
Supervised texture detection in images?

Branislav Mičušı́k and Allan Hanbury

Pattern Recognition and Image Processing Group, Institute of Computer
Aided Automation, Vienna University of Technology

Favoritenstraße 9/1832, A-1040 Vienna, Austria
{micusik,hanbury}@prip.tuwien.ac.at

Abstract. This paper presents a technique for texture segmentation in images.
Providing a small template of a texture of interest results in the image being
segmented into regions with similar properties and background (non-similar) re-
gions. The core of the segmentation engine is based on the minimal cut/maximal
flow algorithm in the graph representing an image. The main contribution lies in
incorporating the template information (colour, texture) into the whole graph used
for segmentation. The method brings the possibility to locate textured regions in
the image having same property as the template patch and not only one-colored
regions (as in much existing work). The method is supervised since the user pro-
vides a representative template of an object being searched for. The object may
consist of several isolated parts. Experimental results are presented on some im-
ages from the Berkeley database.

1 Introduction

Fully automatic image segmentation is still an open research problem in computer vi-
sion. An ideal algorithm would take a single image as input and give the image seg-
mented into semantically meaningful, non-overlapping regions as the output. However,
the usual problem is over-segmentation or under-segmentation. Moreover, measuring
the goodness of segmentations in general is an unsolved problem and obtaining absolute
ground truth is difficult since different people produce different manual segmentations
of the same scene.

There are many papers dealing with automatic segmentation. We mention only the
work of Shi & Malik [12] based on normalized cuts which segments the image into
many non-overlapping regions. They introduced a modification of graph cuts, namely
normalized graph cuts, and provided an approximate closed-form solution. However,
the boundaries of detected regions often do not follow the true boundaries of the objects.
The work [13] is a follow-up to [12] where the segmentation is done at various scales.
The final segmentation is then glued together from partial ones.

One possibility to partially avoid the ill-posed problem of image segmentation is to
use additional constraints. Such constraints can be i) motion in the image caused either
by camera motion or by motion of objects in the scene [11, 14, 1], or ii) specifying the
foreground object properties [3, 10, 2].
? This work was supported by the Austrian Science Foundation (FWF) under grant SESAME

(P17189-N04), and the European Union Network of Excellence MUSCLE (FP6-507752).

(a) (b) (c)
Fig. 1. Supervised segmentation. (a) Original image. Top image shows marked place from which
the template was cut. (b) The enlarged template patch. (c) binary segmentation with masked
original image.

In this paper we concentrate on an easier task than fully automatic segmentation. We
constrain the segmentation by using a small user-provided template patch. We search
for the segments of the image coherent in terms of colour with the provided template.
The texture of an input image is taken into account to correctly detect boundaries of
textured regions.

The proposed technique could be useful for segmentation and for detecting the ob-
jects in images with a characteristic a priori known property defined through a tem-
plate patch. Fig. 1 (top row) shows how a tiger can be detected in the image using a
small template patch from the same image. The same template patch can be used to
detect the tiger in another image even though lighting conditions are slightly different,
see Fig. 1 (bottom row).

In this paper we follow the idea given in [3] of interactive segmentation where the
user has to specify some pixels belonging to the foreground and to the background.
Such labeled pixels give a strong constraint for further segmentation based on the
min-cut/max-flow algorithm given in [4]. However, the method [3] was designed for
grayscale images and thus most of the information is thrown away. We improved the
method in [8] to cope with colour and texture images. However, both seeds for back-
ground and foreground objects were still needed. In this work we avoid the need of
background seeds and only seeds for the foreground object need to be specified.

In [15] the spatial coherence of the pixels together with standard local measurements
(intensity, colour) is handled. They propose an energy function that operates simultane-
ously in feature space and in image space. Some forms of such an energy function are
studied in [5]. In our work we follow a similar strategy. However, we define the neigh-
borhood relation through brightness, colour and texture gradients introduced in [6, 7].

