Evolution of resilience in protein interactomes across the tree of life

Marinka Zitnik, Rok Sosic, Marcus Feldman, Jure Leskovec

Stanford University

Protein interaction network: Backbone of activity in a cell

Physical interactions between an airplane's parts

Carvunis & Ideker, Cell'14

Physical interactions between a cell's molecular components

How do protein networks evolve?

Carvunis & Ideker, Cell'14

But we do not know how networks change with evolution!

- Whether or not natural selection shapes the evolution of protein-protein interaction networks remains unclear [Nature'15, '16, '17]
- Whether network rewiring is a consequence of sequence divergence or a driver of evolution remains an open question [Science'17]

Today's Talk

1) How protein-protein interaction networks change with evolution?

2) How **network changes** affect phenotypes and species' survival in **natural habitats**?

Why is modeling network evolution hard?

Massive time span and rare data samples

Species separated by millions of years of evolution

Messy, incomplete network data

- Lack of high-coverage protein interaction data, e.g.,
 - humans: 20 thousand genes → need to test ~200 million protein pairs for interaction
 - <30% of human protein pairs tested in last 20 years [Rolland et al., Cell'14]

Many possible confounders

- Genome size, number of protein-coding genes, etc.
- Network size, degree distributions, presence of hub nodes, etc.
- Investigative biases towards model organisms

Our Approach

- 1. Build a dataset by integrating evolutionary, interactome, and ecological data
- 2. Use dataset to study evolution of interactomes:
 - How protein-protein interaction networks change with evolution?
 - How changes in these networks affect phenotypes and species' survival in natural environments?

Key Element: Evolutionary Dataset

Objective: Capture all documented protein-protein interactions across all species

We build a unique dataset:

- 1,840 networks: 1,539 bacteria, 111 archaea, 190 eukarya
- 1,450,633 nodes: Species' proteins
- 8,762,166 edges: Physical protein-protein interactions (PPIs)
- Protein interactome: Species represented by their PPI networks
- Tree of life: Evolutionary history of species
- Ecology: Complexity of habitats in which species live

>300X larger dataset than previous studies

Tree of Networks

Modeling Tasks

Data: Tree of networks

Two main tasks:

- 1) Characterize resilience of interactomes to network failures
- 2) Identify network and evolutionary mechanisms of resilience

Why resilience?

- **Resilience** to network failures is critical:
 - Breakdown of proteins affects the exchange of biological information in the cell [Huttlin et al., Nature'17]
 - Failures lead to cell death and disease [Chen et al., Nat. Genet.'18]

How to characterize resilience to network failures?

Define **interactome resilience** measure:

- Information-theoretic formulation
- Shannon diversity theory [Sheldon'69]

Resilience measure has three key elements:

1. Simulate network failure at a particular rate

- 2. Measure how fragmented the interactome becomes
- 3. Repeat 1-2 across all possible failure rates

Simulate failure and measure fragmentation of the interactome

Upon network failure, interactome fragments into isolated components. **Entropy of component sizes!**

Fragmentation: Example

High entropy

Many small isolated components, all of approximately the same size

Low entropy

Large isolated component, only a few small broken-off components

Resilience: Fragmentation integrated across all possible failure

Isolated components of varying sizes

E.g., resilience for three species:

Evolution leads to resilience

Protein interactomes become **more resilient with evolution**

More genetic change a species has undergone, more resilient is its interactome

Protein interactomes become **more resilient to network** failures over time

Findings are not due to data biases

- Consistent results across taxonomic groups
- Robust to network data quality and network size
- Consistent findings across biological assays
- Findings are not due to confounding:
 - Genomic attributes, e.g., genome size, protein-coding genes
 - Network properties, e.g., hub nodes, broad-tailed degree distributions, number of interactions in each species
 - Bias toward much-studied proteins and model species

Key findings will still hold when more protein interaction data become available

Resilience is beneficial

Organisms with more resilient interactome can survive in more complex, diverse, and competitive habitats E.g., Terrestrial habitat + Oxygen → Highly resilient interactome

Resilience is beneficial

Organisms with more resilient interactome survive in more complex, diverse, and competitive habitats

Resilience arises through gradual change of network topology

Network Mechanism of Resilience

Rewiring of protein-protein interactions in local protein neighborhoods

Key New Insights

Resilient interactome: Proteins able to interact in the face of network failures:

- Failures/changes are neutral in the current environment
- Neutral changes do not remain neutral indefinitely
- Crucial for survival in a changed environment

Resilient interactome is a **reservoir** that drives future evolution

Implications for ecology, network biology, design of robust systems