroup of SE(3), of
dimension n1 and n2, respectively. Let H = H1 ∩ H2,
and n = dim(H). Then, the product H1 · H2 is a regular
submanifold of SE(3) of dimension n1 + n2 − n.
Proof: See appendix B.

Note that if H1 and H2 commute, then H1 · H2 is a Lie
subgroup of SE(3).

Example 14: From Figure 1, the following Lie subgroups
can be factorized into

C(o, z) = T (z)R(o, z), T2(z) = T (x)T (y),
Yρ(z) = Hρ(o, z)T2(z), T (3) = T2(z)T (z),
PL(z) = T2(z)R(o, z),
X(z) = T (3)R(o, z) = PL(z)T (z) = C(z)T2(z)

The order of the products above can be reversed. �
If H1 and H2 do not commute, then H1 ·H2 and H2 ·H1 are
distinct submanifolds. If H1 ∩ H2 is nontrivial, one may use
the factorizations of Example 14 to eliminate the common

component and obtain a simpler ( ”irreducible”, or regular
[17]) representation of the product.

Example 15: The product C(o, z)X(x) can be simplified
into

C(o, z)X(x) = (R(o, z)T (z)) · (T (3)R(o, z))
= R(o, z)T (3)R(o,x)
= T (3)R(o, z)R(o,x)
= T (3)U(o, z,x),

or in a general position, for u �= v,

C(p,u)X(v) = T (3)U(p,u,v).

The product S(o)S(N) is a five dimensional submanifold
since S(o) ∩ S(N) = R(o,N/‖N‖). However, this product
can not be further simplified as S(o) is not trivial. �

In general, the product of three or more subgroups may not
be a regular submanifold because of possible singularities.
For example, S(o) is not equal to R(o,x) · R(o,y) · R(o, z)
because the latter is not a regular submanifold.

Two subgroups are said to be dependant if their intersection
is nontrivial. The product of two dependant subgroups is
referred to, by Hervé [17], as a dependant product. Dependant
products were first studied in ([9], [18]) and applied to
synthesis of parallel pan-tilt wrists in [17]. As shown in [17],
there are all together 25 types of dependant products, which in
their normal forms are displayed in Table II. To derive this list,
one can use the inclusion relations of Figure 1 to identify all
subgroups containing the desired intersection subgroups and
then take their products.

Example 16: To derive the dependant products P14 ∼
P18, we see from Figure 1 that C(o, z), S(o), S(N) (N =
αz), PL(z) and X(z) contain R(o, z). Take the products of
these subgroups leading to the desired results. �

Finally, we introduce the notion of quotient spaces, or
manifolds, of a Lie group G ⊂ SE(3) by a subgroup H ⊂ G.
Two elements g1 and g2 in G are said to be equivalent,
g1 ∼ g2, if g1g

−1
2 ∈ H . The equivalent classes are called

cosets, and the space of cosets for such a relation is called
the quotient space of G by H, denoted G/H . G/H has the
structure of a differentiable manifold of dimension (dim(G)
- dim(H)), and is also referred to as a homogeneous space.
When H is a normal subgroup, i.e., gHg−1 = H, ∀g ∈ G,
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Intersection subgroup: T (z)
No. DoF Product Irreduc. rep. Realiz.
P1 3 T2(x)T2(y) T (3) 1(8)
P2 C(o, z)C(p, z) C(o, z)R(p, z) 24(32)
P3 C(o, z)T2(x) R(o, z)T2(x) 7(18)
p4 4 C(o, z)Yρ(x) R(o, z)Yρ(x) 29(57)
P5 C(o, z)T (3) X(z) 7(34)
P6 C(o, z)PL(x) U(o, z,x)T2(x) 29(57)
P7 T2(x)PL(y) 7(42)
P8 T2(x)Yρ(y)

X(y)
7(42)

P9 5 C(o, z)X(x) T (3)U(o, z,x) 288(708)
P10 PL(x)Yρ(y)
P11 PL(x)PL(y)

T (3)U(o,x,y) 42(160)

P12 Yρ1 (x)Yρ2 (y)

Intersection subgroup: Hρ(o, z)
P13 4 C(o, z)Yρ(z) X(z) 34(77)
Intersection subgroup: R(o, z)

P14 4 C(o, z)S(o) T (z)S(o) 7
P15 C(o, z)PL(z) X(z) 34(77)
P16 5 PL(z)S(o) T2(z)S(o) 11(25)
P17 S(o)S(N) 2
P18 6 S(o)X(z) SE(3) 79(219)

Intersection subgroup: T2(z)
P19 4 Yρ1 (z)Yρ2 (z) 17(37)
P20 Yρ(z)T (3)

X(z)
9(25)

P21 Yρ(z)PL(z) 17(37)
P22 T (3)PL(z) 9(25)
P23 5 PL(z)X(x)
P24 Yρ(z)X(x)

T (3)U(o, z,x) 127(363)

Intersection subgroup: T (3)
P25 5 X(z)X(x) T (3)U(o, z,x) 564(1452)

TABLE II

CATEGORY II SUBMANIFOLDS OF SE(3): 25 PRODUCTS OF DEPENDANT

SUBGROUPS

G/H becomes a Lie group. For example, with G = SE(3)
and H = T (3), G/H can be identified with SO(3). Note that
G/H is not a submanifold of SE(3). But, it can be locally
identified with a submanifold M of SE(3) in a neighborhood
of e. To be more precise, we let G = PL(z) and H = T (x),
and explore the various ways in which G/H can be identified
with submanifolds of G and hence SE(3). Other cases as
implied by Figure 1 can be dealt with in a similar manner.

We are interested in finding 2-dimensional submanifolds M
containing e such that the map

φ : M −→ G/H : m �−→ m · H (6)

is a local diffeomorphism near e. We call such M a local
complement of H in G. By the inverse mapping theorem, (6)
is a local diffeomorphism near e if and only if

φ∗ : TeM −→ Te·HG/H

is an isomorphism. Identify Te·HG/H with g/h, and let V :=
TeM ⊂ g. Then, φ is a local diffeomorphism if and only if

V −→ g/h : v �−→ v + h

is a vector space isomorphism, i.e., V is a complement of h
in g. On the other hand, given a complement V of h in g,
there can be many M ⊂ G such that TeM = V . Thus, it
is not possible to classify all local complements of H in G.
However, with a basis (v1, v2) of V , we can use coordinates

of the second kind to obtain a local complement M by letting
M to be the image of the map

R2 −→ G : (θ1, θ2) �−→ exp(θ1v1) exp(θ2v2)

for (θ1, θ2) lying in an open neighborhood of (0, 0) ⊂ R2. For
this reason, we only need to classify pairs (V, (v1, v2)), where
V is a complement of h in g, and (v1, v2) is an (ordered) basis
of V. It is clear that if (v1, v2) is a basis of V, and (λ1, λ2) ∈
R2, with λ1 �= 0, λ2 �= 0, then M(V,(v1,v2)) coincides with
M(V,(λ1v1,λ2v2)) near e. Thus, we only need to classify pairs
(V, [v1, v2]), where V is a complement of h in g and [v1, v2]
is an equivalent class of basis defined up to rescaling.

Let NG(H) = {g ∈ G | gHg−1 = H} be the normalizer
subgroup of H. NG(H) = T2(z) in our case. Clearly, if
V is a complement of h in g with a basis (v1, v2) and
g ∈ NG(H), then AdgV is another such complement and
(Adgv1, Adgv2) is a basis of AdgV . Thus, it suffices to
classify pairs (V, [v1, v2]) up to conjugations by elements in
T2(z).

For p = (px, py) ∈ R2, let Tp ∈ T2(z) denote the
transformation of translation in the xy−plane by p. Using the
canonical basis (ê1, · · · ê6) of se(3), we have

g = {ê1, ê2, ê6}, h = {ê1}, t2(z) = {ê1, ê2}
and ê6 generates R(o, z). We state the classification results for
G/H through a series of four lemmas, which are proved in
Appendix C.

Lemma 1: Every complement V of h in g has a basis of
the form

v1 = ê6 + aê1, v2 = ê2 + bê1

for some a, b ∈ R.
Lemma 2: Every complement of h in g is conjugate by an

element in T2(z) to an Vb of the form

Vb = {ê6, ê2 + bê1}
for some b ∈ R.

Lemma 3: (i) For b, c ∈ R. If AdTp
Vb = Vc for some

p ∈ R2, then b = c. (ii) For b ∈ R and p = (px, py) ∈ R2,
AdTp

Vb = Vb if and only if py = −bpx.
Lemma 4: Given b ∈ R and under scaling and conjugation

by elements of the form Tp, where p = λ(1,−b), λ ∈ R, every
basis of Vb can be transformed into one of the following three
cases:

(ê2 + bê1, ê6), (ê6, ê2 + bê1)
(ê6, ê6 + λ(ê2 + bλê1))

To summarize, we conclude that, by using coordinates of
the second kind, we obtain the following three types of local
complements of H = T (x) in G = PL(z):

1) M = exp(θ1(ê2 + bê1)) exp(θ2ê6)
= T (u)R(o, z), with u = y + bx;

2) M = R(o, z)T (u);
3) M = exp(θ1ê6) exp(θ2(ê6 + λ(ê2 + bê1)), λ �= 0

= R(o, z)R(N, z), with N = λ(−1, b, 0).

In an analogous manner, we can derive classifications for other
types of quotient manifolds as implied by Figure 1. The results
are shown in Table V.
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Fig. 4. Equivalent Generators of PL(z)

III. KINEMATIC SYNTHESIS OF SERIAL MANIPULATORS

Using the mathematical tools developed in the previous
section, we present in this section a formal geometric theory
for kinematic synthesis of serial manipulators(or subchains).
This includes a precise characterization of motion type and
primitive motion generators (PMGs), and synthesis of sub-
group and submanifold motion generators. The results of this
section will be applied in the next section to the synthesis of
parallel manipulators.