Fig. 2. Combined boundary probability using colour+texture gradient of the tiger image. Black
points stand for high, white for low boundary probability.

In the paper [10] a similar idea to ours has been treated. In principle, the result is
the same, but the strategy to obtain it differs. The boundary of a textured foreground
object is achieved by minimization (through the evolution of the region contour) of
energies inside and outside the region. The Geodetic Active Region framework is used
to propagate the region contour. However, the texture information for the foreground
has to be specified by the user. In [9] the user interaction is omitted. At first number of
regions is estimated by fitting a mixture of Gaussians on intensity histogram and then
used to drive the region evolution. However, such technique cannot be used for textured
images. One textured region can be composed of many colours and therefore Gaussian
components say nothing about number of dominant textures.

The main contribution of this paper lies in incorporating the information included
in the template patch into the graph representing the image, leading to a reasonable
binary image segmentation. Our method does not need seeds for both foreground and
the background as in [3, 8]. Only some representative template patch of the object being
searched for is required, see Fig. 1. Moreover, texture information is taken into account.

The structure of the paper is as follows. First, segmentation based on the graph cut
algorithm is outlined together with energy functions. Second, non-parametric compu-
tation of probabilities of points being foreground/background through histograms and
incorporating template patch information is described. Finally, the results and summary
conclude the work.

2 Segmentation

We used a segmentation technique based on the interactive graph cut method first intro-
duced in [3]. There exists a very efficient algorithm for finding min-cut/max-flow in a
graph [4]. At first we very briefly outline the boundary detection and then focus in more
detail on the construction of the graph representing the image.

2.1 Boundary detection

Boundary detection is a difficult task, as it should work for a wide range of images, i.e.
for images of human-made environments and for natural images. Our main emphasis
is put on boundaries at the changes of different textured regions and not local changes

F

B

PSfrag replacements

RB|q

RF|q

q

r

Wq,r

edge cost region

{q, r} Wq,r {q, r} ∈ N

{q, F} λRF|q ∀q

{q, B} λ RB|q ∀q

Fig. 3. Left: Graph representation for 9 pixel image. Right: Table defining the costs of graph
edges. λ is a constant described in the text.

inside one texture. This is complicated since there are usually large responses of edge
detectors inside the texture. To detect boundaries in images correctly, the colour changes
and texturedness of the regions have to be taken into account like in work [6, 7]. In this
paper we use as a cue the brightness, colour, and texture gradients introduced in [6, 7]
to produce the combined boundary probability, see Fig. 2. For more details see also [8].

2.2 Graph representing the image

We introduced new penalties on edges in a graph based on a combined boundary prob-
ability image. The general framework for building the graph is depicted in Fig. 3. The
graph is shown for a 9 pixel image and an 8-point neighborhoodN . For general images,
the graph has as many nodes as pixels plus two extra nodes labeled F , B. In addition,
the pixel neighborhood is larger.

Neighboring pixel relation

The edge weights of neighborhood N are encoded in the matrix Wq,r,which is not
necessarily symmetric. The size and density of the neighborhood are controlled through
two parameters. We used a neighborhood window of size 21× 21 with sample rate 0.3,
i.e. only a randomly selected 30% of all pixels in the window are used. Using only a
fraction of pixels in the window reduces the computational demand and thus allows the
use of larger windows while preserving the spatial relations.

The neighborhood penalty of two pixels is defined as follows

Wq,r =

(

e
− g(q,r)2

σ2

)2

, (1)

where σ2 is a parameter (we used σ2 = 0.08 in all our experiments) and

g(q, r) = pb(q) + max
s∈Lq,r

pb(s) , (2)

where pb(q) is the combined boundary probability mentioned in Sec. 2.1 and

Lq,r = {x ∈ R
2 : x = q + k(r − q), k ∈ (0, 1〉}

is a set of points on a line from the point q (exclusive) to the point r (inclusive). We
used the DDA line algorithm to discretize the line. The penalty in Eq. (2) follows the
idea that there is a large weight if the line connecting two points crosses the edge in
the combined boundary probability image. The value of the weight corresponds to the
strength of the edge. If there is no edge between the points the weight is zero.

