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Abstract

Over the last few years, Probabilistic Roadmaps (PRMs) have emerged as a powerful
approach for solving complex motion planning problems in robotics. Even beyond
robotics, PRMs can be used to predict motions of biological macro-molecules such
as proteins and synthesize motions for digital actors. Current PRM-based research
focuses on challenges that arise as PRMs are being applied to motion planning
problems in various scenarios. In response to some of those challenges, the following

contributions are being made in this thesis:

(1) Dynamic collision checking. A PRM planner performs static and dynamic
collision checks to respectively test whether sampled configurations and simple paths
between sampled configurations lie in free space. Static checks are usually carried
out using an efficient “bounding-volume hierarchy” technique. On the other hand,
the classical approach to perform dynamic checks is to sample each path at some
fixed resolution and statically check each sampled configuration for collision. This
approach is approximate and can miss collisions. A new dynamic checker is presented
that exactly determines whether a path lies in free space. This checker chooses the
adaptive sampling resolution along the local path by comparing lower bounds on
distances between objects in relative motion with upper bounds on lengths of curves
traced by points of these moving objects. It is not restricted to PRM planning,
and also has potential applications beyond PRM planning, for instance in graphic

animation and physical simulation.

(2) Dealing with narrow passages. The efficiency of PRM planners can drop
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dramatically if the free space contains narrow passages. A new sampling strategy,
called small-step retraction (SSR), is presented that allows a PRM planner to
efficiently construct roadmaps in free spaces with narrow passages. SSR first slightly
fattens the robot’s free space into a new space, then constructs a roadmap in this
new space, and finally repairs portions of the roadmap that are not in the original
free space by resampling more configurations around them. The intuition behind this
method is that, as the fattening operation expands narrow passages relatively more
than the rest of the free space, it is easier to construct a roadmap in the fattened
space. Experimental tests show that SSR achieves significant speedups (sometimes

by two orders of magnitude) over a pre-existing state-of-the-art PRM planner.

(3) Multi-goal motion planning (MGP). MGP occurs in manufacturing
tasks such as spot welding, car painting, inspection, and measurement, where
the end-effector of a robotic arm must reach several input goal configurations in
some sequence. But this sequence is not given, and the goal is to compute an
optimal or near-optimal tour through the goals. MGP combines two notoriously
hard computational problems: the traveling salesman problem (TSP) and the
collision-free shortest-path problem. While a typical PRM planner can be used to
compute near-optimal paths between pairs of goals, additional reasoning is needed to
determine a near-optimal ordering on the goals without invoking the PRM planner
a quadratic number of times, which would be too costly in general. A new planner
is presented that avoids calls to the PRM planner by delaying them until they are
absolutely needed. This planner also handles the case where goals are specified
in terms of the robot’s end-effector placements and each end-effector placement
can be achieved with several configurations of the robot arm. In this case, the set
of goal configurations of the robot is partitioned into groups, and the planner’s
objective is to compute a robot tour that visits one configuration in each group and

is near optimal over all configurations in every goal group and over all group orderings.

(4) Manipulation planning for deformable linear objects. A number of tasks

require manipulating deformable objects, in particular deformable linear objects



(DLOs), such as ropes, cables, and surgical sutures. Most previous research in
manipulation planning has mainly focused on rigid objects. Deformable objects,
which can take many different shapes when submitted to external forces, add
challenging issues to the planning process. A new PRM planner is presented that
compute the motions and (re-)grasp operations of a two-arm system in order to tie
self-knots of DLOs, as well as knots around simple static objects. Here, unlike in
traditional motion planning problems, the goal is a topological state of the world (the
crossings of the DLO with itself and with static obstacles), rather than a geometric
one. The planner constructs a topologically-biased probabilistic roadmap in the
DLO’s configuration space. The planner has been used in simulation to tie bowline,
neck-tie, bow (shoe-lace), and stun-sail knots. Motions computed by the planner

have also been successfully tested on a two-PUMA robot hardware platform.
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Chapter 1

Introduction

1.1 Motion Planning

Motion planning can be broadly defined as the ability for an agent (e.g., a robot,
a digital character) to compute its own motions in order to achieve certain goals
specified by spatial arrangements of objects.

For example:

e The agent may be a robot arm whose goal is to assemble a product given its
individual parts lying on a table. The robot must determine the order in which
to assemble the parts, the position of its gripper to grasp each part, and the

trajectories for moving the parts.

e The goal of an autonomous lunar multi-legged vehicle may be to bring scientific
equipment to a specified location. The robot must select the successive place-
ments of its feet on the ground and the motions of its legs to reach them while

maintaining quasi-static or dynamic balance.

e An autonomous two-arm surgical robot may be requested to suture a patient’s
severed blood vessel at the end of a surgical procedure. The robot must decide
how to manipulate a nylon suture through the vessel’s severed ends and achieve

knots of a certain type.

e A sentry military robot may be introduced in a building to search for potential
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enemies. The robot must choose the successive locations where to go in order

to sweep the building in such a way that no enemy will remain undetected.

Being a key aspect in intelligent automation, motion planning has attracted con-
siderable research interest for more than three decades. Each specific motion planning
problem is usually cast in a parameter space where the solution can be expressed as
a curve, called a path, e.g., one connecting two given points. The most common
parameter space is the configuration space, in which each point uniquely determines
the placement of the robot in its workspace [84]. Constraints are mapped into that
space as forbidden regions that a feasible path must avoid. For instance, workspace
obstacles map into configuration space to a subset of configurations where the robot
collides with obstacles. A collision-free path is a continuous curve lying in the com-
plement of this subset, often called the free space. Computing collision-free paths
between given pairs of query configurations is often referred to as the basic motion
planning problem.

Many different types of feasibility constraints can be mapped as forbidden regions
in configuration space. For example, if the task of a robot is to track a moving target,
then at each instant of time the forbidden region is the subset of configurations from
which the target is not visible to the robot (due to visual occlusion); in that case,
as the target moves, the forbidden region varies over time and is best represented in
configuration xtime space. If the robot is a multi-legged robot navigating on rough
terrain, the quasi-static equilibrium constraint defines subset of configurations where
the robot is not in equilibrium. Other constraints apply to the local shape of a path

(e.g., kino-dynamic constraints) or to its global shape (e.g., optimality constraints).

1.2 Traditional Motion Planning Approaches

Methods developed to solve the basic motion planning problem are often divided

into three main approaches [27, 75]:

(a) Roadmap approach. It tries to capture the connectivity of the free space F

by a network of 1D curves, called the roadmap. To represent the connectivity of
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F well, a roadmap R must be such that (1) any configuration in F' can be easily
connected to R and (2) there is a one-to-one correspondence between the connected
components of R and those of F. Once a roadmap R has been constructed, each
motion-planning query is processed by first connecting the two query configurations
to two points of R and then searching the roadmap for a path connecting these
two points. Classical examples of roadmaps include visibility graphs [84], Voronoi
diagrams [91], and silhouettes [22].

(b) Cell decomposition approach. Here the key idea is to decompose F into
non-overlapping cells such that any two configurations in a cell can be easily
connected by a path. A connectivity graph is constructed that represents the
adjacency relation between the cells. To find a path between a pair of query
configurations, this graph is searched for a sequence of cells connecting the two cells
containing the query configurations. A final path is extracted from this sequence.
The trapezoidal decomposition [75] (for planar configuration spaces and polygonal
obstacles) and the Morse decomposition [1] (for non-planar configuration spaces
and non-polygonal obstacles) are well-known cell decomposition methods. In some

ways, the cell decompostion approach can be seen as a dual to the roadmap approach.

(c) Potential field approach. Here, unlike in the previous two approaches, no
connectivity graph is precomputed. Instead, an artificial potential function U is
constructed and used as a heuristics to guide the search of a path. The function
U is often constructed as the sum of an attractive potential (that pulls the robot
toward the goal configuration) and a repulsive potential (that repels the robot
away from the obstacles) [67]. The negated gradient —VU(q) at a given robot
configuration ¢ suggests the direction of motion at ¢. Because there is no or little
precomputation, the potential field approach has been very popular in scenarios
requiring on-line real-time navigation [27, 67, 75]. However, potential field methods
can easily get trapped into local minima of U and it is notoriously difficult to

contruct local-minima-free potential functions [69].
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Until recently, these planning approaches have been mainly applied to simple

scenarios where geometry has low complexity and robots have few degrees of freedom.

1.3 Probabilistic Roadmaps

During the last decade, Probabilistic Roadmap (PRM) methods have emerged as
an effective approach to solve complex motion planning problems [3, 4, 27, 49, 53,
66, 104]. They have proven capable of computing the motions of single-robot and
multiple-robot systems with many degrees of freedom operating in complex geomet-
ric environments (e.g., modeled with millions of triangles) [27]. They can also take
into account various types of motion constaints such as collision avoidance, kinody-
namic [52, 77], stability [17], visibility [31], and contact [61] constraints. Beyond
robotics, they have been used to synthesize the motions for digital actors [116] and
to predict motions of biologcal macro-molecules such as proteins [7].

PRM planning belongs to the roadmap approach presented in the previous section.
The main difference, however, is that it does not attempt to construct an exact
representation of the shape of the robot’s free space F'. Indeed, in most practical
scenarios, computing the shape of F' is prohibitively expensive. So, instead, PRM
planning works by constructing an extremely simplified, sample-based approximate
representation of F', called a (probabilistic) roadmap. This roadmap is a graph whose
nodes, called milestones, are configurations sampled from the free space F' according
to some suitable probability measure, which reflects the uncertainty on the actual
shape of F' [54]. An edge, called a local path, connects a pair of milestones if a path of
simple shape (usually the straight path) joins them in F'. The robot’s start and goal
configurations, s and g, are included among the milestones in the roadmap. Once
the roadmap is constructed, a path connecting s and g is extracted using standard
graph-searching techniques. These steps of the PRM planning are also depicted in
Figure 1.1. PRM planning relies on the availability of efficient collision-checking
techniques to test whether sampled configurations and local paths lie in F.

One can think of a probabilistic roadmap as a network of guards (the milestones)

watching over F'. Previous theoretical studies have shown that the reason why PRM
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robot’s _ w
c-space R" foen space free space

Figure 1.1: The basic PRM planning [66]. (a) Planning is done in the robot’s free
space, shape of which is unknown. (b) Configurations are sampled using some prob-
ability measure. (c) Sampled configurations are tested for collision and the collision-
free ones (lying in the free space) are retained as milestones. (d) Each milestone is
linked by straight paths to its k-nearest neighbors. (e) Collision-free links are retained
to form the PRM. (f) Finally, s and g are connected to the PRM and the PRM is
searched for a path (red polyline) from s to g. Figure derived from [76].
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Figure 1.2: The gray region “illuminated” by the milestone (near the center, shown
bigger) is a large fraction of the free space. PRMs work well in practice because in
most free spaces every configuration illuminates a significant fraction of the feasible
space. Figure courtesy of [76].

planning works well in practice is that a free space F' typically encountered in a real-life
scenario verifies favorable visibility properties, such that a relatively small number
of milestones and local paths are sufficient to represent F' well enough to answer
motion-planning queries correctly with high probability [53, 65] (alse see Figure 1.2).
However, visibility properties are usually not uniformly favorable or defavorable across
F'. Hence, a key component of any PRM planner is the algorithm — called the sampling
strateqy — that chooses the probability measure to use in each milestone sampling
operation. This measure should allocate a higher density of milestones to regions of F'
that are expected to have inferior visibility, e.g., to regions expected to contain narrow
passages. Some sampling strategies predict such regions from the geometry of the
workspace, e.g., by identifying narrow passages in the workspace and mapping them
into configuration space [44, 48, 59]. Other strategies, known as adaptive strategies,
use the information gained while constructing the roadmap [57]. In this case, the
resulting probability measure varies over time. Yet another family of strategies, known
as filtering strategies, first over-sample F', but then identify local pattern to only retain
a small subset of the generated samples as milestones [16, 50].

A PRM planner may pre-compute a roadmap for a given robot and workspace, and
then use this roadmap to process many planning queries, each defined by a distinct

pair (s, g) [66]. Such a planner is called a multi-query PRM planner. It must construct
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a roadmap that “covers” the entire free space well. In contrast, single-query planners
build a new roadmap for each new query (s, g). This roadmap needs only linking s to
g and therefore does not have to achieve a good coverage of F'. Single-query planners
are usually much faster than multi-query planners, even to process several queries in
the same setting. RRT [71] and SBL [104] are two examples of single-query planners.
Throughout this thesis, we use SBL as our “base” PRM planner in our implemented
software. An overview of SBL is given in the appendix of this thesis.

Although PRM planning has been extremely successful in solving complex motion
planning problems, a number of difficult issues remain. In particular, the presence
of narrow passages in the free space is still considered a major bottleneck, which
may dramatically slow down PRM planning. As problems become more complex and
require the processing of larger numbers of motion-planning queries, PRM planning
must be made more efficient, e.g., by developing faster collision-checking techniques
and better sampling strategies. On the application side, PRM planning has mostly
been applied so far to “basic” motion planning problems (as defined in Section 1.3).
Only recently, has PRM planning made significant inroads in other types of prob-
lems. There still exist many important planning problems that have no satisfactory
solutions, PRM-based or not.

1.4 Thesis Contributions

Our contributions are at the two levels suggested above. On the one hand, we
propose two new methods — a dynamic collision checker and a sampling strategy
based on fattening the free space F' — to increase both the efficiency and reliability
of PRM planning. On the other hand, we extend PRM planning to solve two new
important planning problems: multi-goal planning and manipulation planning for
linearly deformable objects (DLOs). We briefly introduce these contributions below.

They are developed in more detail in the following chapters of this thesis.