A. Motion Type and Primitive Motion Generators

The notion of motion type has been widely used in the
mechanism community but never precisely defined. Intuitively,
the motion type of a mechanism in a neighborhood of a
reference configuration describes the pattern of the set of
motions generated by the mechanism over this neighborhood.
This notion should be independent of the choice of length
scales (or sizes) and the coordinate frame used to represent
the set of motions. In other words, rather than describing a
particular set of motion, a motion type describes a class of
motions or more exactly a conjugacy class of motions under
the group Sim+(3) of similarity transformations (invariant
under change of length scales and coordinate frames).

Definition 3: Motion Type
Let M be a mechanism that consists of a system of coupled

rigid bodies, one of which is identified as the base and one
as the end-effector. Choose a reference configuration of M
and identify the joint variables with zero. Attach a coordinate
frame to the end-effector and denote by CM the set of rigid
motions generated (or attainable) by the end-effector relative to
the reference configuration, i.e., e ∈ CM. Let Q0 be a normal
form subgroup or submanifold of SE(3) and Q = grQ0g

−1
r ,

the conjugacy class of Q0 under Sim+(3). M is said to have
the motion type (or finite motion property) of Q if there exists
gr ∈ Sim+(3) such that grCMg−1

r agrees with Q0 in an open
neighborhood U ⊂ SE(3) of e, i.e.,

(grCMg−1
r ) ∩ U = Q0 ∩ U (7)

Remark 2: (i) We require that Q0 be a regular submanifold
2 so that Ũ := Q0 ∩U is an open set (of Q0) around e , with
the differentiable structure consistent with that of Q0; (ii) If
Q0 is a Lie subgroup, and M has the motion type of Q, then
the inverse mechanism M−1 also has the motion type of Q;
(iii) For notational simplicity, we will use Q for Q0 when its
meaning is understood from the context, and call M a motion
generator of Q.

2Recall that Lie subgroups are also regular submanifolds.

DoF Notation (G) Twist Rep. (G) Remark
1 T (v) (T ) (v, 0) Prismatic joint

R(p, ω) (R) (p × ω, ω) Revolute joint
Hρ(p, ω) (H) (p × ω + ρω, ω) Helical joint
Pa(ω,v) (Pa ) (ω × v, 0) Parallelogram

2
U∗(ω1, ω2,v)
(U∗)

(ω1 × v, 0),
(ω2 × v, 0)

U∗-joint

TABLE III

PRIMITIVE MOTION GENERATORS

Example 17: Primitive Motion Generators (PMGs)
Rigid motions generated by a revolute pair R(p,ω) with joint
limits −θM < θ < θM is given by

CM = {exp(ξ̂θ) | −θM < θ < θM}

where ξ = (p × ω, ω) ∈ R6 is the twist associated with the
joint axis. Clearly, CM can be transformed by an element
of SE(3) to agree with R(o, z) in an open neighborhood of
the identity. Thus, a revolute pair is said to have the motion
type of SO(2) or simply R. Similarly, rigid motions of a
helical pair Hρ(p,ω) with non-zero pitch ρ can be transformed
by an element gr ∈ Sim+(3) to agree with H1(o, z), the
helical subgroup of unit pitch, in an open neighborhood of
the identity. Hence, a helical pair is said to have the motion
type of H . R,H and the prismatic joint T are referred to as
the conventional PMGs. �

Example 18: Extended PMGs
As shown in Example 10, rigid motions generated by a plane-
hinged parallelogram has the form Pa(ω,v). It corresponds
to translations along a circle of radius ‖v‖. This set can
be transformed by a similarity transformation to agree with
Pa(z,y) in an open neighborhood of the identity. Thus,
a plane-hinged parallelogram Pa(ω,v) is said to have the
motion type of Pa. Similarly, the U∗-joint of Example 12 is
said to have the motion type of U∗, the conjugacy class of the
submanifold U∗(x,y, z). Pa- and U∗-joints are referred to as
the extended PMGs. �
In this paper, we will study mechanism synthesis using both
conventional set of PMGs (R, T ,H), and extended set of
PMGs (R, T ,H,Pa,U∗). The twist representation of a PMG
G is denoted by G. One can refer to Table III for an explicit
expression of G for all PMGs.

Example 19: SE(2)−Motion Generators
Let P = (T (v),R(p, z)) be a set of PMGs that lie in PL(z).
Consider cascading in series three such PMGs to form a serial
kinematic chain

M = G1 · G2 · G3 (8)

where Gi ∈ P, i = 1, 2, 3. The product above is the product
of three conjugacy classes. The mechanism is said to have the
motion type of SE(2) if there exists a configuration in which
the set of rigid motions generated by M agrees with PL(z)
in a neighborhood of the identity. Clearly, the mechanism

M1 = T (u) · T (v) · R(p, z)
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with the geometric condition that u ∦ v is a SE(2)− motion
generator because

M1 := {G1,G2,G3} = {t(u), t(v), r(p, z)} = pl(z). (9)

Here, the geometric condition guarantees that the mechanism
is not at a singular configuration, a situation which may happen
with the product of more than three PMGs. In a similar
manner, the mechanism M2 = T (u) · R(p, z) · T (v) with
a similar geometric condition is also a SE(2)-motion gener-
ator. In general, the problem of finding all possible SE(2)-
motion generators (topologies or realizations) with a given
set of PMGs is a combinatorial problem, subjecting to the
geometric condition imposed by (9). Eliminating the case with
all three prismatic joints, we obtain a total of seven topological
configurations that generate SE(2) motions. Figure 4 displays
three such cases. These topological configurations are invariant
under conjugations by elements of PL(z) and rescaling (or the
group Sim+(2)). �

For the mechanism in Figure 4(b), the prismatic joint of the
(R ·R · T )-chain can be replaced by a parallelogram joint as
long as the unit circle of the Pa-joint lies in the xy−plane and
the following geometric condition is maintained at the chosen
configuration

{ξ1, ξ2, Pa} = pl(z).

By a similar argument, we can replace any (or both) of the
T joints in Figure 4(c) by a Pa-joint(s) without affecting
the results. In other words, there are a total of 21 distinct
topologies having the motion type of SE(2) with Pe =
(T ,R,Pa).

We now formulate the general synthesis problem of serial
manipulators having the motion type of Q. Let P be a pre-
specified set of PMGs in Q.

Problem 1: Serial Kinematic Synthesis
Find the set of all serial mechanisms of the form M =
G1 · G2 · · · ·Gl, with Gi ∈ P, i = 1, · · · l, and DoF (M) :=∑l

i=1 DoF (Gi) = Dim(Q), such that at a certain configu-
ration M has the motion type of Q.
Note that redundant manipulators are not considered here, with
the requirement that DoF (M) = Dim(Q).

We separate solutions of the synthesis problem into a Lie
subgroup case and a regular submanifold case.

B. Subgroup Motion Generators

Proposition 3: Let Q be a Lie subgroup of dimension n. M
is a motion generator of Q if and only if DoF (M) = n and
there exists a configuration such that M := {G1, · · · ,Gl} =
TeQ.

Synthesis of some of the Lie subgroups given in Figure 1
are discussed through the following examples.

Example 20: Synthesis ofC(o, z)-subchains
The Lie algebra of C(o, z) is spanned by (zT , 0)T and
(0, zT )T . Thus, by Proposition 3, all the serial mechanisms
in Figure 5 generate C(o, z). Rearranging the order of the
primitive generators in Figure 5 yields a total of 6 realizations
for C(o, z). Note that here the parallelogram joint can not be
used to replace the prismatic joint as the unit circle S1 of the
Pa-joint can not be embedded in C(o, z). �

Fig. 5. Equivalent Generators of C(o, z)

Fig. 6. A Generator of T2(z)

Example 21: Synthesis ofT2(z) and T (3) subchains
It is easy to see that cascading two prismatic pairs, or a
prismatic pair with a parallelogram joint, as in Figure 6,
generates T2(z) (Note that the S1 of the parallelogram joint
should lie in T2(z)). Similarly, cascading three prismatic pairs,
or a prismatic pair with a U∗-pair, as in Figure 7, generates
T (3). The order of the constituting pairs can be interchanged
to yield new realizations. �

Example 22: Synthesis ofX(z)-subchains
Since

X(z) = T (3) · R(p, z) = PL(z) · T (z) = T2(z) · C(p, z),

the simplest way to synthesize an X(z) subchain is by cascad-
ing in series a T (3) generator with a revolute joint R(p, z),
a PL(z) generator with a prismatic joint T (z), or a T2(z)
generator with a C(p, z) generator. Using the conventional

Fig. 7. A Generator of T (3)
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Fig. 8. Realizations of Quotient Manifolds of SE(2)

Fig. 9. Realizations of product submanifold T (3) · U(o, z,x)

set of primitive generators (T ,R,H), there are a total of 79
realizations of X(z) (see also Hervé and Sparacino [21]), some
of which are shown in Table IV.

Observe that any of the prismatic joint T in Table IV can
be replaced by a Pa-joint, and any pair of two successive T ’s
can be replaced by a U∗−joint. For example, replacing the
T by Pa in the (R · R · T · R)-subchain gives rise to the
subchain of the Delta manipulator. Using the extended set of
primitive generators (T ,R,H,Pa,U∗), there are a total of 219
realizations of X(z). �

We summarize in Table IV the various subgroup motion
generators and their total number in terms of the conventional
set of PMGs, the number in the parenthesis indicates that
obtained using the extended set of PMGs.

C. Submanifold Motion Generators

First, we consider motion generators for category I subman-
ifolds.

Proposition 4: Given a desired motion type Q = N1 · N2,
with N1 ⊂ T (3) and N2 ⊂ SO(3), suppose that M1

generates N1 and M2 generates N2, then M = M1 · M2

generates Q = N1 · N2.
Proof. See Appendix D.