Foreground / Background nodes

Each node in the graph is connected to the two extra nodes F , B. This allows the
incorporation of the information provided by the template and a penalty for each pixel
being foreground or background to be set.

The regional penalty of a point as being foreground F or background B is defined
as follows

RF|q = − ln p(B|cq)

RB|q = − ln p(F|cq), (3)

where cq = (cL, ca, cb)
> stands for a vector in R

3 of L*a*b* values at the pixel q.
We use the L*a*b* colour space as this results in better performance. This color space
is approximately perceptually uniform and Euclidean distances in this space are per-
ceptually meaningful. To compute the posterior probabilities in Eq. (3) we used Bayes’
theorem as follows

p(B|cq) =
p(cq|B) p(B)

p(cq)
=

p(cq|B) p(B)

p(B) p(cq|B) + p(F) p(cq|F)
. (4)

We demonstrate it on p(B|cq), for p(F|cq) it is analogical.
We do not know a priori the probabilities p(F) and p(B) of the foreground and

background regions, i.e. how large the foreground region is compared to the background
one. Thus, we fixed them to p(F) = p(B) = 0.5 and Eq. (4) reduces to

p(B|cq) =
p(cq|B)

p(cq|B) + p(cq|F)
, (5)

where the prior probabilities are

p(cq|F) = fL
cL

· fa
ca

· f b
cb

, and p(cq|B) = bL
cL

· ba
ca

· bb
cb

,

where f
{L,a,b}
i , resp. b

{L,a,b}
i , represents the foreground, resp. the background his-

togram of each colour channel separately at the ith bin.
All histogram channels are smoothed using one-dimensional Gaussians, i.e. f̄i =

1

G

∑N

j=1
fje

− (j−i)2

2σ2 , where G is the normalization factor enforcing
∑N

i=1
f̄i = 1. In

our case, the number of histogram bins, N = 64. We used σ = 1 since experiments
showed that it is a reasonable value. λ from the table in Fig. 3 was set to 1000.

In an implementation one should take into account the possibility of a zero value of
p(B|cq) in Eq. (3) and thus avoid an overflow. In such a case RF|q = K, where K is
some “big” number (we use 10000).

The foreground histogram is computed from all pixels in the template patch. To
compute the background histogram is a little bit tricky. We know a priori neither the
colours nor a template patch of the background. We suggest to compute the back-
ground histogram from all image pixels. The basic idea behind this is the assumption
that the histogram computed from all points includes information on all colours (the
background and the foreground) in the image. Therefore, since

∑N

i=1
b̄i = 1, the proba-

bility p(cq|B) gives smaller values than p(cq|F) for the colours present in the template.
Thus, points more similar to the template are assigned in the graph more strongly to the
foreground than to the background node.

3 Experiments

The segmentation method was implemented in MATLAB. Some of the most time con-
suming operations (such as creating the graph edge weights) were implemented in C
and interfaced with MATLAB through mex-files. We used with advantage the sparse
matrices directly offered by MATLAB. We used the online available C++ implemen-
tations of the min-cut algorithm [4] and some MATLAB code for colour and texture
gradient computation [6].

The most time consuming part of the segmentation process is creating the weight
matrix W . It takes 50 seconds on a 250×375 image running on a Pentium 4@2.8 GHz.
The implementation of the texture gradient in C would dramatically speed up the com-
putation time. Once the graph is built, finding the min-cut takes 2 – 8 seconds.

In all our experiments we used images from the Berkeley database. We marked a
small “representative” part of the image and used it for further image segmentation of
the image. See Fig. 4 for the results. From the results it can be seen that very good
segmentation can be obtained even though only the colour histogram of the template
patch is taken into account.