(1) Dynamic collision checking. A PRM planner performs two types of collision

checks: static checks to test whether a sampled configuration is in F' and dynamic
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checks to test whether a local path lies entirely in F'. Static checks are usually
carried out using an efficient “bounding-volume hierarchy” technique [42]. On the
other hand, the classical approach to perform dynamic checks is to sample each
local path at some fixed, prespecified resolution and statically check each sampled
configuration for collision.! But this approach is approximate and can miss collisions
along the path. One may reduce the chances of missing a collision by refining the
sampling resolution along the entire local path, but this results into a slower dynamic
checker, and, so, into a slower overall planner. To address this important issue, we
have devised a new dynamic checker based on adaptive path sampling, which exactly
determines whether a local path lies in F', or not. It chooses the adaptive sampling
resolution along the local path by comparing lower bounds on distances between
objects in relative motion with upper bounds on lengths of curves traced by points
of these moving objects. We have done extensive tests of our new method, showing
that its running time compares favorably with that of a fixed-resolution approach at
a “suitable” resolution, with the enormous advantage that it never fails to detect a
collision. Our new checker is not restricted to PRM planning, and also has potential
applications beyond PRM planning, for instance in graphic animation and physical

simulation.

(2) Dealing with narrow passages. It is well-known that the efficiency of
PRM planners can drop dramatically if the free space contains narrow passages,
as it is difficult to sample and connect milestones through such passages. For
many years this problem has been considered to be the main bottleneck for PRM
planning [16, 50, 51]. We have developed a new sampling strategy, which we call
small-step retraction (SSR), that allows PRM planners to efficiently construct
roadmaps in free spaces with narrow passages. SSR slightly fattens the robot’s free
space F' into a new space F* that completely contains F'. SSR then constructs a
roadmap in F*, and finally repairs portions of the roadmap that are not in F' by

resampling more configurations around them. The intuition behind this method is

! This sampling of local paths to perform collision checks should not be confused with the sampling
of milestones to construct a roadmap.
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that, as the fattening operation expands narrow passages relatively more than the
rest of F', visibility properties are more favorable in F* than in F. So, it is easier
to construct a roadmap in F* than in F. However, no part of F* is far away ftom
F| so repairing the roadmap can be done efficiently. Of course, the exact shape of
fattened free space F™ is not explicitly computed. Instead, the geometric models of
workspace objects (robot links and/or obstacles) are thinned around their medial
axis in a precomputation stage. To construct a roadmap in F™*, collision checks
(static and dynamic) are performed using the thinned models. Comparative tests
show that SSR achieves significant speedups (sometimes by two orders of magnitude)

over a pre-existing PRM planner SBL [104].

(3) Multi-goal motion planning (MGP). MGP occurs in industrial manu-
facturing tasks such as spot welding, car painting, inspection, and measurement,
where the end-effector of a robotic arm must reach several input goal configurations
in some sequence. This sequence is not given, and the goal is to compute an
optimal or near-optimal tour through the goals. MGP combines two notoriously
hard computational problems: the traveling salesman problem (TSP) and the
collision-free shortest-path problem. While a typical PRM planner can be used to
compute near-optimal paths between pairs of goals, additional reasoning is needed to
determine a near-optimal ordering on the goals without invoking the PRM planner
a quadratic number of times (once for each pair of goals), as that would often be
too costly. To solve this problem, we have designed a “lazy” multi-goal planner
that avoids calls to the PRM planner by delaying them until they are needed. It
does so by initializing the distance between every two goals to an easily computed
lower bound. Then it runs the PRM planner on pairs of goals until a tour has been
found to be within a given factor of the optimal tour. Our planner also handles
the case where goals are specified in terms of the robot’s end-effector placements
and each end-effector placement can be achieved with several configurations of the
robot arm (distinct solutions of the arm’s inverse kinematics). In this case, the
set of goal configurations of the robot is partitioned into groups, and the planner’s

objective is to compute a robot tour that visits one configuration in each group and
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is near optimal over all configurations in every goal group and over all group orderings.

(4) Manipulation planning for deformable linear objects. A number of
tasks require manipulating deformable objects, in particular deformable linear objects
(DLOs), such as ropes, cables, and surgical sutures. However, research in manipula-
tion planning (including PRM-based manipulation planning) has mainly focused on
rigid objects [106]. A noticeable exception is the work described in [73]. Indeed, de-
formable objects, which can take many different shapes when submitted to external
forces, add a number of challenging issues to the planning process. We present a new
PRM planner that computes the motions and (re-)grasp operations of a two-arm sys-
tem in order to tie self-knots of DLOs, as well as knots around simple static objects.
Here, unlike in traditional motion planning problems, the goal is a topological state of
the world (the crossings of the DLO with itself and with static obstacles), rather than
a geometric one. The planner constructs a topologically-biased probabilistic roadmap
in the DLO’s configuration space. We have experimented with it in simulation with
several goals representing knots like the bowline, neck-tie, bow (shoe-lace), and stun-
sail knots. We have also successfully tested the motions computed by the planner on
a two-PUMA robot hardware platform with various household ropes.

The following four chapters describe these contributions in detail.



Chapter 2

Adaptive Dynamic Collision
Checking*

2.1 Introduction

In virtually all real-life motion-planning scenarios, a PRM planner must perform
many collision checks — typically tens of thousands to hundreds of thousands — in
order to build a roadmap. In fact, PRM planners spend most of their running times
(often 99% or more) performing such checks. So, collision checks must be very fast,
even when the workspace has complex geometry, but they must also be accurate, i.e.,
they must not miss collisions or incorrectly detect collisions.

There are two types of collision checks, static and dynamic. In a static check a
single configuration of objects is tested for overlaps, while in a dynamic check an
entire path (hence, a continuous set of configurations) is tested for overlaps among
objects. Static checks are used to test the milestones of a roadmap and dynamic
checks to test its local paths. Static checks are usually carried out with efficient
Bounding Volume Hierarchy (BVH) techniques [43, 58, 68, 108]. There is little space

for further improvement here, except perhaps by developing and exploiting specialized

*This chapter is based on the journal article: “Adaptive Dynamic Collision Checking for Sin-
gle and Multiple Articulated Robots in Complex Environments”, IEEE Transactions on Robotics,
21(3):338-353, June 2005. Fabian Schwarzer and Jean-Claude Latombe are the co-authors of the
article.

11
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computing hardware (e.g., GPUs). On the other hand, dynamic collision checking
techniques are far from being entirely satisfactory. Our work reported in this chapter
has focused on improving them.

Traditionally, a dynamic check is done by sampling a given local path at a pre-
specified resolution and statically checking each of configuration sampled along the
path. Hence, a PRM planner usually spends much more time testing local paths than
milestones. A coarse resolution is often chosen to make dynamic checks faster, but
this choice also increases the risk of missing collisions. Conversely, a fine resolution
increases reliability, but also slows down the overall planning process. Any tradeoff
is delicate and depends on object geometry. In this chapter, a new dynamic collision
checker is described which works with an adaptive resolution, in order to achieve
both reliability and speed. This checker is guaranteed to never miss a collision. Our
experiments show that a PRM planner using this checker is both reliable and efficient
timewise. The applicability of our new checker is not limited to PRM planning or
motion planning in general. For example, it can also be used to test continuous paths

in graphic animation and physical simulation [19, 62, 83].

2.1.1 Previous work on dynamic collision checking

Four major families of methods have been previously proposed for dynamic collision

checking:

e Feature-tracking methods track pertinent features (vertices, edges, faces) of two
objects — usually, the pair of closest features — to determine if the objects remain
separated along a path. They rely on the following coherence assumption: the
pertinent features change relatively rarely and, when they do change, the new
ones can be computed efficiently from the old ones [11, 28, 81, 82, 86]. This
assumption requires each object to be made of few convex components and to
have relatively small geometric complexity. It is poorly verified by kinematic
chains (e.g., robot arms) in practical environments. Then, paths must be tested
by tiny increments, to avoid missing collisions, especially collisions involving

links at the end of the chains.
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e Bounding-volume hierarchy (BVH) methods pre-compute, for each object (robot
link, obstacle), a hierarchy of BVs (e.g., spheres, boxes) that approximates the
geometry of the object at successive levels of detail [43, 58, 68, 74, 95, 108].
To check two objects for collision, their BVHs are searched from the top down,
making it possible to quickly discard large subsets of the objects contained
in disjoint BVs. Such methods have been applied to complex objects with
surfaces described by several 100,000 triangles, and more [43, 74]. But they are
fundamentally static methods (and are actually used by most PRM planners to
test the roadmap milestones). As described above, to test a path, the common
approach is to check intermediate configurations spaced along the path at a
prespecified resolution. If all these configurations are found collision-free, then

the path is declared collision-free, but this answer may not be correct.

e Swept-volume intersection methods compute the volumes swept out by the ob-
jects and test these volumes for overlap [20, 37]. However, exact computation
of swept volumes is expensive, especially when objects undergo rotations and
have complex geometry. Moreover, the overlap test can no longer be speeded
up by using pre-computed data structures, such as BVHs. Another difficulty is
that swept volumes for pairs of moving objects may overlap even when the ob-
jects do not collide. Hence, when multiple objects move relative to each other,
one must either consider the relative motions for all pairs, or compute and test

volumes swept out in 4D space-time. Both ways yield costly computations.

e Trajectory parameterization methods express the geometry of the objects along
the tested path by algebraic polynomials in terms of a single variable ¢ [21,
105]. These polynomials are then used to construct a collision condition on
t. In principle, finding the values of ¢ verifying this condition gives the exact
intervals of collision along a given path. But, in general, the polynomials have
high degrees, so that solving the condition for ¢ can be prohibitively expensive
and furthermore pose numerical problems. Simplifications yielding polynomial

equations of degrees no greater than 3 are proposed in [97].
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a b

Figure 2.1: a: Two skinny 20-DOF arms (320 triangles each) in environment with
three fixed thin tori (6,000 triangles each), and detail showing arms in top ring. b:
IRB 2400 robot with thin arc welding gun (3,500 triangles) and snapshots along a
straight path segment in configuration space

Combinations of methods have also been proposed, where a BVH method is used to
filter out irrelevant parts of objects. For instance, in [34] the bounding surface of each
object is decomposed into convex surface patches, out of which a hierarchy of convex
hulls is created. During a collision check, the precomputed BVHs are used to quickly
prune pairs of surface patches that cannot intersect and a feature-tracking method
is applied to test the remaining pairs. Similarly, in [98], a BVH method (augmented
with interval-arithmetic techniques) is combined with a trajectory-parameterization
method [97]. The methods in [34, 98] can find the time of first contact between two
objects along a short trajectory segment, hence are well suited for haptic interaction
and dynamic simulation, where penetration could lead to an inappropriate collision
response. In contrast, in applications like motion planning, it is more crucial to

determine as quickly as possible if a given trajectory of arbitrary length collides.

2.1.2 Fixed-resolution dynamic checking

Hence, while there exist effective methods for static collision checking (e.g., BVH
methods), dynamic checking remains a practical bottleneck in many applications. In
particular, probabilistic roadmap (PRM) planners rely on the availability of efficient

checkers to test simple path segments (called local paths, usually straight segments)
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between randomly sampled configurations (called milestones) [4, 10, 14, 53, 63, 102].
Most PRM planners use a static BVH method to test intermediate configurations
spaced along each local path at some given resolution ¢ (in the configuration space
metric). These configurations are usually obtained by recursively bisecting the local
path, until either a collision is found, or any two successive configurations are closer
apart than ¢ [102, 30].

Choosing ¢ requires a delicate compromise between efficiency and reliability. This
is especially true in scenarios with articulated arms and/or multiple robots. Rather
large values of €, which reduce the number of static checks, may be acceptable when
robot links and obstacles are fat. But when these objects are thin or have sharp edges,
the checker will then easily miss collisions. Trying to increase reliability by reducing
¢ results in slow checking of path segments. In the example of Figure 2.1a, which
contains two long skinny serial linkages and three thin obstacles, tiny changes in joint
angles can make the linkages jump over obstacles and/or each other. In Figure 2.1b,
a small rotation of the robot’s base may cause the welding gun to pass through an
obstacle. In both examples, ¢ must be set very small for collisions to be reliably
detected, yielding a slow dynamic checker.

One way to address this difficulty is to “grow” object models [8], by pre-computing
the Minkowski sums of the original models and a sphere of radius p. The value
of p is chosen such that, if the grown models do not overlap at the intermediate
configurations, then the original models are guaranteed to be collision-free between
these configurations. However, this further complicates the choice of €. A large o
allows a large €, but it also increases the chances that a path segment is incorrectly
found to collide. To reduce the number of false collisions, while rarely missing true
collisions, one must choose both p and ¢ small, which yields again an inefficient
checker. The checker proposed in [8] addresses this difficulty by pre-computing several
grown copies of each model, each with a different value of p. Then, at each step of
a segment test, the checker switches to the largest collision-free grown model and
adjusts the next step size accordingly. However, this approach is expensive (in both

memory and time) and requires difficult tuning.
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2.1.3 Adaptive bisection of paths

This chapter introduces a new dynamic collision checking method, based on BVH,
that avoids these difficulties by locally adjusting the value of ¢. By comparing lower
bounds on distances between objects in relative motions with upper bounds on lengths
of curves traced by points of these moving objects, this method automatically decides
whether a path segment between two collision-free configurations needs to be bisected
further. It not only frees the user from choosing ¢; it also guarantees that no col-
lision will ever be missed. Our checker is applicable to path segments of any given
shape (e.g., straight, circular) in configuration space or collections of such segments
(e.g., multi-segment paths). It is particularly suited for scenarios with manipulator
arms and/or multiple robots, where it can detect collision between robot links and
obstacles, as well as between links of the same or different robots.