Next, we consider motion generators for a category II
submanifold Q of the form Q = H1 · H2, with H1 and H2

being a Lie subgroup of SE(3).
Definition 4: Quotient Manipulators

Let G be a Lie subgroup of SE(3) and H a Lie subgroup of
G. Let MH be a motion generator of H. Then, MG/H is said
to be a quotient manipulator if DoF (MG/H) = dim(G) −

dim(H) and MG/H · MH generates G, i.e,

MG/H ⊕MH = Te(G).
Example 23: Realizations of the quotient manifold

PL(z)/T (x) were discussed in detail at the end of the
previous section. As we have seen, up to a conjugation and
rescaling, there are a total of three distinct topologies having
the motion type of PL(z)/T (x). By a similar analysis, there
are four distinct realizations of PL(z)/R(o,x), some of
which are shown in Figure 8. �

Realizations of other quotient manifolds of SE(3) are given
in Table V.

Proposition 5: Given a desired motion type Q = H1 · H2,
with H1 and H2 being a Lie subgroup of SE(3). Let H =
H1 ∩ H2. (i) if H = {e}, then M = MH1 · MH2 generates
Q; (ii) if H > {e}, then M1 = MH1/H ·MH2 , M2 = MH1 ·
MH2/H and M3 = MH1/L1 · MH2/L2 , with H = L1 · L2,
all generate Q.
Proof. See Appendix E.

Example 24: Motion generators of PL(z) · PL(x)
Let Q = PL(z) · PL(x). As H = PL(z) ∩ PL(x) =
T (y), from Proposition 5, the product submanifold has the
realizations

M = MPL(z)/T (y) · MPL(x)

= MPL(z) · MPL(x)/T (y) .
(10)

Realizations for the various terms contained in Eq.(10) can
be found from Table IV and V. PL(x) has a total of 7(16),
and PL(z)/T (y) a total of 3(5) realizations. Thus, there are
a total of 2 × 3 × 7= 42 (160) realizations for Q. �

Example 25: Motion generators of C(o, z) · S(o)
Let Q = C(o, z) · S(o), H = C(o, z) ∩ S(o) = R(o, z), and
we have

M = MC(o,z)/R(o,z) · MS(o)

= MC(o,z) ·MS(o)/R(o,z)
(11)

From Table IV and V, there are 2 and 7 realizations for
C(o, z)/R(o, z) and C(o, z), respectively. As only one re-
alization exists for both S(o) and S(o)/R(o, z), there are
a total of 9 possible realizations of Q. However, the two
realizations T (z)·R(o, z)·MS(o)/R(o,z) and Hρ(o, z)·R(o, z)·
MS(o)/R(o,z) from the second product are identical to these
in the first product since R(o, z) · MS(o)/R(o,z) = MS(o).
Discounting the identical ones leads to a total of 7 distinct
realizations of Q. �

Example 26: Motion generators of X(z) · X(x)
Let Q = X(z) · X(x). As H = X(z) ∩ X(x) = T (3) =
T (u) · T2(v), by Proposition 5, the product submanifold has
the realizations

M = MX(z) ·MX(x)/T (3)

= MX(z)/T (3) ·MX(x)

= MX(z)/T (u) ·MX(x)/T2(v)

= MX(z)/T2(u) ·MX(x)/T (v)

(12)

Realizations for the various terms contained in Eq.(12) can
be found from Table IV and V. Eliminating all identical
realizations, we obtain a total of 564(1452) motion generators
for Q.
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DoF Subgroup Representative generators Total

4 X(z)

R(q, z) · T (u) · T (v) · T (w), Hρ(q, z) · T (u) · T (v) · T (w),
R(q1, z) · R(q2, z) · T (u) · T (v), R(q1, z) · Hρ(q2, z) · T (u) · T (v),
Hρ1 (q1, z) · Hρ2 (q2, z) · T (u) · T (v), Hρ1 (q1, z) · Hρ2 (q2, z) · Hρ3 (q3, z) · T (u),
R(q1, z) · R(q2, z) · R(q3, z) · T (u), R(q1, z) · R(q2, z) · Hρ(q3, z) · T (u),
R(q1, z) · Hρ1 (q2, z) · Hρ2 (q3, z) · T (u), Hρ1 (q1, z) · Hρ2 (q2, z) · Hρ3 (q3, z) · R(q4, z),
Hρ(q1, z) · R(q2, z) · R(q3, z) · R(q4, z), Hρ1 (q1, z) · Hρ2 (q2, z) · R(q3, z) · R(q4, z),

79(219)

Hρ1 (q1, z) · Hρ2 (q2, z) · Hρ3 (q3, z) · Hρ4 (q4, z)
3 T (3) T (u) · T (v) · T (w) 1(8)
3 PL(z) T (u) · T (v) · R(q, z) , T (u) · R(q1, z) · R(q2, z) , R(q1, z) · R(q2, z) · R(q3, z) 7(16)
3 Yρ(z) T (u) · T (v) · Hρ(q, z) , T (u) · Hρ(q1, z) · Hρ(q2, z) , Hρ(q1, z) · Hρ(q2, z) · Hρ(q3, z) 7(16)
3 S(o) R(o,u) · R(o,v) · R(o,w) 1
2 C(o, z) T (z) · R(o, z) , T (z) · Hρ(o, z) , Hρ(o, z) · R(o, z) , Hρ1 (o, z) · Hρ2 (o, z) 7
2 T2(z) T (u) · T (v) 1(4)

TABLE IV

EQUIVALENT GENERATORS FOR LIE SUBGROUPS OF SE(3)

Figure 9(a) displays a realization for MX(z)/T (z) ·
MX(x)/T2(z) (u = v = z), and Figure 9(b) a realization
for MX(z)/T2(x) · MX(x)/T (x)(u = v = x). Note that the
translational direction of the prismatic joint in Figure 9(b)
is not necessarily perpendicular to its two adjacent revolute
joints. �

The total number of realizations for other Category II
submanifolds are shown in the last column of Table II.

Propositions 4 and 5 provide us with a set of tools needed
for finding systematically motion generators of category I and
II submanifolds. These tools can be applied separately or in
combination when a submanifold is expressed in different
forms.

We now illustrate the application of these tools by finding
all motion generators for some of the category I submanifolds.

Example 27: Synthesis ofT2(z) · U(o, z,x)-subchains
From Table II, the submanifold can be written as

T2(z) · U(o, z,x) = PL(z) · C(o,x)

with H = PL(z) ∩ C(o,x) = T (x). Thus, the submanifold
has the following realizations

MT2(z) ·MU(o,z,x) = MPL(z) · MC(o,x)/T (x)

= MPL(z)/T (x) ·MC(o,x) .

Realizations of the various terms in the above products can
be found from Table IV and V (that of U(o, z,x) is fairly
straightforward). Discounting identical realizations, there are
a total of 29 realizations for T2(z) · U(o, z,x). If we include
the parallelogram joint, there are a total of 57 realizations, see
Table VI. �

Example 28: Synthesis ofT2(z) · S(o)-subchains
Let (u,v) be a basis of the xy-plane, and observe the
following equivalences,

MT2(z) ·MS(o) = MPL(z) ·MS(o)/R(o,z)

= MPL(z)/R(o,z) · MS(o)

= MT2(z)·U(o,z,x) · R(o,y)
= T (u) · MT (v)·S(o)

= R(q, z) · MT (v)·S(o) .

Realizations for the various terms contained in the above
equations can be found from Table IV and V, leading to a total

DoF Quotient
Manifold

Representative realizations Total

1 C(o,x)/T (x) R(o,x) , Hρ(o,x) 2
1 C(o, z)/R(o, z) T (z) , Hρ(o, z) 2
2 PL(z)/T (x) T (u) · R(q, z) , R(q1, z) · R(q2, z) 3(5)
2 PL(z)/R(o, z) T (u) · T (v) , R(q, z) · T (v), 4(9)

R(q1, z) · R(q2, z)
1 PL(z))/T2(z)) R(q, z) 1
2 Yρ(z)/T (x) T (u) · Hρ(q, z), 3(5)

Hρ(q1, z) · Hρ(q2, z)
2 Yρ(z)/Hρ(o, z) T (u) · T (v) , Hρ(q, z) · T (v), 4(9)

Hρ(q1, z) · Hρ(q2, z)
1 Yρ(z)/T2(z) Hρ(q, z) 1
2 S(o)/R(o, z) R(o,u) · R(o,v) 1
1 X(z)/T (3) R(q, z) , Hρ(q, x) 2
2 X(z)/T2(v) R(q, z) · T (u), 8(12)

Hρ(q, z) · T (u),
R(q1, z) · R(q2, z),
R(q1, z) · Hρ(q2, z),
Hρ1 (q1, z) · Hρ2 (q2, z)

3 X(z)/T (u) R(q, z) · T (v) · T (w), 26(54)
Hρ(q, z) · T (v) · T (w),
R(q1, z) · R(q2, z) · T (v),
R(q1, z) · Hρ(q2, z) · T (v),
Hρ1 (q1, z) · Hρ2 (q2, z) · T (v),
Hρ1 (q1, z) · Hρ2 (q2, z) · Hρ3 (q3, z),
R(q1, z) · R(q2, z) · R(q3, z),
R(q1, z) · R(q2, z) · Hρ(q3, z),
R(q1, z) · Hρ1 (q2, z) · Hρ2 (q3, z),

TABLE V

REPRESENTATIVE REALIZATIONS FOR SOME QUOTIENT MANIFOLDS

Fig. 10. Realizations of Product Submanifold T (2) · SO(3)
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DoF Submanifold Representative generators Total
3 T2(z) · R(o,x) MT2(z) · R(o,x) 1(4)
3 T (z) · U(o,x,y) T (z) · MU(o,x,y) 1
4 T2(z) · U(o, z,x) MPL(z) · MC(o,x)/T (x), 29