It is also possible to apply the template patch obtained from one image for segment-
ing another one. In the case depicted in Fig. 1 small tiger patch encoding the tiger’s
colours obtained from one image is used for finding the tiger in another image. It can
be seen that most of the tiger’s body was captured but also some pixels belonging to
the background were segmented. Such “non-tiger” regions could be pruned using some
further procedure, which is not discussed in this paper.

It opens new possibilities for the use of the method, e.g., for image retrieval ap-
plications. Since some representative image template is available, images from large
databases coherent in colour and texture can be found.

4 Discussion

In the method presented in this paper, only colour histograms are used for description
of the texture of the template. Hence there are some limitations. First of all there is

Fig. 4. Results (we recommend to see a colour version of this Figure). 1st column: enlarged image
template patch. 2nd column: input image with marked area used as the template. 3rd column: bi-
nary segmentation. 4th column: segmentation with masked original image.

a problem in the change of lighting conditions and the presence of shadows. Every
image is usually captured under different conditions and to find one universal template
capturing all such changes is almost impossible.

However, other properties of the texture, e.g. inner texture structure, topology of
texture elements, should be taken into account to improve the robustness of the algo-
rithm to the change of lighting conditions and shadows. We are currently working on
this.

5 Conclusion

We suggested a method for supervised texture segmentation in images. The method is
based on finding the min-cut/max-flow in a graph representing the image to be seg-
mented. The paper described how to set the weights of graph edges to handle the in-
formation present in a small representative template patch provided by the user. We
proposed a new strategy to avoid the need for a background template or for a priori in-
formation of the background. Experiments presented on some images from the Berkeley
database show that the method gives reasonable results.

References
1. N. Apostoloff and A. Fitzgibbon. Bayesian estimation of layers from multiple images. In

Proc. CVPR, volume 1, pages 407–414, 2004.
2. A. Blake, C. Rother, M. Brown, P. Prez, and P. H. S. Torr. Interactive image segmentation

using an adaptive GMMRF model. In Proc. ECCV, volume 1, pages 428–441, 2004.
3. Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal boundary & region segmenta-

tion of objects in N-D images. In Proc. ICCV, pages 105–112, 2001.
4. Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algo-

rithms for energy minimization in vision. PAMI, 26(9):1124–1137, 2004.
5. V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts?

PAMI, 26(2):147–159, 2004.
6. J. Malik, S. Belongie, T. Leung, and J. Shi. Contour and texture analysis for image segmen-

tation. IJCV, 43(1):7–27, 2001.
7. D. R. Martin, C. C. Fowlkes, and J. Malik. Learning to detect natural image boundaries using

local brightness, color, and texture cues. PAMI, 26(5):530–549, 2004.
8. B. Micusik and A. Hanbury. Steerable semi-automatic segmentation of textured images. In

Proc. Scandinavian Conference on Image Analysis (SCIA), 2005.
9. N. Paragios and R. Deriche. Coupled geodesic active regions for image segmentation: A

level set approach. In Proc. ECCV, volume II, pages 224–240, 2000.
10. N. Paragios and R. Deriche. Geodesic active regions and level set methods for supervised

texture segmentation. IJCV, 46(3):223–247, 2002.
11. M. Ruzon and C. Tomasi. Alpha estimation in natural images. In Proc. CVPR, volume 1,

pages 18–25, 2000.
12. J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI, 22(8):888–905, 2000.
13. X. Y. Stella. Segmentation using multiscale cues. In Proc. CVPR, volume 1, pages 247–254,

2004.
14. Y. Wexler, A. Fitzgibbon, and A. Zisserman. Bayesian estimation of layers from multiple

images. In Proc. ECCV, volume 3, pages 487–501, 2002.
15. R. Zabih and V. Kolmogorov. Spatially coherent clustering using graph cuts. In Proc. CVPR,

volume 2, pages 437–444, 2004.