The basic idea of relating distances to path lengths has been suggested before
(e.g., [19, 10]), though rarely implemented. We exploit this idea further by separately
adjusting the bisection resolution for different pairs of objects. Indeed, very few
pairs of objects (link-obstacle or link-link) require bisecting a path down to the same
resolution. Exploiting this fact leads to testing a rapidly decreasing number of object
pairs at each new level of bisection. At the end of this chapter, we push this idea one
step further by separately adjusting the resolution for different pairs of BVs.

We also give a number of new techniques and heuristics that make the approach
more efficient, especially when it is used in PRM planners and/or applied to geomet-
rically complex environments. One is a BVH algorithm that computes non-trivial
lower bounds on distances between pairs of objects almost as efficiently as if it was
only testing the objects for collision. Another technique bounds link motions: given
a path segment of a robot in configuration space and a link of this robot, it quickly
computes an upper bound on the lengths of the curves traced in workspace by all
points in this link.

We have extensively tested our dynamic checker on randomly generated path
segments and multi-segment paths produced by randomized planners. These tests
show that its running time compares favorably to that of a fixed-resolution checker

at “suitable” resolution, with the enormous advantage that our checker never fails to
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detect collision.

2.1.4 Chapter organization

Section 2.2 describes our dynamic collision checking method based on adaptive bisec-
tion. Sections 2.3 and 2.4 respectively present the techniques used to compute lower
bounds on distances between objects and upper bounds on lengths of curves traced
out by points of moving objects. Section 2.5 discusses experimental results on vari-
ous examples that were obtained with the implemented new adaptive checker and a
fixed-resolution checker, for comparison. Section 2.6 refines the method by separately
adjusting the bisection resolution for different pairs of BVs (instead of objects). Sec-
tion 2.7 summarizes our work, describes its limitations, and points to possible future
work.

Throughout this chapter, we model the workspace as the Euclidean space R®.
Distances between objects and lengths of curves in workspace are all measured using

the FEuclidean metric.

2.2 Adaptive Dynamic Collision Checking

We begin by establishing a basic result on which our algorithm is based.

2.2.1 Basic result

We consider the robot(s) and all obstacles as a collection of rigid objects A;, ..., A,
whose placements in workspace are uniquely determined by a tuple ¢ = (g1, . - -, 44),
the configuration of the system. All objects are allowed to move.

Let .A;(g) denote object A; at configuration q. Let 7;;(q) be any non-trivial lower
bound on the Euclidean distance between A;(q) and A;(q), i.e., n;;(q) = 0 if and
only if A;(g) and A;(q) overlap.

Each A; is a set of points. Each point traces a distinct curve segment in workspace
when the configuration of the system is interpolated between configurations g, and g,

along a path segment 7. For a given 7, we define \;(q,, g;) to be an upper bound on
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the lengths of the curves traced by all points in A;, such that \;(g,, q,) = 0 whenever
A,; stays fixed during the interpolation (for example, if A4; is a fixed obstacle).
We now state a sufficient condition for two objects A; and A; not to collide along

7 in configuration space:

Theorem 1 Two objects A; and A; do not collide at any configuration q on the path

segment T joining q, and q, in configuration space, if:

Ai(Go, Gy) + Aj(aq: @) < mij(a,) + nij(qy)- (2.1)

Proof: Assume that Inequality (2.1) is verified. If .A; and A; collide, then a point p;
of A; must coincide with a point p; of A; at some intermediate configuration g, along
7. Let £;(q, ¢') be the length of the curve traced by p, between any two configurations
g and ¢’ in 7. Define ¢;(g, ¢’) in the same way for point p;- For p; and p; to coincide

at g., we must have:

v

Ei (qaa qc) + g] (qm QC) nij(Qa),
li(a., ay) + (g a5) > mij(ay)

Since £5(q,, q.)+4i(q., @) = £i(da; @) and £5(q4, 4.)+45(4,, @) = £i(q4 G3), SUMMIing
the previous two relations yields:

Ei(Qa: qb) + Ej(qaa qb) Z ThJ(Qa) + 771] (qb)
Using A\i(q,, @5) > 4i(q,, y) and \j(q,, q,) > 45(q,, q;), we get:

Ai(@ar @) + Ai(@0r @) > mij(a,) + mij(ay)

which contradicts our initial hypothesis that Inequality (2.1) is verified. So, A; and
A; do not collide. m
The reverse of Theorem 1 is not true: X;(q,, q,) + Aj(q,, g,) may exceed 7;;(q,) +

ni;(q,) without introducing a collision.
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Algorithm ADAPTIVE-BISECTION(q, q')
1. Initialize priority queue @ with [g, ¢'];; for all pairs of objects (A;, A;)
that need to be tested.
2. While @ is not empty do
2.1 [q,,q)ij < remove-first(Q)
2.2 If Xi(g,, @5) + A (44> @) > mi5(q,) + mi(q,) then
2.2.1 q,,;; < mid-configuration along path segment
between g, and g,
2.2.2 If 1;;(@,;q) = 0 then return collision
2.2.3 Else insert [q,, @,n4)i; and [@,,4: @5)i; into Q

3. Return no collision

Figure 2.2: Adaptive bisection algorithm

2.2.2 Adaptive bisection algorithm

Our algorithm uses Theorem 1 to decide whether a given path segment between two
collision-free configurations g, and g, must be bisected: if Inequality (2.1) is verified
for all pairs of objects A; and A;, then the segment is collision-free; otherwise, it must
be bisected. Theorem 1 guarantees that no collision can be missed.

However, considering all pairs of objects simultaneously may yield a large amount
of unnecessary work. Indeed, pairs of objects that are well-separated and undergo
small displacements require fewer bisections than pairs that are closer and/or undergo
greater displacements. So, taking advantage of the fact that Inequality (2.1) applies
to an individual pair of objects, we check this condition for each pair, independent of
the other pairs, and discard those pairs which verify the inequality. In this way, as a
path segment gets bisected at a finer resolution, the number of remaining object pairs
tends to drop quickly. Moreover, we can perform the tests in an order that speeds up
the discovery of a collision, when there is one.

Figure 2.2 shows our algorithm, ADAPTIVE-BISECTION, to check a path segment
between two collision-free configurations q and q'. It maintains a priority queue )
of elements of the form [q,, g,];;. The presence of [q,, g,];; in @ indicates that the
objects A; and A; still need to be tested for collision between g, and gq,. At Step 1, Q



CHAPTER 2. ADAPTIVE DYNAMIC COLLISION CHECKING 20

is filled with the elements [q, q'];;, for all object pairs that need to be tested. Then, at
each loop of Step 2, the first element, say [g,, g;j, is removed from ). If this element
satisfies Inequality (2.1), then A; and A; cannot possibly collide between g, and g,
and the algorithm continues with the next element in the queue. Else it computes
1ii (@pmia), Where gq,,;4 is the mid-configuration along the path segment between g,
and g,. If this computation reveals a collision — that is, if 7;;(q,,;4) = 0 — then the
algorithm reports the collision and halts. Otherwise, two new elements, [q,, g,iqlij
and [g,,;q4, @plij, are inserted into ). When @) is empty, the path segment between g
and ¢’ is reported free of collision.

In Sections 2.3 and 2.4, we will describe the techniques used in our implementation

of ADAPTIVE-BISECTION to compute bounds on distances and curve lengths.

2.2.3 Ordering of the priority queue

If the path segment tested by ADAPTIVE-BISECTION is collision-free, then the ordering
of () has no impact on the running time of the algorithm, since all elements in @) will
eventually have to be processed. But, for a colliding segment, an appropriate ordering
can lead to finding a collision quicker. This is important in applications like PRM
planning, where a large fraction of candidate paths are colliding.

In [102, 30], it was shown that in practice the prior probability of a path segment
to be colliding increases sharply with its length in configuration space. This result
justifies bisecting a segment into two sub-segments of equal lengths. The planners
in [102, 89] exploit this result further to test multi-segment paths, by maintaining a
priority queue of (sub-)segments sorted by decreasing lengths and treating the longest
(sub-)segment first.

ADAPTIVE-BISECTION takes also advantage of the computed bounds on both dis-
tances between objects and lengths of traced curves. Intuitively, two objects are more
likely to collide when they are closer to each other at one or both segment endpoints
and/or the points in these objects trace longer curves. This intuition is directly re-
lated to Inequality (2.1) and leads us to sort the entries [q,, g;;; in the priority queue
by decreasing values of the difference: \;(q,, qy) + A;(qq, @y) — 7:5(q,) — 1ij(@y). Our
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tests show that, on average, this heuristic ordering leads to finding a collision faster

than sorting @) by decreasing lengths of segments.

2.2.4 Checking multi-segment paths

ADAPTIVE-BISECTION can be extended to concurrently test multiple segments form-
ing a continuous, multi-segment path. This is simply done by filling (), at Step 1,
with the elements [g, ¢'];;, for all segments [g, '] and all object pairs that need to be
tested. The same heuristic ordering of () as above can be used. In general, it will lead
to discovering a colliding segment before having spent much time testing collision-free
segments.

However, a slightly more useful implementation in practice is to maintain several
priority queues: one for the path and one for each segment. The priority queues for
the individual segments are maintained as above. The queue for the path contains one
entry per segment that has not yet been shown to be collision-free. The entries of the
path queue are sorted by decreasing values of the differences \;(q,, q,) + A(q,, q;) —
ni;(@,) — mi;(q,), each computed for the first element of the corresponding segment’s
queue. Intuitively, this ordering corresponds to placing the segment that is the most
likely to collide on top of the path queue. The advantage of using several queues
is the following: if a segment in the path is eventually found to collide, we then
cache the priority queue associated with each of the other segments that has not yet
been found to collide or not to collide. If any of these segments must later be tested
for collision, the cached queue of this segment is re-used, hence saving the collision-
checking work previously done. This improvement is particularly important when the
collision checker is used in a PRM planner that delays collision tests [102].

The same extension actually holds for an arbitrary collection of segments.

2.2.5 Covering strategies

Inequality (2.1) can be illustrated by the following diagram: draw a line segment of
length \;(q,,q,) + Aj(q,,q,) and two circles of radii 7;;(g,) and 7;;(g,) centered at
the endpoints of this segment. See Figure 2.3a. (The segment in this figure is not
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Figure 2.3: Different covering strategies (see text)

the path segment in configuration space.) We call the circles the covering circles
of g, and g,. If they cover the entire segment, as is the case in Figure 2.3a, then
A; and A; do not collide along the straight path joining g, and g, in configuration
space. Otherwise, and if there is no collision along the path, ADAPTIVE-BISECTION
will produce intermediate configurations g,,;; whose covering circles will eventually
complete the coverage of the entire line segment, as depicted in Figure 2.3b.

The above diagram, though only illustrative (as it is embedded neither in config-
uration space, nor in workspace), suggests decomposition/covering strategies of the
path between g, and g, other than bisecting at the midpoint. For example, we could
compute the two configurations where the covering circles of g, and g, intersect the
segment (Figure 2.3¢), and check whether their covering circles complete the covering
of the segment. This strategy would require inserting at most one new entry into the
priority queue at each iteration, instead of two. But half the coverage by the new
circles would be wasted to cover parts of the segment that were covered by previous
circles. This could nevertheless be a useful strategy if one wanted to check a path
by small increments from one end to the other, as is the case, for example, in haptic
interaction with virtual worlds and physical simulation in order to find the time of
first contact [34], [98].

Another strategy would be to place a configuration at the middle point of the
uncovered section (assuming it can be easily computed), as illustrated in Figure 2.3d.
In term of coverage, this would be slightly better than the bisection strategy of our
algorithm. However, our experimental tests indicate that the potential gains are
small. Moreover, this strategy produces different intermediate configurations for dif-

ferent pairs of objects. This is a drawback with articulated linkages, since it then
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requires computing the forward kinematics of these linkages at many more configura-
tions. Instead, with the strategy of Figure 2.3b, the results of the forward kinematics
computation done to determine the placement of a link at some configuration can be
cached and later re-used to retrieve or compute the placement of another link in the

same linkage at the same configuration.

2.2.6 Bounding the running time of ADAPTIVE-BISECTION

Ignoring floating-point arithmetics issues, ADAPTIVE-BISECTION always gives a cor-
rect answer in a finite amount of time. However, this time is not bounded in the
worst case, as one can easily create examples where the algorithm would bisect an
arbitrary number of times. Very bad cases are unlikely in practice, but they may
eventually occur when several thousands of path segments are tested, as is often the
case in PRM planning.

There are several ways to deal with this issue. One is to switch to another dynamic
collision-checking method when a (sub-)segment shorter than some threshold requires
being bisected further. Then, the potential collision is already well localized, so that
only restricted subsets of the objects (hence, small number of triangles) need to be
considered. A similar idea has been previously exploited in [34, 98].

Another way is to modify slightly the definition of the lower bound 7;;(g) on the
distance between A; and A; at configuration g. In the new definition, 7;;(q) = 0
whenever the actual distance between the objects is less than some small predefined
9, and n;;(q) > J otherwise. Any ¢ > 0 results in bounding the running time of
ADAPTIVE-BISECTION. Then, the algorithm is slightly conservative: while it still
cannot miss a collision, it may incorrectly return that a path segment is colliding
when two objects come closer than ¢ apart. Note that choosing ¢ is very different
from setting the resolution ¢ of a fixed-resolution checker. A fixed-resolution checker
always breaks a segment into sub-segments of length ¢ to determine that the segment
is collision-free. In contrast, in most cases, our checker stops bisecting before any
ni;(q) gets smaller than §. Setting ¢ is also different from growing the objects by

some p as suggested at the end of Section 2.1.2. Indeed, o must be chosen large
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enough to prevent any collision from happening along sub-segments of length €. So, o
is directly related to the length of the maximal displacement of points in the moving
objects, and can be quite large.