= PL(z) · C(o,x) MPL(z)/T (x) · MC(o,x) (57)
4 T (z) · S(o) MC(o,z)/R(o,z) · MS(o), ∆ 7

= C(o, z) · S(o) MC(o,z) · MS(o)/R(o,z)

5 T2(z) · S(o) MPL(z) · MS(o)/R(o,z), 45
= PL(z) · S(o) MPL(z)/R(o,z) · MS(o), ∆ (84)

MT2(z)·U(o,z,x) · R(o,y),
T (u) · MT (v)·S(o), ∆
R(q, z) · MT (v)·S(o) ∆

5 T (3) · U(o, z,x) MT (3) · MU(o,z,x), 564
= X(z) · X(x) MX(z) · MX(x)/T (3), ∆ (1452)

MX(z)/T (3) · MX(x),
MX(z)/T (u) · MX(x)/T2(v),
MX(z)/T2(u) · MX(x)/T (v),

= X(z) · C(q,x) MX(z)/T (x) · MC(q,x),
MX(z) · MC(q,x)/T (x) ∆

= X(z) · PL(x) MX(z)/T2(x) · MPL(x),
MX(z) · MPL(x)/T2(x), ∆
MX(z)/T (s) · MPL(x)/T (t),

= X(z) · Yρ(x) MX(z)/T2(x) · MYρ(x),
MX(z) · MYρ(x)/T2(x), ∆

MX(z)/T (s) · MYρ(x)/T (t),
5 S(N) · S(o) MS(N) · MS(o)/R(0,t), 2

MS(N)/R(0,t) · MS(o) ∆

TABLE VI

EQUIVALENT GENERATORS FOR SOME PRODUCT SUBMANIFOLDS

of 45 realizations for the submanifold. Taking into account the
parallelogram joint, there are a total of 84 realizations.

Some examples of the realizations are shown in Figure 10.
�

Example 29: Synthesis ofT (3) · U(o, z,x) subchain
From Table II, we can get the following identities

T (3) · U(o, z,x) = X(z) · X(x)
= X(z) · C(q,x) (or C(q, z) · X(x))
= X(z) · PL(x) (or PL(z) · X(x))
= X(z) · Yρ(x) (or Yρ(z) · X(x))
= PL(z) · PL(x)
= PL(z) · Yρ(x) (or Yρ(z) · PL(x))
= Yρ1(z) · Yρ2(x) (or Yρ1(z) · Yρ2(x))

(13)

Note that the set of realizations of X(z) · X(x) contains the
realizations for all other product submanifolds on the right
hand side of (13). Hence from Example 26, all together there
are a total of 564 realizations in terms of (T ,R,H), and
1452 realizations in terms of the extended set of primitive
generators. �

IV. SYNTHESIS OF PARALLEL MANIPULATORS

From now on, the set of rigid motions generated by a serial
manipulator Mi will be represented by its motion type, or
more precisely by an open subset of CMi

. Which open subset
to use for CMi

is immaterial within the context of mechanism
synthesis. For any g ∈ CMi

, Rg−1∗TgCMi
⊂ se(3) is well

defined and represents the set of infinitesimal motions of the
end-effector at g. Apparently, this set of infinitesimal motions
is equal to Mi if the manipulator is at the home configuration
e.

Definition 5: Parallel Motion (PM) Generator (or Par-
allel Realization)
Let M = M1‖ · · · ‖Mk be a mechanism consisting of
the parallel connection of k (serial) manipulator subchains
M1, · · ·Mk, that share a common base and a common end-
effector. Denote the set of end-effector motions by

CM := CM1 ∩ CM2 ∩ · · · ∩ CMk
, (14)

and the set of infinitesimal motions attainable by M at g ∈ CM

by

Rg−1∗TgCM := Rg−1∗TgCM1 ∩ · · · ∩ Rg−1∗TgCMk
. (15)

M is called a parallel motion generator or a parallel realiza-
tion of a Lie subgroup or submanifold Q if M has the motion
type of Q, i.e., CM agrees with Q in an open neighborhood
U of SE(3) around the identity element.

We will assume that k = dim(Q) in order to place one
actuator at the base of each subchain.

Problem 2: Parallel Manipulator Synthesis
Given a desired motion type Q, as specified in Table I, find
all parallel motion (PM) generators of Q.

The following proposition, which is a special case of a more
general theorem proved in Appendix F, will be used to find
parallel realizations of Q.

Proposition 6: Given a desired motion type Q ⊂ SE(3),
with k = dim(Q). Assume that each CMj

, j = 1, · · · k
contains a connected open subset QU of Q around e,

QU ⊆ CMj
, j = 1, · · · , k (16)

and consequently QU ⊆ CM. If the condition

TeQ = M1 ∩ · · · ∩Mk (17)

or the dual condition

(T ∗
e Q)⊥ = (T ∗

e CM1)
⊥ + · · · + (T ∗

e CMk
)⊥ (18)

holds, where

(T ∗
e Q)⊥ = {f ∈ R6‖〈f, ξ〉 = 0,∀ξ ∈ TeQ}

denotes the set of constraint forces for TeQ, then, M = M1‖·
· · · ‖Mk is a PM generator of Q. Furthermore, if for every
g ∈ QU ,

Rg−1∗TgQ = Rg−1∗Tg(CM1) ∩ · · · ∩ Rg−1∗Tg(CMk
) (19)

(or its dual condition holds), then there exists a connected
open subset W of SE(3) around e such that QU = CM∩W ,
i.e, CM agrees with QU in W .

Remark 3: (i) (17) and its dual (18) are referred to as the
velocity matching condition (VMC) and the force matching
condition (FMC), respectively; (ii) (19) is referred to as
the global VMC (GVMC). It can be used to determine the
maximal extent in which CM agrees with Q, i.e., to find the
maximal QU such that QU = CM ∩ W , with W an open
subset of SE(3).

Let us elaborate on the conditions of Proposition 6 for Q
being a Lie subgroup. From the previous section, let

CMj
= Hj · Q, j = 1, · · · , k (20)
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Fig. 11. Example of SO(3) PM Motion Generator with Hj = PL(ωj)

(with the equality to be understood in the sense of motion type)
for some subgroup Hj . It is easy to see that QU ⊂ CMj

for
some open subset QU of Q around e. The trivial case with
Hj = {e} will not be considered here as the intersection in
(14) is not robust. Choice of Hj will be based on the VMC
(17) (or its dual), and the so-called dead-locking phenomena.

Lemma 5: Dead-locking
When a serial manipulator (or a subchain) M = G1 · · · ·Gn,

where Gi, i = 1, · · ·n, are PMGs, is constrained (e.g., by
closure-constraints) to move in a Lie subgroup or submanifold
Q with dim(Q) < DoF (M), and a subset k of the n primitive
generators generate Q, e.g, G1 · · ·Gk generates Q, then the
joint coordinates corresponding to the remaining joints will be
dead-locked, i.e., θi = 0, i = k + 1, · · ·n, and these joints can
be removed without affecting the constrained motions.

If Hj has a trivial intersection with Q, i.e, Hj ∩ Q = {e},
then from Proposition 5, the realization of Hj ·Q is given by
Mj = MHj

·MQ. Thus by Lemma 5, the primitive generators
in MHj

will be dead-locked when Mj is constrained to move
in the subgroup Q.

Corollary 1: A parallel manipulator M with its subchains
Mj , j = 1, · · · k satisfying (20) for Hj having non-trivial
intersections with Q, and the VMC (17) or its dual (18) is
a PM generator of Q.

Corollary 2: Reordering Method
Suppose that M = M1‖ · · · ‖Ml, with Mj = MHj

·
MQ/(Q∩Hj) := (Pj1 · · ·Pjm

) · (Pjm+1 · · ·Pjn
), and Pjk

, k =
1, · · ·n PMGs, is a PM generator of Q. Then, reordering the
joints of MQ/(Q∩Hj) (but not that of MHj

) leads to another
realization of Q, i.e., N = N1‖ · · · ‖Nl, with

Nj = Pjm+1 · (Pj1 · · ·Pjm
) · Pjm+2 · · ·Pjn

is also a PM generator of Q.
Note that by reordering, the conditions of Proposition 6
remain unchanged. Corollary 2 allows us to derive additional
realizations from existing ones.

We now apply Proposition 6 and Corollary 1 and 2 to study
subgroup PM generators for the following examples.

Example 30: Synthesis of SO(3) PM Generators
From Table II, there are three Lie subgroups that have non-
trivial intersections with S(o)

CMj
=


PL(ωj) · S(o)
S(Nj) · S(o)
C(o,ωj) · S(o)

(21)

Fig. 12. Example of SO(3) PM Motion Generator with Hj = S(Nj)

Fig. 13. Example of SO(3) PM Motion Generator with Hj = C(o, ωj)

Fig. 14. Example of a SO(3) PM Motion Generator obtained by the
Reordering Method (A new interpretation of Fig.9 in [26])

Fig. 15. Example of a X(z) PM Motion Generator
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Fig. 16. Example of a X(z) PM Motion Generator

CMj
is, respectively, a 5- and 4-dimensional submanifold

of SE(3) containing S(o). Realizations of the three product
terms in (21) are given in Table VI. The constraint force for
a subchain generating PL(ω) · S(o) at e is given by (ωT , 0),
and that for S(N) · SO(3) by (tT , 0), where t is the unit
direction vector from the origin to N . Thus, if

CMj
= PL(ωj) · S(o) j = 1, · · · , 3

and with

(T ∗
e CMj

)⊥ = {(ωT
j , 0)}, j = 1, · · · 3

the FMC shows that if the ωj’s, j = 1, · · · , 3 are linearly
independent, then M = M1‖M2‖M3 is a PM generator of
SO(3).