In our implementation, we bound the running time of ADAPTIVE-BISECTION by
setting a threshold ¢ as described above. Our experiments show that § can be set
very small without affecting significantly the average running time of ADAPTIVE-

BISECTION, meaning that the threshold is rarely needed in practice.

2.3 Bounding Distances Between Objects

ADAPTIVE-BISECTION requires that non-trivial lower bounds on distances between
objects be efficiently computed. Tighter bounds may yield fewer bisections, but are
usually more expensive to compute. Here, we describe a greedy algorithm, based on
bounding volume hierarchies (BVHs), that computes lower bounds on distances at

about the same cost as if it was testing the objects for collision.

2.3.1 Distance computation using BVHs

Bounding volume hierarchies (BVHs) are widely used to check collision and/or com-
pute distances between objects of high geometric complexity. An object’s BVH is an
approximately balanced binary tree whose leaves are triangles of the object surface
and intermediate nodes are BVs, each bounding the triangles below it. It is pre-
computed using techniques such as those described in [43, 74, 95]. Various types of
BVs have been proposed, including spheres, axis-aligned bounding boxes (AABB),
oriented bounding boxes (OBB), and rectangle swept spheres (RSS) [83].

To determine if two objects collide at a given configuration, their hierarchies are
searched from the top down. Each step of a search path consists of testing whether two
BVs or two triangles, one from each hierarchy, are separated. A collision is reported
whenever two triangles are found to intersect. A search path is terminated as soon
as two tested BVs are separated, because disjoint BVs cannot contain intersecting

triangles. In the worst case, if each object has O(n) triangles, the algorithm takes
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O(n?) time. But, in practice, the average running time is often sub-linear, as many
search paths are terminated early.

The same algorithm can be used to compute the exact distance between two
objects, with few changes to maintain the closest distance d found so far. Initially,
d is set to a very large number. A search path is terminated whenever the distance
between two tested BVs is greater than d. If a search path reaches a pair of triangles
and the distance between these triangles is less than d, then d is re-set to this new
distance. The algorithm terminates as soon as d = 0 (the objects are colliding) or
when all search paths have been terminated. In both cases, the final value of d is the
distance between the two objects.

BVH methods are widely used, because they have been found more efficient in
practice than other techniques, especially for complex objects. Nevertheless, they
take much more time to compute exact distances than to check collision. As any two
tested BVs are more likely to be disjoint than separated by at least d > 0, search
paths to compute distances are longer.

Two approaches have been proposed to speed up distance computation:

e One approach is to prune search paths more effectively, either by re-using data
computed at a previous configuration, or by better selecting which search path
to explore next [74, 78]. For example, triangle caching initializes d to the dis-
tance between the two closest triangles at the previous configuration. But it is
effective only if the coherence assumption is verified. Priority directed search
schedules the pending tests of BVs and triangles into a priority queue sorted by

distances. It does not rely on any coherence assumption.

e The other approach computes an approrimate distance with a guaranteed bound
on the relative error [74, 95]. The algorithm in [95] computes a lower bound
d on the distance d between two objects, such that (d — d')/d < =, where
0 < v < 1 is an input constant. It initializes d' to a large value (as in the
exact case). When it finds that two triangles are closer than d' apart, it resets
d' to be 1 — 7 times the distance between them. The final value of d’ verifies

(1—7)d < d' < d. The algorithm becomes faster as «y is increased, but it is still
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Algorithm GREEDY-DIST(B;, B;)

1. d < distance(B;, Bj)
If B; and B; are both triangles then return d
If d > 0 then return d

If B; is bigger than B; then switch B; and B;
Set Bj; and Bjy to the two children of B; in the BVH
« < GREEDY-DIST(B;, Bj1)
If @« > 0 then
7.1 [ < GREEDY-DIST(B;, Bjs)
7.2 If 8 > 0 then return min{«, 5}
8. Return 0

N ot e N

Figure 2.4: Greedy distance computation algorithm

slower than pure collision checking. The algorithm in [74] computes a upper

bound on the distance.

In fact, the speed of distance computation turns out to be crucial for the overall
efficiency of the new adaptive dynamic collision checking approach. That is, while
ADAPTIVE-BISECTION may perform fewer bisections to test a path than a fixed-
resolution checker with small e, it could nevertheless take longer to run because stan-
dard methods for distance computation are much slower than pure collision checking.
The next section therefore proposes a new algorithm, called GREEDY-DIST, that com-
putes lower distance bounds almost as fast as a typical BVH algorithm checks for

collision.

2.3.2 Greedy distance computation algorithm

To compute a lower bound on the distance between two objects, our implementation
of ADAPTIVE-BISECTION calls GREEDY-DIST(B,, Bs), where GREEDY-DIST is the al-
gorithm shown in Figure 2.4 and B, and Bg identify the root BVs of the hierarchies
representing these objects. The call returns a positive lower bound on the distance,

if the objects are separated, and 0 otherwise.
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GREEDY-DIST works like a classical BVH collision checker [74]. It follows the same
search paths, tests the same pairs of BVs and triangles, and terminates each search
path when a pair of tested BVs has null intersection. But, instead of testing if two BVs
or triangles intersect, it computes the distance between them and eventually returns
the smallest distance found. It is faster than an approximate distance computation
algorithm because it skips the additional search needed to verify that the relative
error is smaller than a given 7. Though GREEDY-DIST offers no guarantee on the
relative error, our tests show that it returns a good approximation on average.

GREEDY-DIST is independent of the choice of BV, as long as the distance between
pairs of BVs can be computed efficiently. In our implementation, we use RSSs. An
RSS is defined as the Minkowski sum of a rectangle and a sphere [74]. The RSS of
an object is created by first estimating the two principal directions spanned by the
object [43]. A rectangle R is then constructed along these directions to enclose the
projection of the object onto the plane defined by these directions. The RSS is the
Minkowski sum of R and the sphere whose radius is half the length of the interval
spanned by the object along the direction perpendicular to R. In comparison, the
OBB of the object is the cross-product of R by this interval. It is often possible to
improve the quality of the RSS fit by shrinking R (each side can be reduced by at
most twice the radius). Like OBBs, RSSs provide reasonably tight fits for objects
of various shapes. But distance computation between RSSs is faster than between
OBBs [74].

To bound the running time of ADAPTIVE-BISECTION using the parameter § (see
Section 2.2.6), we modify the algorithm of Figure 2.4 by replacing the zeros in step
3,7, and 7.2 by §. Then, GREEDY-DIST returns a positive lower bound whenever the

distance is greater than ¢, and 0 otherwise.

2.3.3 Experimental analysis

As Figure 2.5 illustrates, in a bad case, the relative error on a bound computed
by GREEDY-DIST can be arbitrarily close to 1 (when § = 0). Our experiments,

however, show that the average bounds returned by GREEDY-DIST are quite good
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Figure 2.5: A bad case for GREEDY-DIST: two distant objects are bounded by disjoint
RSSs that are very close

and compare favorably to those computed (at a greater cost) by an approximate
distance computation algorithm.

We tested GREEDY-DIST (with 6 = 0) and three similar BVH algorithms: COLL-
CHECKER. for pure collision checking, EXACT-DIST for exact distance computation,
and APPROX-DIST for approximate distance computation with relative error v = 0.5.
APPROX-DIST uses the approach of [95], hence returns a value between 0.5d and d,
where d is the exact distance. We use RSSs in EXACT-DIST and APPROX-DIST, as in
GREEDY-DIST, but OBBs in COLL-CHECKER. Indeed, while being closely related to
RSSs, OBBs are slightly faster to test for overlap. Finally, we “tuned” EXACT-DIST
using both priority directed search and triangle caching (see Section 2.3.1). To make
the best use of triangle caching, we initialize the distance d (used for pruning the
search) with the exact distance (computed separately). This leads EXACT-DIST to
terminate a search path as soon as a BV pair is found to be further apart than the
exact distance. In practice, such perfect initialization is impossible, and could only
be approached in cases where the coherence assumption is verified extremely well.

We compared the performance of the four algorithms as follows. For each of
the seven environments shown in Figures 2.1a, 2.11a-b and 2.12a-d, we generated
1,000 random configurations of the robot(s) and, at each configuration, we tested
all robot links against all fixed obstacles. The results are summarized in Table 2.1.
Column 1 identifies the environment and column 2 indicates the total number of
object pairs examined by each of the four algorithms. Columns 3-6 give the average
numbers of pairs of BVs/triangles tested per query by each of the four algorithms.
As expected, the numbers for COLL-CHECK and GREEDY-DIST are about the same.
The small differences result from the fact that one uses OBBs and the other RSSs.
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Fig. |+# queries | COLL-CHECKER | GREEDY-DIST | EXACT-DIST | APPROX-DIST | it | i

2.1a | 40,000 | 1.7/01 | 21/0.1 | 859 /141 | 3.7/0.1 |0.99]0.53
2.11a| 54,000 A7 /0.6 54 /0.8 | 946 /78 | 105 /2.0 |0.82|0.64
2.11b| 42,000 26 / 1.0 25/0.8 | 827/67 | 58/1.9 [0.81]0.61
2.12a| 14,000 14 /0.4 14 /0.3 |1,444 /268| 70 /2.2 |0.64|0.60
2.12b| 22,000 42 /0.9 46 /1.0 | 819 /125 | 129 /5.4 [0.51]0.58
2.12¢ | 18,000 25 /1.3 26 /1.4 |1,248 /128| 111 /3.2 |0.57|0.62
2.12d| 21,000 | 26/01 | 39/02 | 703/170 | 74/16 |0.58]0.58

Table 2.1: Comparison of COLL-CHECKER, GREEDY-DIST, EXACT-DIST, and APPROX-
DIST

Since computing the distance between two RSSs is only a small factor slower than
testing two OBBs for overlap, GREEDY-DIST is almost as fast as COLL-CHECK. In
contrast, EXACT-DIST examines many more pairs of BVs and triangles, despite the
perfect initialization of triangle caching. APPROX-DIST also examines significantly
more BVs and triangles than GREEDY-DIST; its running time is greater in the same
ratio.

The last two columns of Table 2.1 measure the quality of the bounds. Column 7
gives the average ratio p of the bound returned by GREEDY-DIST by the exact dis-
tance, in each environment, computed only for the collision-free pairs of objects. The
values of p are excellent for the first three environments in which obstacles are tightly
bounded by RSSs, and they remain greater than 0.5 in the other four environments,
where objects have diverse shapes. The last column gives the average ratio y’ com-
puted for the bounds returned by APPROX-DIST. In the first three environments, /'
is smaller than p; in the last four, the two factors are similar, meaning that GREEDY-
DIST returns on average similar bounds, at smaller computational cost.

For ADAPTIVE-BISECTION, the average performance of the algorithm computing
distance bounds matters more than its worst-case performance. Indeed, if GREEDY-

DIST returns a bad lower bound, then ADAPTIVE-BISECTION may have to bisect the
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segment once more and call GREEDY-DIST again at a new configuration. The proba-
bility of encountering several bad cases in a row is small. We have tested ADAPTIVE-
BISECTION with GREEDY-DIST, EXACT-DIST, and APPROX-DIST (with different values

of 7). The best results were obtained with GREEDY-DIST.

2.4 Bounding Motions in Workspace

ADAPTIVE-BISECTION also requires computing an upper bound X;(g,,q,) on the
lengths of the curve segments traced by all points of a moving object A;, when the
system is interpolated between g, and g, along some path segment 7. Tight bounds
could be computed by numeric integration, but this may be quite slow in practice.
Moreover, the cost of the computation would increase with the distance between g,
and g,.

In this section, we derive the expression of an upper bound A;(q,, q;) that is fast
to evaluate, and is valid for kinematic chains with revolute and prismatic joints. We
first establish this expression on a simple example, then in the general case. Next,
we propose a technique to compute constant factors appearing in this expression.
Finally, we experimentally evaluate the quality of the bound.

Throughout this section, we adopt simplifying conventions that do not restrict the
generality of our results. We assume a one-to-one correspondence between the joint
parameters of the robot(s) and moving obstacles and the configuration parameters.
We define these parameters such that: (1) a rotation of any revolute joint by some
angle w (in radians) produces a variation of w of the corresponding configuration
parameter, and (2) a translation of any prismatic joint by some vector v results in a

variation of ||v|| of the corresponding parameter.

2.4.1 Example

We first establish an expression of \;(g,,q,) for the planar linkage of Figure 2.6
moving along a linear path segment (i.e., a straight line in configuration space). This

linkage has three revolute joints corresponding to joint parameters ¢, g2, and g4, and
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Figure 2.6: Planar linkage with three revolute joints and one prismatic joint

one prismatic joint corresponding to g3. Each of the links A, ..., A4 has length L
and zero width. Each revolute joint can perform a single full rotation, hence we define
q1, g2, and g3 to vary, each, between 0 and 27. When prismatic joint 3 is completely
retracted, the distance between revolute joints 2 and 4 (equivalently, between the
base of Ay and the tip of A3) is L. When joint 3 is maximally extended, this distance
is L+ D. So, we define ¢3 to vary between 0 and D.

For this linkage, we can write the bounds \; (i = 1,...,4) as follows:

Al(qaa qb) = L |Qa,1 - Qb,1|

A2(qa> @) = 2L|¢ay — qo1| + L |ga2 — gb2l
A3(da: @) = (2L + D) |gas — b1l

+ (L+D)|ga2 — ao2l + 90,3 — 03]
A(q0,9) = (BL+ D)[gan — qv1l

+ (2L + D) |ga2 — @o2| + 90,3 — b3

+ L|Gaa — Gba

The bound A (q,, g,) is established by considering the point in A; that is the furthest

away from the center of rotation of joint 1. While the second term of \y(q,, q;) is
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established in a similar way, its first term is derived by considering the maximal
distance between a point of A, and the center of rotation of joint 1. This distance
is achieved by the tip of Ay when A; and A, are aligned. Clearly, no point of Aj
can move by a larger amount than the sum of the two terms defining \»(q,, q;). The
other two bounds are generated in a similar way.

We can write each of the bounds above in the form:

qaaQb ZRIC |qbk

where i = 1,...,4. If k is a prismatic joint, then R = 1; otherwise, R}, is is an upper
bound on the distances between the points of A; and the center of rotation of joint

k. So, in the above expression, we have:

R} =

R? =2L, R} =

R}=2L+D, RS=L+D, R3i=1
Rt=3L+D, Ry=2L+D, Ri=1, Ri=1L

2.4.2 Upper bound in general case

In the following, we focus our attention on the moving object A;. Without loss of
generality, we let ¢q,...,¢; denote the configuration parameters that influence A;’s
placement. We first assume that the system configuration is linearly interpolated
between g, and ¢, (Theorem 2). Next, we show how the result extends to non-linear

path segments between ¢, and gp.

Theorem 2 When the system configuration s linearly interpolated between q, and

q,, an upper bound on the lengths of the curves traced by the points of object A; is:

(4, p) ZRk | @b, — (2.2)

where qi,...,q; are the configuration parameters that influence the placement of A;,

and Rt > 0 is a constant factor defined as follows:
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- if k is a prismatic joint, then Ri =1,
- otherwise, R is an upper bound on the distances between the points of A; and the

axis of rotation of joint k.

Proof: Let p be an arbitrary point of A;. The straight path segment in configuration
space between g, and g, can be parameterized by q(t) = (1—t)q,+tg,, with ¢t € [0, 1].
Let A;(t) and p(t) denote the placement of A; and p at configuration g(t).

The length Lp of the curve traced by p(t) when ¢ varies from 0 to 1 is:

Ip= [ I (2.3

where:

() = o)

k= 1an

We can bound the modulus of p(¢) by applying the triangle inequality:

. op
0 < [p@®)[ < Z | (8)] - (2.4)
k=1 g
Along the straight path between g, and g,, we have:
G (t) = @bk — Qo (2.5)

Moreover, by definition of the configuration parameters and the constants R, we

have:
(2.6)

H oqy,
By first plugging (2.4) into (2.3) and then using relations (2.6) and (2.5), we get:

L </
p =
Okl

SR [ it
q
k=1 o

> | H n(0) dt

IN
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= > RL |Gk — Gl - (2.7)
k=1

Since we made no assumption on the location of p in A;, this bound holds for all
points of A;. m

Note that the bound X;(q,,q;) defined by Equation (2.2) is null if and only if
g, = q;- In general, we use Equation (2.2) to compute both X;(q,, q,) and \;(q,, g;)
in (2.1). However, for two links ¢ and j (j < 7) on the same kinematic chain, we
can derive tighter bounds by considering motions in the local frame of link j. Thus,
Aj(g,,q3) = 0 and for \i(q,,q;), we simply sum over k = j + 1,...,¢ instead of
k=1,...,iin (2.2).

The result in Theorem 2 can be extended to parameters g(¢) that are non-linear
functions in the “pseudo-time” ¢, as long as |x(t)| can be bounded. An upper bound
on |Gk (t)| then replaces |gyx — ¢ax| in (2.7), hence in (2.2). This modification covers
any linkage made of revolute and/or prismatic joints, including those with closed
loops. (Note that parallelogram mechanisms, which involve only linear parametric
changes, can be handled directly without this extension.) It also makes it possible to

bound curve lengths when the path segment 7 in configuration space is not straight.

2.4.3 Computation of factors R:

We now describe a general technique to compute the constant factors R in Equa-
tion (2.2) for robot arms in three-dimensional workspace, when £ is a revolute joint.
Recall that R} must be an upper bound on the distances between the points of A;
and the axis of rotation of joint £.

Our technique computes a sphere bounding the volume swept out by each link
when the configuration parameters vary over their full ranges (which we take to be at
least 27 for revolute joints). Thus, the computed factors R: are independent of any
considered path segment in configuration space, and are computed only once during
pre-processing.

If i = k, then we compute the distances of all link vertices to the axis of rotation

of joint 4 and return R! to be the maximum of these distances.
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Algorithm COMPUTE-SPHERE((, k)
1. If i = k then S(4,k + 1) < ENCLOSING-SPHERE(A;)
2. Else S(i,k + 1) + COMPUTE-SPHERE(%, k + 1)
3. If joint k is prismatic then
Sweep S(i, k + 1) along the full translational range of joint k& and
construct the sphere S(i, k) that tightly encloses the swept volume.
4. FElse if joint k is revolute then
Sweep S(i,k + 1) around the axis of joint k by performing a full 27
rotation and construct the sphere S(i, k) that tightly encloses
the swept volume.
5. Return S(i, k)
Figure 2.7: Computation of sphere S(i, k)

SR rikel)
; L ekt
SGik+1) .
axis k
c(i.k)

Figure 2.8: Construction of S(i, k) at Step 4 of algorithm COMPUTE-SPHERE

For every k < i, we compute a sphere S(i, k) of radius R, = r(i, k) centered at a
point ¢(i, k) located in the axis of rotation of joint k&, that is guaranteed to enclose
link ¢ for any values of the configuration parameters g, ..., ¢;.

The spheres S(i, k), k < i, are computed recursively by the algorithm of Figure 2.7.
At Step 1, ENCLOSING-SPHERE(A;) computes a tight enclosing sphere of A; using a
standard algorithm [112]. At Step 3, computing the sphere that tightly encloses the
volume swept by moving S(i, k + 1) along the entire range of the prismatic joint & is
straightforward. At Step 4, we proceed as follows: we compute the center ¢(i, k) of
S(7, k) as the projection of ¢(i, k+ 1) on the axis of rotation of joint & and the radius
r(i, k) of S(i,k) as the sum of r(i,k + 1) and the distance between ¢(i, k + 1) and
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Figure 2.9: Histograms showing the distributions of the quality of the bound \;(q, ¢')
for three robots. The horizontal axis shows a upper bound on the ratio of \;(gq, q') by
the length of the curve. The closer to 1 this ratio, the better the quality. Histogram
d additionally includes slightly different ratios that account for self-collision testing
(see text)

c(i, k), as illustrated in Figure 2.8.

2.4.4 Experimental analysis

The bounds defined as above are clearly conservative, but they are also very fast to
compute. To evaluate their average quality, we made the following experiments with
the robots of Figures 2.1a, 2.11a, and 2.11b.

For each robot, we generated 10,000 segments [g, q'] by uniformly sampling two
independent endpoints g and q'. For each segment, we computed the bounds X;(q, ¢')
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for all links, as well as lower bounds ¢;(g, ¢') obtained by integrating Equation (2.3)
at a low resolution for some randomly chosen point on A;. We computed the ratio
Xi(q,4q")/ti(q, q') for each link over all 10,000 segments. Note that this ratio is not
bounded in the worst case, even if 4;(q, q') was the exact length of the longest curve
traced by a point of A;.

The histograms a, b, and ¢ in Figure 2.9 present 99% of the results in order to crop
outliers. They show that, most of the time, the bounds \;(q,, g;) are within a rather
small factor from optimal. For example, for the IRB 2400 and F 200 robots, more
than 80% of them are within factor 5 from the corresponding lower bounds /;(q, q').
Even for the hyper-redundant arm (histogram c), the ratio is smaller than 15 most
of the time.

The histogram d shows the distribution of the ratios A\;(q, q')/%(q, q') as above
plus additional, slightly different, ratios A;;(q,q’)/%;(q,q’) that account for self-
collision testing, as follows. For two links A; and A; (j < i) of the same robot,
we compute \;;(g,q’) to bound the lengths of curves traced by all points on A; in
A;’s local reference frame, as described in Section 2.4.2. Similarly, /;;(q,q’) is a
non-trivial lower bound on the length of curves traced by all points of A; in A;’s lo-
cal frame, obtained by integrating Equation (2.3), in A,’s frame, for some randomly

chosen point on A;.

2.5 Experimental Results

We have experimented with ADAPTIVE-BISECTION on numerous problems ranging
from testing randomly generated segments, to testing local paths in multi- and single-
query roadmaps, to optimizing jerky paths. In this section, we present a subset of

our results.

2.5.1 Experimental setup

All the results below were obtained on a 1GHz Pentium III PC with 1GB RAM.

Our implementation of ADAPTIVE-BISECTION computes lower bounds on distances
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IRB 2400 robot F' 200 robot
Figure 2.10: Reference links of IRB 2400 and F 200 robots
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a b c

Figure 2.11: Examples with thin obstacles. a: IRB 2400 robot (2,991 triangles), cage
(432 triangles). b: F 200 robot with arc welding gun (2,502 triangles), cage (432
triangles). ¢: 20-DOF arm (320 triangles), obstacle lattice (384 triangles)

between objects using the algorithm GREEDY-DIST of Section 2.3.2 and upper bounds
on lengths of traced curves using Equation (2.2), with the factors Rt computed as
described in Section 2.4.3. Our implementation of GREEDY-DIST uses functions from
the PQP library! to construct RSS hierarchies and compute distances between pairs
of RSSs. We tried several algorithms other than GREEDY-DIST to compute exact and
approximate distances, but GREEDY-DIST gave the best results overall.

Since ADAPTIVE-BISECTION bisects (sub-)segments in the same way for all pairs of
objects, we share results of forward kinematics computations across pairs, by caching
the rigid-body transforms defining the positions and orientations of robot links at
every configuration considered by the checker. In environments with manipulator
arms, such caching avoids many redundant computations.

Pairs of objects that cannot possibly collide (due to constraints on their motion)

are identified in a pre-processing phase by bounding the swept volumes of all objects

http://www.cs.unc.edu/~geom/SSV/
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Figure 2.12: a: F 200 robot with arc welding gun (2,502 triangles), machine tool
(34,171 triangles). b: IRB 2400 robot (5,450 triangles) in workshop (74,681 triangles).
c¢: Six IRB 2400 robots (6 x 3,594 triangles), car body (19,668 triangles). d: Six F
200 robots (6 x 2,502 triangles), car body (4,016 triangles)
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Fig. | 2.1a | 2.11a | 2.110 | 2.11c | 2.12a | 2.12b | 2.12¢ | 2.12d
Lyep| 05 | 1.77 | 1.65 | 0.5 | 1.16 | 0.64 | 1.59 | 1.32

Table 2.2: L,.s (in units) in different examples.

by spheres (as in Section 2.4.3) and then testing these spheres for intersection. If
two swept spheres are disjoint, then the underlying object pair is never inserted in
the priority queue @) processed by ADAPTIVE-BISECTION. Likewise, pairs of static
objects (e.g., robot bases or obstacles) are not tested for intersection.

We tested ADAPTIVE-BISECTION with various values of . To relate these values
to the size of the robots and obstacles in each environment, we give the lengths L.
of key robot links in Table 2.2. For the linkages in Figures 2.1a and 2.11c¢, L,y is the
length of any individual link. For the IRB 2400 and F 200 robots, it is the length of
the robot’s forearm as shown in Figure 2.10 (Different values for the same reference
link across examples are due to different robot scaling factors.)

We compared ADAPTIVE-BISECTION to a classical fixed-resolution checker, which
we call FIXED-RES-BISECTION. This checker follows exactly the bisection algorithm
given in [102]: Given a straight path segment with collision-free end-points, it bisects
this segment and its sub-segments until either the mid-point of a (sub-)segment is
found to collide, or all sub-segments are shorter than some given ¢ (in the Euclidean
metric of configuration space). Longer sub-segments are bisected before shorter ones,
hence in a breadth-first ordering, in order to find collisions quicker (as longer sub-
segments are more likely to collide). For each tested mid-point, FIXED-RES-BISECTION
checks all pairs of objects for collision, except those identified as never colliding in
the pre-processing phase. Like ADAPTIVE-BISECTION, FIXED-RES-BISECTION can be
used to test individual segments or multi-segment paths.

FIXED-RES-BISECTION uses hierarchies of OBBs to test configurations. The con-
struction of the OBB hierarchies and the collision test of two OBB hierarchies are

carried out by functions of the PQP library.
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FIXED-RES-BISECTION ADAPTIVE-BISECTION
e=0 0=0 0 = 0.005

Fig. ||t (ms)| BV Tri || ¢t (ms) | BV | Tri || ¢t (ms) | BV | Tri
211a || 0.44 | 375 3.1 0.33 |197| 3.0 | 0.29 | 169 | 2.6
2116 | 0.46 | 380 3.5 043 |324| 3.9 | 038 [255]| 3.2
2.12a || 0.67 | 522 18.7 0.40 |501|18.0] 0.37 |420]|21.8
2126 || 1.21 |1,035] 10.1 0.57 |571]10.8| 0.40 |440 134
212c | 3.11 |2,866| 13.1 244 |686|12.1| 2.23 |610|12.7
2.12d || 1.14 | 999 16.3 1.93 | 609 |19.5] 1.71 |528|21.6

Table 2.3: Comparison of FIXED-RES-BISECTION with ¢ = 0 and ADAPTIVE-
BISECTION with § = 0 and § = 0.005

2.5.2 Random colliding segments

In this series of experiments, we compared the performance of the adaptive and
fixed-resolution checkers on colliding path segments. In each of the six environments
of Figures 2.11a-b and 2.12a-d, we generated 1,000 colliding segments by sampling
pairs of collision-free endpoints uniformly at random, and retaining those segments
which ADAPTIVE-BISECTION (with = 0) found to be colliding. We then tested each
segment using: (1) FIXED-RES-BISECTION with € = 0, (2) ADAPTIVE-BISECTION with
d = 0, and (3) ADAPTIVE-BISECTION with § = 0.005. When a segment is known to
be colliding, FIXED-RES-BISECTION with € = 0 is guaranteed to detect a collision in
finite time.