Similarly, if

CMj
= S(Nj) · S(o) j = 1, · · · , 3

then
(T ∗

e CMj
)⊥ = {(tT

j , 0)}, j = 1, · · · 3

and M = M1‖M2‖M3 is a PM generator of SO(3) if the
tj’s are linearly independent.

Figure 11 and 12 give examples of these two types of PM
generators.

The third type of PM generators of SO(3) is obtained when

CMj
= C(o,ωj) · S(o) j = 1, · · · , 3

Note that

Mj = {ξj,1, · · · , ξj,4}

where

ξj,1 = (ωT
j , 0)T , ξj,2 = (0, (1, 0, 0))T

ξj,3 = (0, (0, 1, 0))T , ξj,4 = (0, (0, 0, 1))T .

Hence, in order to satisfy the VMC, at least two of ωj’s,
j = 1, · · · , 3 need to be linearly independent. Examples of
this types of SO(3) PM generators are shown in Figure 13.

From Table II, there are 45(84) realizations for PL(ω) ·
S(o), 2 for S(N) · S(o) and 7 for C(o,ω) · S(o). Thus, there
are in principle a total of 54(93) PM generators of SO(3),
provided that the subchains’ motion types are equivalent and in
the form of Eq.(21). Because of dead-locking, however, not all
of these realizations are feasible. For example, the realization

Mj = MHj/(Hj∩S(o)) · MS(o)

will result in dead-locking of all joints for MHj/(Hj∩S(o))

when the loop constraints are imposed. On the other hand,
consider a realization of the form

MHj
·MS(o)/(Hj∩S(o))

If MHj
contains some joints that form a Hj ∩S(o) generator,

then by Lemma 5, the remaining joints of MHj
will become

dead-locked. For instance, MPL(ωj) in the realization of
MPL(ωj) ·MS(o)/R(o,ωj) should not contain a R(o,ωj) joint
to avoid dead-locking. Eliminating all infeasible solutions
which are marked by ∆ in Table VI, there are a total of 35(63)
parallel realizations for SO(3).

Additional realizations can be derived from existing ones
using the reordering method. For instance, let M =
M1||M2||M3 be a feasible solution with Mj consisting of

Mj = MPL(ωj) · MS(o)/R(o,ωj)

= (R(pj1, ωj) · R(pj2, ωj) · R(pj3, ωj)) · R(o,uj) · R(o,vj)

where ωj ,uj and vj are linearly independent. By Corollary
2, reordering the joints of MS(o)/(R(o,ωj)) (but not that of
MPL(ωj)) leads to another feasible realization of SO(3), i.e.,
N = N1‖N2‖N3 with

Nj = R(o,uj) · (R(pj1, ωj) · R(pj2, ωj) · R(pj3, ωj)) · R(o,vj)

is also a PM generator of SO(3) (Fig.14). Similarly, if Mj =
MS(Nj) · MS(o)/R(o,tj), applying the reordering method to
the joints of MS(o)/R(o,tj) yields more SO(3) PM generators.
Note that these two types of spherical mechanisms have also
been studied in [26], [8] using pure group and screw theory.
However, the finite motion property of such mechanisms could
not be precisely verified in these papers.

Finally, note that PM generators of SO(3) obtained by
Eq.(21) characterize most solutions to Problem 2, but not all.
Kong and Gosselin [30] studied a SO(3) parallel mechanism
with subchains given by

Mj = Xj1 · Xj2 · Xj3 · R(o,uj) · R(o,vj), j = 1, 2, 3 (22)

where Xj1,Xj2,Xj3 are three revolute joints obtained by
removing a revolute joint R(o,ωj) from a Bennett mechanism
[3]. Clearly, Mj in Eq.(22) has the motion type different from
Eq.(21), and hence can not be synthesized by the method
described above. However, we can derive this mechanism
using Proposition 6 as follows. Xj1 ·Xj2 ·Xj3 contains an open
subset of R(o,ωj), and hence Mj contains an open subset
of S(o). Furthermore, the constraint force of each subchain
at home configuration e is given by (fT

j , 0), where fj is
determined by two axes of Xj1,Xj2,Xj3 and the origin. Thus

(T ∗
e CMj

)⊥ = {(fT
j , 0)}, j = 1, · · · 3

From FMC, we see that if the fj’s, j = 1, · · · , 3 are linearly
independent, then M = M1‖M2‖M3 is a PM generator of
SO(3). �

Example 31: Synthesis of SE(2) PM Generators
The two Lie subgroups that have non-trivial intersections with
PL(z) are S(N) and C(o,ω). Observe that the order of Hj

and Q in Eq.(21) is immaterial, we have

CMj
=

{
PL(z) · S(Nj)
PL(z) · C(o,ωj)
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If
CMj

= PL(z) · S(Nj) j = 1, · · · , 3

then the constraint force space of each subchain at e is spanned
by fj = (zT , (Nj × z)T ). Applying the FMC to fj , we see
that M = M1‖M2‖M3 is a SE(2) PM generator if the Nj’s
are different from each other.

If
CMj

= PL(z) · C(o,ωj) j = 1, · · · , 3

then by the VMC, we see that M is a PM generator of
SE(2) if at least two of the ωj’s, j = 1, · · · , 3 are linearly
independent.

Note that in order to avoid joint dead-locking, we need to
restrict our realizations of Mj to MPL(z)/R(Nj ,z) · MS(Nj)

and MPL(z)/T (ωj) · MC(o,ωj) .
Eliminating unfeasible realizations, we obtain a total of

31(52) realizations for PM generators of SE(2). Using the
reordering method on the joints of MPL(z)/R(Nj ,z) and
MPL(z)/T (ωj) (but not that of MS(Nj) and MC(o,ωj)), we
may obtain additional realizations. �

Example 32: Synthesis of X(z) PM Generators
We have the following options for the subchains

CMj
=


X(z) · X(ωj)
X(z) · C(q,ωj)
X(z) · PL(ωj)
X(z) · Yρ(ωj)

The subchains that generate X(z) · X(ωj), X(z) · C(q,ωj),
X(z) · PL(ωj) and X(z) · Yρ(ωj) are all equivalent to
MT (3)·U(o,z,ωj) (see Example 29).

With

(T ∗
e CMj

)⊥ = {(0,µj)} j = 1, · · · , 4

where µj is the normal of the plane determined by z and ωj ,
and applying the FMC, we see that M = M1‖ · · · ‖M4 is
an X(z) PM generator if at least two of the ω′

js are linearly
independent.

Eliminating all the dead-locking realizations marked by ∆
in Table VI, we have a total of 406 (1014) PM generators of
X(z). An example using subchain of Figure 9(a) is shown in
Fig.15, and that of Fig.9(b) in Figure 16. Applying the reorder-
ing method to the joints of MX(z)/T (3), MX(z)/T (uj), and
MX(z)/T2(uj) yields, amazingly, more topological structures
of PM generators of X(z). For example, the 3T1R parallel
mechanisms in Fig.7 of [24] and Fig.10(b),(c),(e),(h) of [29]
can all be viewed as X(z) PM generators obtained by the
reordering method. Note that the realizations derived by Kong
[29] and Fang [7] comprised of R and T joints only are
contained as a subset of our solutions. �

Example 33: Synthesis of T (3) PM Generators
For synthesis of T (3) parallel manipulators, we need to go
back to Proposition 6, by finding subchains that satisfy (16), or
Lie subgroups or submanifolds that contain T (3). An obvious
solution is given by

CMj
= X(ωj), j = 1, · · · 3

Applying the VMC, we see that M = M1‖M2‖M3 is a
T (3) PM generator if at least two of the ωj’s are linearly

independent. The Delta manipulator is a good example of this
type of PM generators.

We can also use for the subchain the following products:
X(ωj1) · X(ωj2), X(ωj1) · C(q,ωj2), X(ωj1) · PL(ωj2),
or X(ωj1) · Yρ(ωj2), as they are all equivalent to T (3) ·
U(o,ωj1,ωj2).

Since

(T ∗
e CMj

)⊥ = {(0,µj)} j = 1, · · · , 3

where µj is the normal of the plane determined by ωj1 and
ωj2, it is easy to see that uj , j = 1, · · · , 3 must be linearly
independent in order for M to be a PM generator of T (3).

By Lemma 5, dead-locking occurs when M consists of
three prismatic joints (or three parallelogram joint, or one
parallelogram and one U∗ joint, etc). Eliminating all the
dead-locking realizations, we have a total of 536 (1196)
PM generators of T (3) in terms of (T ,R,H) (or the five
extended primitive generators). Lee and Hervé [33] used the
product PL(ωj1) · PL(ωj2), which is also equivalent to
T (3) · U(o,ωj1,ωj2), as the subchain structure and obtained
21 distinct realizations in terms of (T ,R). Since generators
for PL(ωj1) · PL(ωj2) are contained in X(ωj1) · X(ωj2),
we are able to generate a much larger set of feasible solutions
than Lee and Hervé.

Applying the reordering method to the joints of
MX(ωji)/T (3), MX(ωji)/T (uj), and MX(ωji)/T2(vj), i =
1, 2, j = 1, · · · , 3 leads to many more structures of PM
generators of T (3). For example, let M = M1||M2||M3

be a feasible T (3) generator with Mj = MX(ωj1)/T (uj) ·
MX(ωj2)/T2(vj), where uj ,vj are such that T (3) = T (uj) ·
T2(vj). Reordering the joints of either MX(ωj1)/T (u) or
MX(ωj2)/T2(v) (not both) will not change the conditions of
Proposition 6, and hence yield more translational parallel
mechanisms. The commutation of factors method in [33]
is a special case of the reordering method, which is used
when MX(ωj1)/T (u) and MX(ωj2)/T2(v) comprise of purely
R and T joints. Tsai’s manipulator [49] can be derived by
the commutation of factors(or more generally, the reordering
method). �

A. Submanifold PM Generators

Proposition 6 and the synthesis procedure for subgroup PM
generators can be extended to regular submanifolds. In this
section, we show how to synthesize PM generators that are
asymmetric and have the motion types of T2(z) ·R(o,x) and
T (z) ·U(o,x,y), respectively. These cases are less studied in
the literature but nonetheless have importance of their own,
especially in design of hybrid parallel mechanisms [50]. For
example, a T (z) · U(o,x,y) PM mechanism in serial with
a T (2) mechanism constitute a hybrid five-axis machine tool
[44].