Table 2.3 shows data gathered during these tests. For each checker, we indicate
the average running time and the average number of BV and triangle pairs tested per
segment. ADAPTIVE-BISECTION (with § = 0 and 0.005) tests significantly fewer pairs
of BVs than FIXED-RES-BISECTION. This gain derives from both the use of Inequal-
ity (2.1), which results in bisecting path segments at a coarser average resolution, and
the better ordering of the priority queue.

The most significant savings were achieved in the environment of Figure 2.12¢
where collisions between thin end-effectors are quite difficult to detect. The environ-
ment of Figure 2.12d is similar, but collisions between a robot and the car body are

easier to detect in this case, which results in smaller differences between the checkers.
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FIXED-RES-BISECTION || ADAPTIVE-BISECTION
Fig. ||t (ms)| BV Tri || ¢ (ms)| BV Tri
2.11b || 14.6 | 15,060 | 19.8 11.3 19,239 | 200.8
212a | 5.1 4,032 | 17.9 3.9 |3,834| 158.6

Table 2.4: Comparison of FIXED-RES-BISECTION with ¢ = 0.006 and ADAPTIVE-
BISECTION with 6 = 0.005

The times shown in the table indicate that, except for the environment of Fig-
ure 2.12d, ADAPTIVE-BISECTION with § = 0 is faster on average than FIXED-RES-
BISECTION, despite the fact that computing distances between RSSs is not as fast as
testing OBBs for overlap.

The results with § = 0.005 show a small speed-up over those obtained with § = 0
because with 6 > 0, some segments are rejected as soon as a pair of objects is found

to come closer than 4.

2.5.3 Random collision-free segments

The above experiment favors the fixed-resolution checker, since we could set € = 0.
When segments may not be colliding, this is not possible. To illustrate the respective
effects of € and 9, we used FIXED-RES-BISECTION and ADAPTIVE-BISECTION to test
collision-free path segments. For the results presented below, we set ¢ = 0.006 and
0 = 0.005.

Like in the previous experiment, in each considered environment we generated
1,000 random collision-free segments, by picking end-points at random and using the
adaptive checker (with § = 0.005) to test them. Table 2.4 shows the same quantities
as Table 2.3 measured in the environments of Figures 2.11b and 2.12a. The value of
e was chosen so that the fixed-resolution checker took only slightly longer than the
adaptive checker.

Figure 2.13 shows, as a thin line, the curve traced by the tip of the end-effector
when the robot of Figure 2.116 moves along a typical straight path segment in con-
figuration space. The dots along this curve correspond to the configurations tested

by FIXED-RES-BISECTION with ¢ = 0.006. In reality, each dot is a cube whose side
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Figure 2.13: Curve traced by the tip of the end-effector of the robot in Figure 2.11b
for a typical path segment. The black dots along the curve correspond to the config-
urations tested by FIXED-RES-BISECTION, with € = 0.006. Each dot is a cube whose
side length is equal to 0.01 unit

length is 0.01 units (in the workspace metric), hence twice the value selected for 6.
To make FIXED-RES-BISECTION sample the curve at resolution §, we would have to
set € so small that the running time of FIXED-RES-BISECTION would be considerably

longer.

2.5.4 PRM planning

In this section we compare the dynamic and fixed-resolution checkers when they are
integrated in the PRM planner described in [102], called SBL. We briefly recall how
this planner works.

SBL constructs a roadmap made of two trees of milestones (collision-free configu-
rations sampled at random) rooted at the two query configurations input by the user.
At each iteration, the planner performs the following operations:

(1) It picks a new milestone m’ at random in a neighborhood of an existing milestone
m and installs m' as a child of m without testing the straight path segment between
them for collision.

(2) It selects two milestones, one from each tree, and connects them by a candidate
straight path segment. This connection creates a multi-segment path between the

two query configurations, but only the vertices of this path (milestones) have so far
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been tested for collision.

(3) It checks this entire path for collision. If no collision is detected, it returns the

path. Otherwise it removes the segment found to be colliding from the roadmap,
caches the collision-checking work done along other segments (to avoid repeating it if
any of these segments is part of a candidate path at a later iteration), and proceeds
to the next iteration.

Hence, SBL tests segments between milestones only when this is absolutely needed.
This so-called “lazy collision checking” strategy has been shown to significantly reduce
the amount of work spent on collision-free segments that are not on the final solution
path.

The implementation of SBL described in [102] uses FIXED-RES-BISECTION to test
multi-segment paths. Hence, it requires setting the value of ¢ for each new envi-
ronment, and is never guaranteed to return a collision-free path. We have created
a new version of SBL, called A-SBL, by replacing the fixed-resolution checker by
ADAPTIVE-BISECTION. Like SBL, A-SBL also records the collision-checking work
done along path segments that have not been fully tested (by maintaining a distinct
priority queue for each segment, as described in Section 2.2.4).

We ran SBL and A-SBL on several path-planning problems, each defined by a
pair of query configurations in a given environment. For each problem, we performed
several series of runs of SBL with decreasing values of . During each series, ¢ kept
the same value, but a different seed of the random number generator was used at each
run to construct a different roadmap, hence a different path. We tested each path
returned by SBL using ADAPTIVE-BISECTION with 6 = 0. Whenever a collision was
detected in a path, we terminated the series, cut the value of ¢ by 1.2, and started
another series. Starting with a rather large value of ¢, we retained the first series of
50 (respectively 100) consecutive runs of SBL that did not return a single colliding
path.

Tables 2.5 and 2.6 list results obtained for six planning problems in the environ-
ments of Figures 2.11a-b and 2.12a-d. For each problem, Table 2.5 gives the first value
of € that produced N consecutive correct runs, for N = 50 and 100, and the average

running time of SBL over these N runs. Note that ¢ is much smaller for N = 100
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Fig.

N =50

€

t (s) £

N =100

t(s)

2.11a
2.11b
2.12a
2.12b
2.12¢
2.12d

0.00402
0.00078
0.00833
0.00162
0.00694
0.01200

4.13 | 0.00232
12.26 | 0.00078
0.17 | 0.00833
7.52 | 0.00038
2.72 1 0.00279
0.67 | 0.00833

5.15
13.87
0.17
16.45
3.82
0.92

45

Table 2.5: Average running times of SBL on five distinct path-planning problems for

N =50 and N = 100 consecutive correct runs (see main text in Section 2.5.4).

o .006 .001 .0005 .0001 .00005 .00001 .0
2.11a 5.04 560 795 11.17 13.38 17.07 24.85
2.116 | 11.78 1237 11.47 13.17 16.03 16.99 20.59 27.54
2.12a 022 042 049 132 1.87 3.48 2148
2.12b 733 9.55 12.63 27.53 3191 67.52 251.56
2.12¢ 1.59 180 1.76 295 2.89 3.83 5.54
2.12d 0.65 0.71 086 2.05 2.42 3.23  10.90

Table 2.6: Average running times of A-SBL for successive values of § (see main text

in Section 2.5.4).
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in all cases, except two (2.11b and 2.12a), meaning that the values of ¢ obtained for
N = 50 are usually not sufficient to guarantee the reliability of SBL.

Table 2.6 lists the average running times (over 100 independent runs) of A-SBL
for decreasing values of §. As expected, the average running time of A-SBL increases
when ¢ goes to 0. However, the increase is moderate until d reaches very small values,
and even then remains relatively small for most problems. Note that in two examples
(2.11a and 2.12¢), for relatively large §, the running time even decreases slightly when
the value of § goes down. In these cases, planning may be slightly harder for larger
values of § as more collision-free paths are rejected by ADAPTIVE-BISECTION.

A-SBL has the considerable advantage over SBL that it is guaranteed to never
return a colliding path. This is not the case of SBL, even for the values of ¢ allowing
100 consecutive correct runs. In most examples, selecting a value of N greater than

100 would have led to smaller values of €.

2.5.5 Path Smoothing

We conducted the following experiment in the environment of Figure 2.1a. First,
starting at a configuration where both linkages stand straight up through the three
rings, we performed a random walk of collision-free steps until both linkages lie entirely
below the rings, hence were retracted from the rings. ADAPTIVE-BISECTION was
used to test each attempted step (straight segment) of the random walk. Next, we
smoothed the obtained path by performing K times the following operations: Pick a
point g at random in the path; let q,, (g,;) be the midpoint along the path between
the first (last) configuration of the path and q. If the straight line segment between gq,,
and g,; tests collision-free, shortcut the path section between them by this segment,
otherwise reset g, (g,;) to the midpoint along the path between itself and g, and
recurse. Again, ADAPTIVE-BISECTION was used to test each attempted shortcut. We
did the same experiment in the environment of Figure 2.11¢, first with a single linkage,
then with 9 identical linkages, each threaded through a different set of grid holes in
their initial configuration.

The goal of these experiments was to demonstrate that ADAPTIVE-BISECTION
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Random walk Smoothing
Fig. #segments t(s)| K t(s) o
2.1a 40,439 82 | 1,000 152 0.06
2.11c [1 linkage] 4,208 59 | 500 16 0.11
9.11¢ [0 linkages| | 47,744 823 | 6,000 5,952 0.25

Table 2.7: Results for random walks and path smoothing

la\ /Fu!\\

b c
Figure 2.14: Three bad-case examples for ADAPTIVE-BISECTION

enables the implementation of a brute-force planning scheme requiring many collision
tests between very thin objects. These experiments would be quasi-impossible using
FIXED-RES-BISECTION, as we would then have to chose € extremely small.

Table 2.7 shows data obtained for a typical run of each experiment. For the
random walk, it gives the number of segments tested and the computation time of
the walk. For path smoothing, it lists the value of K, the running time, and the
ratio o of the final length of the path by its initial length. Note that each of the
K iterations usually results in many segment tests, due to the recursive attempts to

shortcut path sections.

2.5.6 Bad-case scenarios

A very unfavorable case for ADAPTIVE-BISECTION is when, along a path segment
in configuration space, two or more objects in relative motion stay at very close
distance from each other, without coming closer than the threshold §. To study

the behavior of ADAPTIVE-BISECTION in such cases, we constructed three examples
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All links Only end-effector
checked checked
¢ 1) BV Tri BV Tri
0.1 0.1 11,232 0 8,789 0
0.01 0.01 62,866 0 62,727 0
0.001 | 0.001 | 990,766 | 0 | 990,595 0
0.0001 | 0.0001 | 7.91e+06 | O | 7.91e+06 0
0.1 | 0.0001 258 0 127 0
0.01 |0.0001 | 753,939 | 0 | 753,800 0
0.001 | 0.0001 | 1.12e4+06 | 0 | 1.12e+06 0
0.0001 | 0.0001 | 7.91e+06 | O | 7.91e+06 0

Table 2.8: Number of BV /triangle pairs tested in Figure 2.14a

All links Only end-effector
checked checked
¢ 1) BV Tri BV Tri
0.1 0.1 1,421 105 1,397 105
0.01 0.01 5,664 101 5,646 101
0.001 | 0.001 | 73,018 | 122 | 72,998 122
0.0001 | 0.0001 | 578,220 | 3,358 | 578,200 3,358
0.1 | 0.0001 33 0 17 0
0.01 | 0.0001 | 23,801 0 23,783 0
0.001 | 0.0001 | 67,165 0 67,145 0
0.0001 | 0.0001 | 578,220 | 3,358 | 578,200 3,358

Table 2.9: Number of BV /triangle pairs tested in Figure 2.14b
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All links Only end-effector
checked checked
¢ 1) BV Tri BV Tri
0.1 0.1 653 5 634 5
0.01 0.01 3,059 51 3,045 51
0.001 | 0.001 | 27,685 87 | 27,671 87
0.0001 | 0.0001 | 202,870 | 2,153 | 202,856 2,153
0.1 | 0.0001 27 0 15 0
0.01 | 0.0001 315 0 301 0
0.001 | 0.0001 | 15,426 0 15,412 0
0.0001 | 0.0001 | 202,870 | 2,153 | 202,856 2,153

Table 2.10: Number of BV /triangle pairs tested in Figure 2.14¢

shown in Figure 2.14. In all three examples, the robot (2,502 triangles) moves a full
27 rotation around its first joint, with all other joints remaining fixed. This motion
defines a long straight segment in configuration space. In Figure 2.14a, the robot
is placed directly on the floor, a flat surface tessellated by 8,000 triangles. During
the motion, the tip of the end-effector (1,080 triangles) traces a circle at a constant
clearance above the floor that is slightly bigger than a given ¢ > 0. The example in
Figure 2.14b is similar, but the robot is now placed on top of a box, and during the
rotation the end-effector grazes the top face of another box, again with a constant
clearance slightly bigger than ¢ > 0. Hence, the end-effector now comes close to an
obstacle only during a fraction of the rotation. Each face of the box is modeled with
8,000 triangles. The example in Figure 2.14c is almost identical: the box is narrower,
but its faces still contain 8,000 triangles, each.

Tables 2.8-2.10 show the numbers of pairs of BVs and triangles tested in each of
the above three examples, for different combinations of values of § and (. In each
table the numbers are reported for all robot links and for the end-effector only.

The numbers of BV /triangle pairs tested by the checker depend on both ¢ and
0. However, in each example, the tables show that links other than the end-effector
barely influence these numbers. This is due to the fact that the checker tests each

pair of objects independently of the others, starting with the object pairs that are the



CHAPTER 2. ADAPTIVE DYNAMIC COLLISION CHECKING 50

most likely to collide. Links other than the end-effector, which are rather far away
from any obstacle, are quickly eliminated (as not colliding), if ever tested.

Another observation is that the checker focuses on the critical portion of the path
segment. Indeed, the numbers of BV /triangle tests decrease significantly from the
first example to the third, although the three path segments have equal length and
the obstacle’s top surface has the same number of triangles in each case. This comes
from the fact that the use of Inequality (2.1) allows the checker to sample the path
segment more coarsely when obstacles are further away from the end-effector.

As we expected, this experiment shows that the performance of ADAPTIVE-
BISECTION degrades when two objects in relative motion remain very close and both §
and ( approach zero. Nevertheless, even for very small values of § and (, the checker
remains reasonably efficient as long as the small clearance occurs over short path
sections. In PRM path planning, where segment endpoints are selected at random,
this condition is likely to be verified. But in some applications, such as machining
and assembly, small clearances over long segments may occur more frequently. Then,
methods based on swept-volume computation or trajectory parameterization might

be more appropriate, possibly in combination with adaptive bisection.

2.6 Refined Checker

In the above checker, the priority queue @ is filled with elements [g,, g;];; indicating
that a pair of objects — A; and A; — must be tested for collision along a given
path segment connecting configurations g, and gq,. However, whenever the same
two objects are tested, the traversal of their BVHs starts at their respective roots.
Instead, Inequality (1) could be used during a test to detect that pairs of BVs need
not be tested again later. This yields a refined version of the checker in which the
priority queue is filled with elements [q,, g indicating that a pair of BVs — B
and B' — from two different hierarchies must be tested for collision along the path
segment connecting q, and g,.

Figure 2.15 describes the refined checker, REFINED-ADAPTIVE-BISECTION. At

Step 2.2, the new checker calls a function, COLLISION-TEST, to determine the elements
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Algorithm REFINED-ADAPTIVE-BISECTION(g, ¢')

1. For every pair of objects (A;, A;) that needs to be tested, insert [q, q']s;5;
into (), where B; and B; denote the roots of the BVHs of A; and A,
respectively

2. While @ is not empty, do
2.1 [q,,q,|sp <+ remove-first(Q)

2.2 COLLISION-TEST(B, B', q,, q;)

Figure 2.15: Refined adaptive bisection algorithm

Algorithm coLLISON-TEST(B, B',q,,q,))
1. T < intersection of the two trees of BV pairs computed by
GREEDY-DIST2(B, B', q,) and GREEDY-DIST2(B, B', q,)
2. Perform a depth-first traversal of T. For every node (b,b') of T, if
Ao (Gar G5) + Ap(das Gb) < 7w (o) + i (@), then backtrack.
Else if (b, ') is a leaf of T then
2.1 gq,,;q «— mid-configuration along path segment between g, and g,

2.2 If now (g,59) = O then return collision

2.3 Else insert [q,, @niglor and (@4 @pJer into @

Figure 2.16: Finding elements to insert into the priority queue )

that must be inserted into (). This function, shown in Figure 2.16, identifies the pairs
of BVs compared by the greedy distance algorithm at both g, and g,. We describe
how this is done below.

For any node B of a BVH, we let |B| denote the set of triangles associated with
the leaves of the sub-hierarchy rooted at B. Let the function GREEDY-DIST2(B, B/, q)
compute a lower-bound 7gp/(q) on the distance between |B| and |B'| at q. It is the
same algorithm as GREEDY-DIST (described in Section 2.3.2), with one difference: it
either returns 0 (meaning that a collision occurs at g between the triangles in |B|
and those in |B'|), or it provides the tree of BV pairs (b,b’) that were compared by

the recursive calls. Each node (b,b) of this tree contains the lower bound 7 (q)
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ADAPTIVE-BISECTION REFINED-
ADAPTIVE-BISECTION
Fig. |t (ms)| BV Tri | ¢t (ms)| BV Tri
2.11a || 0.066 | 17491 | 45 0.037 | 1510 10
2.11b | 0.060 | 13182 | 201 0.040 | 1342 14
2.12a | 0.020 | 5038 | 222 0.010 | 546 15
2.12b || 0.032 | 7299 66 0.023 | 1144 14
2.12¢ || 0.155 | 15978 | 367 | 0.142 | 2914 30
2.12d || 0.507 | 73579 | 4623 | 0.373 | 8523 | 169

Table 2.11: Comparison of ADAPTIVE-BISECTION and REFINED-ADAPTIVE-
BISECTION

computed for this pair. In addition, we let Ap(g,, g,) stand for an upper bound on
the lengths of the curves traced out by the vertices of the triangles in |B| when the
configuration varies from g, to g, along the considered path segment. The function
Ap is computed using the same techniques as presented in Section 2.4.

COLLISION-TEST(B, B, q,,q,) first computes the intersection of the two trees
computed by GREEDY-DIST2(B, B, q,) and GREEDY-DIST2(B, B', q;). It then per-
forms a depth-first traversal of the tree formed by this interesection. At each traversed
node it perfoms a test similar to that of Inequality (1). If the node passes this test,
then the triangles in B and B’ cannot collide between g, and g,. Otherwise, it yields
Steps 2.1 through 2.3, which are the same as Steps 2.2.1 through 2.2.3 in the original
checker of Figure 2.

Table 2.11 compares REFINED-ADAPTIVE-BISECTION with ADAPTIVE-BISECTION.
The results are averages over 1,000 randomly generated segments in the same envi-
ronments used in Section 2.5 and under the same conditions. The running times of
the refined checker range between 0.5 and 0.9 times those of the original checker. The

gains are modest, but still significant.
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2.7 Conclusion

This chapter describes a new dynamic collision checker to test path segments in con-
figuration space or collections of such segments, including continuous multi-segment
paths. This checker is general, but particularly suited for PRM planners applied to
manipulator arms and/or multi-robot systems. Its main advantage over the com-
monly used fixed-resolution approach is to never miss a collision. In addition, it
eliminates the need for experimentally determining a suitable value of the configura-
tion space resolution parameter ¢ and its running time compares favorably to that of
a fixed-resolution checker.

Reliability and efficiency are obtained by dynamically adjusting the local resolu-
tion at which configurations along a path are tested by relating the distances between
objects in the workspace to the maximum lengths of the paths traced out by points

on these objects. This idea is combined with other techniques, including:

e a greedy distance computation algorithm that is nearly as efficient as a pure

collision checker,
e a fast technique for bounding lengths of paths traced out in workspace,

e 3 heuristics for ordering collision tests to reveal collisions as quickly as possible.

Relatively simple extensions are possible. For example, one could guarantee that
no two objects come closer than some minimal distance ¢ > 0 along a tested path

segment, by using the following variant of Inequality (2.1):

Ag(Qaa Qb) + )‘g(qaa Qb) < T]ij(qa,) + UZJ(qb) - 29

where )\[(q,,q;) (similarly \}(q,, g;)) bounds the motions of A} which is defined as
the Minkowski sum of A; and a sphere of radius r = p/2.

We believe that our checker could still gain in efficiency by computing tighter
bounds on lengths of curves traced out by points of moving objects. For example,
instead of computing factors R that are valid across the entire configuration space,
we could partition the configuration space of each linkage into a coarse grid of cells,

and compute smaller factors over each cell.



CHAPTER 2. ADAPTIVE DYNAMIC COLLISION CHECKING 04

The new checker has certain limitations, however. In some applications, one may
want to determine the first collision configuration when moving from one end of a path
segment to the other. Then, our bisection algorithm, which is tuned to determine
as quickly as possible whether a path segment is colliding, or not, is not the best
approach. However, even in this case, a variant of Inequality (2.1) could be used to
decompose the segment into a series of safe segments. Another limitation is that the
checker loses efficiency when two moving objects come arbitrarily close and/or stay
very close along a long section of a path segment. To bound the running time we have
introduced a clearance parameter 6 > 0. Though ¢ can be set quite small in practice, it
may be undesirable for some applications (e.g., mechanical assembly). An alternative
discussed in Section 2.2.6 is to locally switch to another dynamic collision-checking
method, for instance, a swept-volume or a trajectory parameterization method. Such
a method is then made practical by the fact that the potential collision can only occur
on restricted sections of the segment and between restricted portions of the objects.
Finally, the new checker leads PRM planners to consume more memory. Unlike a
fixed-resolution checker, it requires maintaining a priority queue of pairs of objects

to be tested for collision.



Chapter 3

Dealing with Narrow Passages®

3.1 Introduction

The efficiency of PRM planners often decreases dramatically when the free space
contains narrow passages. Design of effective sampling strategies that enable PRM
planners to deal with narrow passages has been a “grand challenge” ever since PRMs
were introduced. The most notable strategies proposed so far are the filtering and
the retraction strategies. Filtering strategies include Gaussian sampling [16] and the
bridge test [50]. They over-sample configuration space, but then use heuristics to
retain relatively few promising milestones. Retraction strategies [5, 51, 79, 114] use
configurations sampled in collision space as helpers to generate promising milestones.
Although these strategies have led to significant improvements, they often remain too
slow. They also waste time in spaces with no or simple narrow passages.

In this chapter we present a new retraction-like sampling strategy that enable
PRMs to efficiently deal with narrow passages and, unlike previous methods, is effi-
cient even when there are no narrow passages in free space. We call our new strategy
small-step retraction because it only tries to retract barely colliding configurations

into free space. It consists of pre-computing “thinned” geometric models of the robot

*This chapter is based on the journal article: “Finding Narrow Passages with Probabilistic
Roadmaps: The Small-Step Retraction Method”, Autonomous Robots, 19(3):301-319, December
2005. Yu-Chi Chang, Jean-Claude Latombe, and Fritz B. Prinz are the co-authors of the article.
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and/or the obstacles, constructing a roadmap using the thinned models, and finally
repairing portions of this roadmap that are not in free space by resampling more mile-
stones around them. Thinning an object is done by reducing the volume it occupies
around its medial axis, as described in Section 3.4. This operation guarantees that
the free space associated with the thinned models — we call it fattened free space F*
— is a superset of actual free space F. Narrow passages in F' become wider in F™,
making it easier to connect a roadmap through them (Section 3.3). But there is also
a risk that some passages, called “false” passages, exist in F'* that were not present
in F'. Paths through such passages cannot be repaired. For this reason, we propose
two repair strategies: OPTIMIST and PESSIMIST(Section 3.5). OPTIMIST assumes that
false passages are not an issue and that, consequently, repairs will always be possible.
So, it postpones repairs until a complete path has been found in F'*; then, it repairs
only the portions of this path that are not in F. It is often very fast, but returns
failure in cases (rare in practice) where the generated path traverses a false passage.
Instead, PESSIMIST immediately repairs all parts of the roadmap that are not in F.
It is slower, but more reliable. A simple combination of the two strategies yields an
integrated planner that is both fast and reliable.

This small-step retraction method has several advantages over previous retraction

methods:

e Most previous methods try to repair all colliding configurations, most of which
are deeply buried into obstacle regions. This is computationally expensive.
Only repairing those configurations where thinned objects do not overlap is

much faster.

e The method in [51] also performs a form of small-step retraction. To test
whether a colliding configuration should be repaired, it computes the penetra-
tion depth of the robot in obstacles. Such computation is notoriously expensive

for non-convex objects [80].

e Our method works well even when there are no narrow passages in free space. In
contrast, previous filtering and retraction methods incur a significant overhead

in running time.
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e While most previous narrow-passage methods were designed for multi-query
roadmaps, ours works with single-query planners. In practice, such planners

are often much faster per query than multi-query ones, hence more useful.

We have implemented the small-step retraction method as a new planner — called
SSRP — which is an extension of the single-query PRM planner SBL. We tested
SSRP on many examples, some presented in Section 3.6. On problems with narrow
passages, it is consistently faster than SBL, usually by orders of magnitude. On

problems without narrow passages, it is as fast as SBL.

3.2 Related Work

In the following subsections we review previous work studying the impact of narrow

passages on PRM planning and describing methods created to deal with them.

3.2.1 Narrow passages

Although the narrow-passage issue was recognized when PRM planning was first
introduced, neither the notion of a narrow passage, nor its impact on PRM planning
is straightforward.

In [64], the clearance of a path is defined as the minimum distance between a
configuration on this path and free space boundary. It is used to establish an upper
bound on planning time. However, path clearance incompletely characterizes narrow
passages. Indeed, it is independent of the length of a passage and the number of
dimensions along which it is narrow. It does not capture either the fact that the
passage might be jaggy, which may greatly affect the difficulty of finding a path
through it. Furthermore, while finding a path through a single isolated passage may
be difficult, many parallel narrower passages may turn out easier to deal with.

A more careful analysis of narrow pasages yields the notion of the expansiveness
of free space F [56]. Given any S C F, the lookout of S is the set of all configurations
in S that can be connected by a local path to a configuration in F\S. F is expansive

is all its subsets have a relatively large lookout. Expansiveness was used to relate the
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number of milestones needed to connect two configurations, separated by a narrow

passage, with a given probability.

3.2.2 Sampling and connection strategies

A sampling strategy selects the probabilistic distribution measure used to sample
milestones. The simplest measure is the uniform distribution. More complex strate-
gies vary the probabilistic distribution during roadmap construction. A connection
strategy chooses which pairs of milestones to connect.

Many strategies have been proposed for PRM planners. A survey can be found
in [104]. Their goal is to process path-planning queries at minimal computational cost.