Example 34: Synthesis ofT2(z) ·R(o,x) PM Generators
From Table I, there are five submanifolds or Lie subgroups that
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DoFs of
subchains

First subchain Second subchain Third subchain Possible total Exmaples

3-3-4 T2(z) · R(o,x) T2(z) · R(o,x) X(x) 79(3504) HALF-II (Fig.7 and Fig.9 of [36])
3-3-5 T2(z) · R(o,x) T2(z) · R(o,x) T (3) · U(o, z,x) 564(23232)
3-4-4 T2(z) · R(o,x) T2(z) · U(o, z,x) X(x) 2291(49932) Modified HALF-II (Fig.8(a) of [36])
3-4-5 T2(z) · R(o,x) T2(z) · U(o, z,x) T (3) · U(o, z,x) 16356(331056)
3-4-4 T2(z) · R(o,x) X(x) X(x) 6241(191844)
3-4-5 T2(z) · R(o,x) X(x) T (3) · U(o, z,x) 44556(1271952)
3-5-5 T2(z) · R(o,x) T (3) · U(o, z,x) T (3) · U(o, z,x) 318096(8433216)
3-4-5 T2(z) · R(o,x) X(x) T2(z) · S(o) 2291(49932)
3-5-5 T2(z) · R(o,x) T (3) · U(o, z,x) T2(z) · S(o) 2291(49932)
4-4-4 T2(z) · U(o, z,x) T2(z) · U(o, z,x) X(x) 66439(711531) HALF-I (Fig.4 of [36]), and second family of

Hervé’s asymmetrical PKM (Fig.2 of [45])
4-4-5 T2(z) · U(o, z,x) T2(z) · U(o, z,x) T (3) · U(o,y,x) 474324(4717548) First family of Hervé’s asymmetrical PKM

(Fig.1 of [45])
4-4-4 T2(z) · U(o, z,x) X(x) X(x) 180989(2733777) Hana (Fig.6 of [36])
4-4-4 T2(z) · U(o, z,x) T (3) · U(o,y,x) T (3) · U(o,y,x) 9224784(120173328)
4-4-5 T2(z) · U(o, z,x) X(x) T (3) · U(o,y,x) 474324(4717548)
4-4-5 T2(z) · U(o, z,x) X(x) T2(z) · S(o) 103095(1048572)
4-5-5 T2(z) · U(o, z,x) T (3) · U(o,y,x) T2(z) · S(o) 736020(6952176)
4-4-5 X(x) X(x) T2(z) · S(o) 280845(4028724)
4-5-5 X(x) T2(z) · S(o) T2(z) · S(o) 159975(1545264)

TABLE VIII

EQUIVALENT PM GENERATORS FOR SUBMANIFOLD T2(z) · R(o,x)

DoF Subchain Type Constraint Force at e

3 T2(z) · R(o,x) {(zT , 0), (0,yT ), (0, zT )}
4 X(x) {(0,yT ), (0, zT )}
4 T2(z) · U(o, z,x) {(zT , 0), (0,yT )}
5 T (3) · U(o, z,x) {(0,yT )}
5 T2(z) · S(o) {(zT , 0)}

TABLE VII

CONSTRAINT FORCE SPACE AT e FOR THE SUBCHAINS THAT CONTAIN

T2(z) · R(o,x)

contain T2(z) · R(o,x)

CMj
=


T2(z) · R(o,x) (DoF = 3)
X(x) (DoF = 4)
T2(z) · U(o, z,x) (DoF = 4)
T (3) · U(o, z,x) (DoF = 5)
T2(z) · S(o) (DoF = 5)

(23)

Subchains that have the above motion types are summarized
in Table IV and VI, whereas the constraint force space for
each of the subchains at e is shown in Table VII. The FMC
indicates that if

(T ∗
e CM1)

⊥ + · · · + (T ∗
e CM3)

⊥ = {(zT , 0), (0,yT ), (0, zT )}

then M = M1‖M2‖M3 is a PM generator of T2(z)·R(o,x).
Using this condition, the possible subchain combinations
which form a T2(z) · R(o,x) PM generator can be easily
derived. The results are summarized in Table VIII, where the
fifth column gives the possible number of realizations using the
conventional set of PMGs and the number in the parenthesis
for the extended set of PMGs. These numbers are obtained
by simply multiplying the number of realizations for each
subchains from Table IV and VI. Some of these realizations
may not be feasible due to dead-locking, but can be eliminated
using techniques similar to that of the subgroup case. The

last column of Table VIII shows some of these mechanisms
studied in [36] and [45]. One can see that these mechanisms
are contained as a subset of our solutions.

Additional realizations can be obtained by applying the
reordering method to the subchains with the motion type
of T (3) · U(o,y,x) or T (3) · U(o, z,x). For example, let
CM1 = CM2 = T2(z) · U(o, z,x), CM3 = T (3) · U(o,y,x)
and the realization

M1 = MPL(z) · MR(o,x)

= R(p1, z) · R(p2, z) · R(p3, z) · R(o,x)
M2 = MPL(z) · MR(o,x)

= R(q1, z) · R(q2, z) · R(q3, z) · R(o,x)
M3 = MPL(y) · MPL(x)/T (z)

= R(s1,y) · R(s2,y) · R(s3,y) · R(t1,x) · R(t2,x)

This corresponds to the first family of Hervé’s asymmetrical
parallel mechanisms (Fig. 1 of [45]). Applying the reordering
method to the joints of MPL(x)/T (z) in M3 yields a new
subchain

M′
3 = R(t2,x) · R(s1,y) · R(s2,y) · R(s3,y) · R(t1,x)

Clearly, C ′
M3

also contains an open neighborhood of T2(z) ·
R(o,x) around e. Thus, by the FMC, the mechanism
M1‖M2‖M′

3 shown in Fig.17 is a new realization of T2(z) ·
R(o,x). The modified version of HALF-II in Fig.8(b) of [36]
can also be interpreted as one obtained by the reordering
method. �

Example 35: Synthesis ofT (z) · U(o,x,y) PM Genera-
tors
The submanifolds that contain T (z) · U(o,x,y) are

CMj
=


T (z) · U(o,x,y) (DoF = 3)
T2(x) · U(o,x,y) (DoF = 4)
T (z) · S(o) (DoF = 4)
T2(y) · S(o) (DoF = 5)
T (3) · U(o,x,y) (DoF = 5)

(24)
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DoFs of
subchains

First subchain Second subchain Third subchain Possible Total Exmaples

3-4-4 T (z) · U(o,x,y) T (z) · S(o) T (z) · S(o) 49
3-5-5 T (z) · U(o,x,y) T2(y) · S(o) T2(y) · S(o) 2025(7056)
3-4-5 T (z) · U(o,x,y) T (z) · S(o) T2(y) · S(o) 315(588)
3-5-5 T (z) · U(o,x,y) T (3) · U(o,x,y) T (3) · U(o,x,y) 318096(2108304)
3-4-5 T (z) · U(o,x,y) T (z) · S(o) T (3) · U(o,x,y) 3948(10164)
3-5-5 T (z) · U(o,x,y) T2(y) · S(o) T (3) · U(o,x,y) 25380(121968)
4-4-5 T2(x) · U(o,x,y) T2(x) · U(o,x,y) T2(y) · S(o) 37845(272916) Third family of Hervé’s asymmetrical PKM

(Fig.3 of [45])
4-4-4 T2(x) · U(o,x,y) T2(x) · U(o,x,y) T (z) · S(o) 5887(22743) Fourth family of Hervé’s asymmetrical

PKM (Fig.4 of [45])
4-5-5 T2(x) · U(o,x,y) T2(y) · S(o) T2(y) · S(o) 58725(402192)
4-4-4 T2(x) · U(o,x,y) T (z) · S(o) T (z) · S(o) 1421(2793)
4-4-5 T2(x) · U(o,x,y) T (z) · S(o) T2(y) · S(o) 9135(33516)
4-5-5 T2(x) · U(o,x,y) T2(y) · S(o) T (3) · U(o,x,y) 736020(6952176)
4-4-5 T2(x) · U(o,x,y) T (z) · S(o) T (3) · U(o,x,y) 114492(579348)
4-4-5 T (z) · S(o) T (z) · S(o) T (3) · U(o,x,y) 27636(71148)
4-4-5 T (z) · S(o) T (3) · U(o,x,y) T (3) · U(o,x,y) 2226672(14758128)
4-4-5 T (z) · S(o) T2(y) · S(o) T (3) · U(o,x,y) 177660(853776)

TABLE X

EQUIVALENT PM GENERATORS FOR SUBMANIFOLD T (z) · U(o,x,y)

Fig. 17. Example of a T2(z) · R(o,x) PM Motion Generator

DoF Subchain Type Constraint Force at e

3 T (z) · U(o,x,y) {(xT , 0), (yT , 0), (0, zT )}
4 T2(x) · U(o,x,y) {(xT , 0), (0, zT )}
4 T (z) · S(o) {(xT , 0), (yT , 0)}
5 T2(y) · S(o) {(yT , 0)}
5 T (3) · U(o,x,y) {(0, zT )}

TABLE IX

CONSTRAINT FORCE AT e FOR THE SUBCHAINS THAT CONTAIN

T (z) · U(o,x,y)

Realizations for the above motion types are summarized in
Table VI. The constraint force space for each of the subchains
at e is given in Table IX. From the FMC, it is easy to see that
if

(T ∗
e CM1)

⊥ + · · · + (T ∗
e CM3)

⊥ = {(xT , 0), (yT , 0), (0, zT )}

then, M = M1‖M2‖M3 is a PM generator of T (z) ·
U(o,x,y). Table X shows possible realizations of T (z) ·
U(o,x,y) motion generators.

�
Finally, to conclude this section, we show another appli-

cation of Proposition 6 in deriving the motion type of the
parallelogram joint over a maximum set. This is in general a
problem of considerable difficulties using any local theory.

Example 36: Synthesis of PM Generators for Circular
Translations
Let the set of desired motions be

Q =
{[

I (eω̂θ − I)v
0 1

]
| θ ∈ [0, 2π]

}
where ω is the axis of rotation for the circle, and v ⊥ ω
a vector from the center of the circle to the origin of the
spatial coordinate frame. Q is thus S1 embedded in SE(3),
containing e. We now show that the parallelogram is a motion
generator of Q. Let M = M1‖M2, where for i = 1, 2,

Mi = R(qi1, ω) · R(qi2, ω) = R(qi1, ω) · R(qi1 + v, ω) (25)

and q21 = q11 + u, see Fig.2. Notice that
�

eω̂θi1 (I − eω̂θi1)qi1

0 1

�
·
�

eω̂θi2 (I − eω̂θi2)qi2

0 1

�

=

�
I (eω̂θi1 − I)v
0 1

�
·
�

eω̂(θi1+θi2) (I − eω̂(θi1+θi2))qi2

0 1

�

Hence,

CM1 = R(q11, ω) · Q = Q · R(q12, ω) (26)

CM2 = R(q21, ω) · Q = Q · R(q22, ω) (27)

from which one derives that,

Q ⊆ CM1 ∩ CM2 .

If at the home configuration e, v and u do not coincide, then
the spatial velocities of the subchains are given by

M1 = {(q11 × ω, ω)T , ((ω × v)T , 0)T }
M2 = {(q21 × ω, ω)T , ((ω × v)T , 0)T }

with the intersection

{((ω × v)T , 0)T } (28)

as long as q11 �= q21. (28) is precisely the tangent space of Q
at e. By the first part of Proposition 6, M generates Q.
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Suppose the angle from u to v is φ = ATAN2(ωT (u ×
v)3,uT v) > 0, and define an open subset QU of Q as

QU = {g ∈ Q | θ ∈ (−φ, π − φ)}

Then for all g ∈ QU , the spatial velocity spaces of the two
subchains are

Rg−1∗TgCM1 = {(−ω × q11, ω)T , ((eω̂θ(ω × v))T , 0)T }
Rg−1∗TgCM2 = {(−ω × q21, ω)T , ((eω̂θ(ω × v)T , 0)T }

where θ = θj1 = −θj2, j = 1, 2, and their intersection is

{((eω̂θω × v)T , 0)T } (29)

which is precisely the velocity space of Q at g. However, one
can check that this equality will not hold when θ = −φ or
π − φ. Therefore, by the second part of Proposition 6, QU is
the maximal open subset of Q that M generates.

Note that if R(qi1, ω) and R(qi2, ω) in Eq.(25) are replaced
by two helical joints with the same pitch, i.e, Hρi

(qi1, ω) and
Hρi

(qi2, ω), i = 1, 2, using the same approach, we can prove
that the new mechanism also has the motion type of Q. �

V. CONCLUSION

To conclude the paper, we give in this section a brief
comparison of the geometric method developed in this paper
for mechanism synthesis with the Lie-group-algebraic method
of Lee and Hervé [33] and the screw theory based constraint-
synthesis method, and highlight several problems for future
research along this direction.

Clearly, a synthesis method is gauged by its ability in:
(i) providing a precise and unambiguous description of the
fundamental concepts of a mechanism, including the instan-
taneous and global (or finite) motion properties of the input
and output spaces of the mechanism as well as that of its
constituting subchains; and (ii) generating systematically all
feasible topologies based on the design specifications. Since
the topological richness of a parallel mechanism is largely de-
pendent on that of its constituting subchains, a good synthesis
method should provide a thorough understanding on the design
and generation of relevant subchain topologies.

Screw (or reciprocal screw) theory, on which the constraint-
synthesis method is based, is a study of the Lie algebra and
its subspaces (or its annihilators) of the Lie group SE(3).
Thus, the constraint-synthesis method is good at providing
simple and intuitive descriptions of the instantaneous motion
properties of a mechanism. Finite motion property of the
mechanism is inferred when the underlying subspace or the
corresponding set of constraint (or annihilating) wrenches
remains unchanged after the system undergoes any feasible
finite perturbations. Techniques like the finite motion condition
[8] or the single-loop kinematic chain method [30] have been
developed for this purpose. However, by overlooking the group
structure of the motion space, it is rather difficult to develop
a complete and effective method for mechanism analysis and
synthesis based on this approach.

The Lie-group-algebraic method resolves the finite motion
problem by operating directly at the group level. Using the

3In Fig 2, φ = π/2.

algebraic properties of the Lie subgroups, it enumerates all
generators of the planar subgroup PL(ω) in terms of the
T and R PMGs. The product of two planar subgroups
PL(u) · PL(v) is explored as the limb structure, based on
which systematic generation of the various TPM topologies is
obtained. The Lie-group-algebraic method does not explore the
differential property of SE(3), and computations, e.g., inter-
section of two subgroups, are often carried out by brutal force
at the group level. Although it used the notion of submanifolds
for the limb structure, it does not explore systematically the
rich submanifold structures of SE(3), nor could it handle
primitive joints or task spaces of the submanifold type.

The geometric method developed in this paper can be
considered a full extension and completion of the Lie-group-
algebraic method. By exploring both the algebraic and dif-
ferential properties of SE(3) and its Lie subgroups and
submanifolds, it provides a unified framework for modelling
primitive joints and task spaces having the motion type of
a subgroup and/or a submanifold. Computations are reduced
to linear algebra problems (and can thus be automated) as
they are carried out at the Lie algebra level, and finite motion
is guaranteed through the exponential map and the various
properties of the product submanifolds. The similarity group
and the notion of conjugacy class are used to provide a
formal and precise mathematical definition of motion type.
For systematic generation of serial manipulator topologies,
this paper introduced the notion of quotient manipulators
and a set of synthesis tools (Props. 3, 4 and 5). Quotient
manipulators provide a formal generalization of the notion
{G−1(v)} in [33], and the set of synthesis tools developed in
this paper is more powerful and complete than its counterpart
(Section 3) in [33]. The method developed in Section IV
here for parallel mechanism synthesis is a general method
and is applicable to synthesis of any desired motion type
(subgroup or submanifold). It combines the velocity matching
condition (or the FMC) from the screw theory based method
with the neighborhood containment condition (Eq.(16)) of
the group based method to give explicit conditions on the
required subchains. The notion of dead-locking is formalized
here to avoid over-constrained mechanisms, and the method of
reordering (or commutation of factors in [33]) is illustrated for
systematic generation of additional topologies from existing
ones. Generality of the geometric synthesis method is demon-
strated through numerous examples for systematic generation
of a large class of feasible topologies for parallel mechanisms
with not just translational type of motions but motions of any
type, a subgroup or a submanifold.

As for future work along this direction, we mention
• Develop a parametric model for each class of topological

structures and introduce suitable performance metrics on
each motion type so that an appropriate optimization
problem on a suitable set of dimensional parameters can
be formulated.

• Investigate solutions of the optimization problem to
identify suitable topological configurations for specific
applications.

• Develop a tolerance (or error ) model of the primitive
generators and study the error characteristics of the
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associated realizations.

APPENDIX A: PROOF OF PROPOSITION 1

Since SE(3) is diffeomorphic to T (3)×SO(3), an element
m1 ·m2 of M1 ·M2 corresponds directly to (m1,m2) ∈ T (3)×
SO(3). Thus, M1 ·M2 corresponds with M1×M2, a (n1+n2)-
dimensional regular submanifold of T (3) × SO(3). Hence,
M1 · M2 is a (n1 + n2)-dimensional regular submanifold of
SE(3) by the equivalent manifold structure of SE(3) and
T (3) × SO(3).

APPENDIX B: PROOF OF PROPOSITION 2

First of all, we endow H1 ·H2 with the subspace topology of
SE(3). Second, let (η̂1, · · · , η̂n) be a basis of h, and complete
the basis so that (η̂1, · · · , η̂n, η̂n+1, · · · , η̂n1) forms a basis
of h1, (η̂1, · · · , η̂n, η̂n1+1, · · · , η̂n1+n2−n) a basis of h2, and
η1, · · · , ηn1+n2−n, · · · , η6 a basis of se(3). Let U and V be,
respectively, defined as

U = {eη̂1θ1 · · · eη̂n1+n2−nθn1+n2−n ∈ H1 · H2 | |θi| < ε}
V = {eη̂1θ1 · · · eη̂6θ6 ∈ SE(3) | |θi| < ε}

Clearly, U is a slice of V : U = {x ∈ V | θn1+n2−n+1 =
0, · · · , θ6 = 0}. For sufficiently small ε, V is an open
coordinate neighborhood of e in SE(3), with local coordinates
(θ1, · · · , θ6), and U = V ∩ (H1 · H2). Hence, U is an open
coordinate neighborhood of e in H1 · H2, with preferred
local coordinates (θ1, · · · , θn1+n2−n). Using left and right
translation, any point h1 · h2 of H1 ·H2, has such a preferred
local coordinate neighborhood h1 · U · h2. Thus H1 · H2 has
the n-submanifold property, and is a regular submanifold of
SE(3).

APPENDIX C: PROOFS OF LEMMAS 1 ∼ 4

Proof of Lemma 1. Let u1, u2 be an arbitrary basis of V ,
and write

u1 = λ1ê6 + λ2ê2 + λ3ê3

u2 = µ1ê6 + µ2ê2 + µ3ê1

where λj , µj ∈ R for j = 1, 2, 3. Since (u1, u2, ê1) is a basis
of g, we see that det(A) �= 0, where

A =
[

λ1 λ2

µ1 µ2

]
Let [v1, v2] = [u1, u2]A−1. Since

[u1, u2] = [ê6, ê2, ê1]
[

A
λ1, µ3

]
we get

[v1, v2] = [u1, u2]A−1 = [ê6, ê2, ê1]
[

I
(λ3, µ3)A−1

]
Let (a, b) = (λ3, µ3)A−1. Then,

v1 = ê6 + aê1, v2 = ê2 + bê1.

Thus, every complement V of h in g is of the form

V = {ê6 + aê1, ê2 + bê1}

�
Proof of Lemma 2. Let U be any complement of h in g.

By Lemma 1, ∃a, b ∈ R such that

U = {ê6 + aê1, ê2 + bê1}

Let p = (0,−a). Then,

AdTp
(ê6 + aê1) = ê6 − aê1 + aê1 = ê6

AdTp
(ê2 + bê1) = ê2 + bê1

or V = AdTp
U as required. �

Proof of Lemma 3. Assume p = (px, py) ∈ R2 is such
that AdTp

Vb = Vc. Using ê2 + cê1 ∈ AdTp
Vb, we see that

∃α, β ∈ R such that

ê2 + cê1 = α(ê6 + py ê1 − pxê2) + β(ê2 + bê1)

which implies that α = 0, β = 1 and b = c.
If AdTp

Vb = Vb, then ê6 ∈ AdTp
Vb. There exist λ, µ ∈ R

such that

ê6 = λ(ê6 + py ê1 − pxê2) + µ(ê2 + bê1)

which implies that λ = 1, py + µb = 0 and −px + µ = 0.
Thus, py = −pxb.

Conversely, assume that py = −pxb. Let λ = 1, µ = px.
Then,

ê6 = λAdTp
ê6 + µAdTp

(ê2 + bê1) ∈ AdTp
Vb

Since ê2 + bê1 = AdTp
(ê2 + bê1) ∈ AdTp

Vb we have that
Vb = AdTp

Vb. �
Proof of Lemma 4. Let (v1, v2) be a basis of Vb. Then,

v1 = λ1ê6 + λ2(ê2 + bê1)
v2 = µ1ê6 + µ2(ê2 + bê1)

where

∣∣∣∣λ1 λ2

µ1 µ2

∣∣∣∣ �= 0

Case 1:λ1 = 0. Then, µ1 �= − and λ2 �= 0. Let

v′
1 =

1
λ2

v1 = ê2 + bê1

v′
2 =

1
µ1

v2 = ê6 +
µ2

µ1
(ê2 + bê1)

Let p = (px,−pxb). We have

AdTp
v′
1 = ê2 + bê1

AdTp
v′
2 = ê6 − pxbê1 − pxê2 +

µ2

µ1
ê2 +

µ2

µ1
bê1

By taking px = µ2
µ1

, we get

AdTp
v′
1 = ê2 + bê1

AdTp
v′
2 = ê6

Thus, after rescaling and AdTp
, the basis (v1, v2) becomes

(ê2 + bê1, ê6). Similarly, if µ1 = 0, then λ1 �= 0, µ2 �= 0, and
every basis of Vb gets transformed to (ê6, ê2 + bê1).
Case 2:λ1 �= 0, µ1 �= 0. Then,

1
λ1

v1 = ê6 +
λ2

λ1
(ê2 + bê1)

1
µ1

v2 = ê6 +
µ2

µ1
(ê2 + bê1)
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Let p = λ2
λ1

(1,−b). We have

AdTp
(

1
λ1

v1) = ê6

AdTp
(

1
µ1

v2) = ê6 + (
µ2

µ1
− λ2

λ1
)(ê2 + bê1)

Note that λ := µ2
µ1

− λ2
λ1

�= 0. Thus, every basis of Vb gets
transformed to (ê6, AdTp

ê6), with p = λ(−1, b).

APPENDIX D: PROOF OF PROPOSITION 4

Since CM1 contains an open neighborhood U of e, CM2 an
open neighborhood V of e, and U×V is an open neighborhood
of (e, e) of N1 × N2, U · V is an open neighborhood of
e of N1 · N2 because of the equivalent manifold structures
of N1 × N2 with N1 · N2. Thus CM contains an open
neighborhood of e in N1·N2. Since DoF (M) = DoF (M1)+
DoF (M2) = dim(N1) + dim(N2) = dim(Q), we conclude
that M generates Q.

APPENDIX E: PROOF OF PROPOSITION 5

We only show case (ii) as (i) follows as a special case.
Assume that dim(H1) = m1, dim(H2) = m2 and dim(H) =
n. Also assume that MH1 = {ζ1, . . . , ζm1}, MH2 =
{η1, . . . , ηm2}, MH1/H = {δ1, · · · , δm1−n}, MH2/H =
{γ1, · · · , γm2−n}. Thus, the twist representation of M1 =
MH1/H · MH2 is given by

M1 = {δ1, · · · , δm1−n, η1, . . . , ηm2}

and the forward kinematic map of the associated manipulator
has the form

f1 : Rm1+m2−n → SE(3)
: (θ1, · · · , θm1+m2−n) �→ eδ1θ1 · · · eδm1−nθm1−n

·eη1θm1−n+1 · · · eηm2θm1−n+m2

Since eδiθi ∈ H1 and eηjθm1−n+j ∈ H2, by the product
closure, the image of f1 lies in Q. As Q is a regular
submanifold of SE(3), by [4], f1 defines a smooth map into
Q

f̂1 : Rm1+m2−n → Q
: (θ1, · · · , θm1+m2−n) �→ eδ1θ1 · · · eδm1−nθm1−n

·eη1θm1−n+1 · · · eηm2θm1−n+m2

Since the twists in M1 are linearly independent, we have that
M1 = TeQ and f̂1∗0 is an isomorphism. Thus by the inverse
function theorem, f̂1 is a local diffeomorphism at 0. Hence, its
image contains an open neighborhood of e in Q. Furthermore,
as DoF (M1) = m1 + m2 − n = dim(Q), we see that M1

generates Q.
A similar argument shows that M2 and M3 also generates

Q.

APPENDIX F : A MORE GENERAL THEOREM THAN

PROPOSITION 6

Theorem 1: Let G be a submanifold of SE(3). Suppose
that C1, · · · , Ck are connected regular submanifolds of G,
each containing a connected regular submanifold C, i.e,

C ⊆ Cj , j = 1, ..., k (30)

and thus C ⊆ C1∩· · ·∩Ck. If for some x ∈ C, the following
condition holds:

TxC = TxC1 ∩ TxC2 ∩ · · · ∩ TxCk (31)

then, there exists a connected neighborhood Ux of x, where Ux

is an open subset of G, such that Ux∩C = Ux∩(C1∩· · ·∩Ck).
If for every x ∈ C, Eq. (31) holds, then there exist a connected
open subset W of G, such that C = W ∩ (C1 ∩ · · · ∩ Ck).
Proof : Without loss of generality we prove only the case
k = 2. Let m := Dim(G), and x ∈ C. Choose a coordinate
neighborhood (U, φ) of x with local coordinates (x1, · · · , xm).
In this neighborhood, C1 can be expressed as

C1∩U = φ−1

{
(x1, · · · , xm) | h1(x1, · · · , xm) = 0, · · · ,

hs(x1, · · · , xm) = 0

}
for some functions h1, · · ·hs, and s the codimension of C1 in
G. Similarly, C2 can be expressed as

C2∩U = φ−1

{
(x1, · · · , xm) | g1(x1, · · · , xm) = 0, · · · ,

gl(x1, · · · , xm) = 0

}
Thus,

(C1 ∩ C2) ∩ U = φ−1

�
(x1, · · · , xm) | h1 = 0, · · · , hs = 0,

g1 = 0, · · · , gl = 0

�
.

Since TxC = TxC1 ∩ TxC2 at x ∈ C ⊆ C1 ∩ C2, we have

rank



dh1

...
dhs

dg1

...
dgl


φ(x)

= n

where n is the codimension of C in G. Without loss of
generality, we assume that the first n rows of the above matrix
are linearly independent at φ(x) ∈ φ(C ∩ U). Thus

rank



dh1

...
dhs

dg1

...
dgt


φ(x)

= n

where s + t = n. By the submersion theorem [4], there is an
open neighborhood U ′ of G around x, U

′ ⊆ U , such that

C̃ = φ−1

{
(x1, · · · , xm) ∈ φ(U

′
) | h1 = 0, · · · , hs = 0,

g1 = 0, · · · , gt = 0

}
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is an m−n dimensional regular submanifold of G containing
x. It is obvious that (C1∩C2)∩U

′ ⊆ C̃. Since C ⊆ (C1∩C2),
we also get C∩U

′ ⊆ (C1∩C2)∩U
′ ⊆ C̃. As both C∩U

′
and

C̃ are m − n dimensional submanifolds of G, the former is
contained in the latter. Thus, there exists an open neighborhood
V of x in G, V ⊆ U

′
such that C ∩ V = (C1 ∩ C2) ∩ V =

C ∩ V . V is the Ux we wanted. If for every x ∈ C, Eq. (31)
holds, then every x will have a Ux, and the union of all these
Ux’s gives the W we wanted, i.e, W = ∪x∈CUx.

Replacing G in Theorem 1 by SE(3) and Cj the desired
end-effector motions of the subchains, we have Proposition 6.
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