For multi-query planners, this means building a roadmap with two properties [51]:

1. Coverage: the roadmap must be distributed over free space, so that it is easy

to later connect any query configuration to it.

2. Connectedness: there must be a one-to-one correspondence between the path-

connected components of the free space and those of the roadmap.

In single-query planners, strategies aim at constructing the smallest possible roadmap
connecting a given pair of query configurations.

All successful strategies alleviate the narrow passage problem to some extent. For
instance, the sampling strategy described in [66] pre-computes a roadmap in two
stages: first a roadmap is computed by sampling configurations at random, with
a uniform distribution over configuration space; next, additional configurations are
sampled uniformly in neighborhoods of milestones that have no or few connections to
other milestones. The rationale is that poorly connected milestones lie in “difficult”
regions of free space, such as narrow passages. Another general sampling strategy
that has given good results on problems with narrow passages is PRT (Probabilistic
Roadmap of Trees), which constructs a roadmap as collections of trees [3]. Connection
strategies are also relevant to finding paths through narrow passages. For instance,
in [60] the use of search techniques to generate local paths yields multi-query roadmaps

with fewer connected components.
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However, the above strategies do not attack the narrow-passage issue by specifi-
cally trying to sample milestones within narrow passages. It is usually considered that
a strategy dedicated to finding narrow passages should exploit configurations sampled
in collision space to increase the planner’s chances of eventually placing milestones
in these passages. Two such families of sampling strategies are the filtering and the

retraction strategies.

3.2.3 Filtering strategies

Filtering strategies consist of over-sampling configuration space and retaining each
sampled collision-free configuration as a milestone with a probability estimating its
likelihood of being in a narrow passage. As many configurations sampled in free
space do not end up being retained as milestones, more time is spent on average
per milestone. But the resulting set of milestones is better distributed and smaller,
so that fewer connections are eventually attempted between them. Testing that a
connection is collision-free (dynamic checking) takes much more time than testing
a single configuration (in practice, 10 to 100 more time). Hence, one may save a
significant amount of time in total. Gaussian sampling [16] and the bridge test [50]
are two particular filtering strategies.

Gaussian sampling generates each milestone as follows. It samples a configuration
q uniformly at random from the configuration space and then a second configuration
¢’ using a Gaussian distribution centered at q. If only one of the two configurations is
collision-free, it retains it as a milestone with probability 1. Instead, if both g and ¢’
are collision-free, it retains either one as a milestone, but with low probability. The
resulting distribution of milestones is sparse in wide-open region of free space and
denser near free space boundary. Since configurations in narrow passages are neces-
sarily near this boundary, Gaussian sampling increases the likelihood of milestones
in narrow passages. However, especially in high-dimensional spaces, most milestones
are still “wasted” in regions close to free space boundary, but not in narrow passages.

For this reason, the bridge test extends the idea underlying Gaussian sampling.

It samples two configurations ¢ and q' in the same way as Gaussian sampling. If
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both are in collision and the mid-configuration (¢ + ¢’)/2 is collision-free, then it
retains the mid-configuration as a milestone with probability 1, since it very likely
lies in a narrow passage. Otherwise, if only one of the two configurations q and ¢’ is
collision-free, it retains it as a milestone with lower probability. If both q and ¢ are
collision-free, it retains either one as a milestone with very low probability. At first
glance, the bridge test looks like an expensive method, but results show that it is a

very promising approach when there exist narrow passages.

3.2.4 Retraction strategies

Retraction strategies exploit configurations sampled in collision space to guide the
search for promising milestones. They consist of moving colliding configurations out
of collision.

One technique casts rays along directions selected at random from a colliding
configuration g and performs discrete walks along these rays until a configuration
tests collision-free [5]. Fixed-step and bisection (binary search) walks have been used.
But in high-dimensional spaces, rays may easily miss narrow passages, especially if g
is deeply buried in collision space.

Other techniques use the medial axis (MA) of the workspace [44, 59, 48], which is
defined as the subset of points for which at least two points in the obstacle boundary
are equally close. In [48] each configuration g sampled by the planner is adjusted by
minimizing distances between points (called “handles”) pre-selected by the user on
the robot and the MA.

A different type of MA technique is introduced in [114] for a rigid free-flying robot.
Here, the PRM planner retracts each configuration it samples at random onto the
free space’s MA. To avoid the prohibitive cost of pre-computing this MA, an iterative
technique translates the robot until its configuration lies in the MA. However, sections
of narrow passages cannot be sampled this way because they would require rotating
the robot as well. An extension of this technique to arbitrary robots is discussed
in [79].

In general, the above retraction techniques are expensive because they retract all
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configurations sampled by the planner, including those which lie deep in collision
space. Observation #1 reported in Section 3.3.1 suggests that it is sufficient to
retract configurations near the boundary of free space, which is what our small-step
retraction approach does. This same idea has been previously exploited in [51], but
using the penetration depth of the robot into workspace obstacles to decide whether
a configuration is worth retracting. The high cost of computing penetration depth
of non-convex objects was a serious limitation of this technique, which has never
been tested in geometrically complex environments. Instead, in our approach, we
pre-compute a thinned version of the robot and obstacle geometry. We retract a
configuration g only if the thinned robot placed at g does not collide with thinned
obstacles.

The idea of shrinking robot geometry was introduced in [9], where a colliding
straight path in configuration space is progressively transformed into a collision-free
path by growing back the robot links to their original geometry. However, this itera-
tive transform may get stuck into a dead-end and the planner has no systematic way
of dealing with such failures. In addition, the shrinking technique in [9] only applies

to simple robot links modeled as rectangular boxes.

3.3 Motivation from Experimental Observations

Several components of our small-step retraction method were suggested by observa-
tions made during simple preliminary experiments in two-dimensional configuration
spaces. We report on two key observations below. These observations have been later

confirmed by our experiments with the SSRP planner (Section 3.6).

3.3.1 Observation #1

Consider the example in Figure 3.1(a). The robot R is a small disc of radius r.
Its configuration is defined by the coordinates of its center. The start and goal
configurations are s and g, respectively. The two obstacles create a long and narrow

jaggy passage of width w, which the robot must traverse to reach g from s. Although
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Figure 3.1: Planning a path through a narrow passage of varying width (Observation

#1)

the figure shows the robot’s workspace, the configuration space is also two-dimensional
with similar geometry. However, the passage’s width in configuration space is w — 27,
since the obstacles must be grown by the robot’s radius 7.

We used the PRM planner SBL [104] on this example, with decreasing values of
r. Smaller values of r yield wider passages in configuration space. For each value of
r, SBL was run 100 times with different seeds of the random number generator, each
time until a path was found. We measured the average planning time over the 100
runs. For all values of r, in all runs, s and g were fixed as shown in Figure 3.1(a).

The table in Figure 3.1(b) lists the average planning times, for decreasing values
of the ratio & = 2r/((1 —€)w), where € was set to 0.005. The value & = 1 corresponds

to the largest radius (1 — €)w/2, hence the narrowest passage in configuration space
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(with a width of 0.005 x w). The value oo = 0.3 corresponds to the widest passage
with a width of roughly 0.7 x w. The plot of these times in Figure 3.1(c) clearly shows
that planning time decreases dramatically when a gets only slightly smaller than 1.
The curve flattens out quickly (around o = 0.95), but planning time is already a
small fraction of what it was for @« = 1. Planning time for o = 0.987 is almost 38
times smaller than for a = 1.

These results are easy to explain: widening the narrow passage yields a large
relative increase of its volume, so that the probability that each configuration sampled
at random falls into the widened passages also increases. This simple observation is
at the core of the small-step retraction strategy. Fattening free space by only a small
amount - which is achieved by thinning the robot and/or the obstacles - greatly
simplifies the task of a PRM planner. Of course, a path in fattened free space may
not fully lie in actual free space. The purpose of small-step retraction is to “repair”

the portions that are not in free space.

3.3.2 Observation #2

Consider now the environment of Figure 2(a) in which there are two narrow passages:
one at the top of the workspace has width w; and one at the bottom has width ws.
The robot R is a disc of radius r.

In this example, we ran two series of tests. In the first, we set w; = ws and we
considered three pairs (s;,g;), i = 1 to 3, of query configurations, as shown in the
figure. For each pair, the configurations lie on both sides of the passages, with (s1, g;)
closest to the top passage and (s3,g;) at mid distance between the two passages.
For each pair (s;,g;), we ran SBL 100 times and we counted the numbers of paths
through each passage. The results in Figure 3.2(b) indicate that with high frequency
SBL generates paths through the closest narrow passage. For instance, for (s1,g,),
88% of the paths traverse the top passage. As one would expect, for (s3,g;), the
paths are equally divided between the two passages.

In the second series of tests, we used only the pair (s3,g5) and we set wy = X wy,

with 8 > 1. We ran SBL for increasing values of 5 (100 times for each value) and
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we counted the number of paths through each passage. The results are given in
Figure 3.2(c). With high frequency SBL generates paths through the wider passage.
The fraction of paths through this passage increases quickly when £ increases slightly
and reaches 100

This experiment shows that, in the presence of multiple narrow passages, SBL
tends to generate paths through the “easiest” one. We used this observation to design
the overall strategy of SSRP. As mentioned above, fattened free space may contain
false narrow passages (that do not exist in actual free space), but often these false
passages are “more difficult” than the widened true passages. Hence, it is reasonable
to assume that in most cases a path in fattened free space will be repairable into a path
in actual free space. OPTIMIST of SSRP makes this assumption, but the pessimist
strategy does not. Since the former is usually orders of magnitude faster than the

latter, SSRP tries it first, and uses the pessimist strategy only as back-up.

3.4 Object Thinning

The purpose of object thinning is to construct a version of the robot and obstacle
geometry that the PRM planner’s collision checker can use to test whether a configu-
ration is barely colliding - in which case it is worth trying to retract it into free space
- or not. The thinning method presented below applies to both robots and obstacles,
but our experiments with SSRP show that thinning robots (and not obstacles) is often
sufficient to achieve major planning speed-up. This is useful, since obstacles usually
have more complex geometry than robots and change more often between tasks. So,
their thinning is more computationally demanding.

The only constraint on thinning is that the space occupied by a thinned object be
contained in the space occupied by the original object. So, in particular, if R(q) and
R*(q) respectively stand for the space occupied by the original robot and the thinned
robot at configuration g, then we must have R*(q) C R(q). Most scaling methods
do not guarantee such result for non-convex objects. For a given object (robot link,
obstacle), our method thins its geometry around the object’s medial axis MA. To

thin a robot, we thin each of its links, while leaving the robot’s kinematics (relative
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Figure 3.2: Choosing between two narrow passages (Observation #2)

positions of joints) unchanged.

3.4.1 Medial-axis computation

The MA of a 3D object X is the 2D locus of all centers of locally maximal balls
contained in X [12]. The points on the MA together with the radii of the associated
locally maximal balls define the Medial-Axis Transform (MAT) of X. The locally
maximal balls are called the MA balls. The entire geometry of X can be reconstructed

from the MAT. A number of algorithms have been proposed to compute the exact
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(b) (c)

Figure 3.3: Construction of a sub-MA for a box-shaped object [25]: (a) bisecting
planes associated with bottom face; (b) visible portions of planes along normal direc-
tion rendered with different colors; (c¢) sub-MA.

or approximate MAT of an object (e.g., [6, 32, 46, 59, 47, 38]). Here, we use a new
algorithm described in [25]. Since the thinning method presented in Section 3.4.2
depends partially on this algorithm, we describe it briefly below.

We assume that each object is modeled as a polyhedron. The MA of an ob-
ject X is constructed by stitching together several sub-M A’s, each contributed by a
governing boundary element (face, edge, or vertex) of X. Each sub-MA is computed
independently from the others using graphics hardware. Since our thinning method
only uses the subset of the MA contributed by faces, we describe the construction
and assembly of the sub-MA’s governed by faces of X.

By definition, each point p on a sub-MA corresponds to the closest point ¢ on
the governing element e, where the MA ball centered at p touches e. The open line
segment, pq does not intersect the MA or the object boundary. In addition, every
point on the MA belongs to at least two sub-MA’s and is therefore equidistant from
their governing elements.

The construction of the sub-MA governed by face e of X is illustrated in Figure 3.
We first consider every other face ¢’ of X that fully or partially lies on the inward side
of the supporting plane of e. Each €’ yields the bisecting plane of all points equidistant
from e and €’. See Figure 3(a), where e is the bottom face. In this example, each of

the other 5 faces of the block contributes a bisecting plane. The bisecting planes are
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then viewed along the normal direction of e. The visible portions (i.e., the portions
not occluded by other bisecting planes) form the sub-MAT governed by e. They are
obtained by rendering the bisecting planes with distinct colors in a graphic buffer,
as illustrated in Figure 3.3(b). The content of the buffer is then converted into the
sub-MAT, as depicted in Figure 3.3(c). A different technique using graphic hardware
was previously presented in [46].

Once the sub-MA’s governed by all faces of X have been computed, they are
stitched together to form the MA. Consider two sub-MA’s having e and ¢’ for their
respective governing elements, such that each sub-MA contains a face contributed by
the bisector plane of e and e’. The two sub-MA’s can be stitched together by aligning
them relative to this plane. The entire MA is obtained by repeating this operation
for all sub-MA’s.

Note that to construct a complete MA, one would also have to consider concave
edges and vertices as governing elements [25]. Such elements may contribute curved
portions of the MA, but as indicated before, these portions of the MA are not used
by our thinning method.

3.4.2 Thinning method

To thin object X, we reduce the radii of the MA balls and we construct the geom-
etry defined by the reduced balls. Different ways of reducing radii produce distinct
outcomes. For example, we may multiply the radii of the MA balls by a constant
factor 8 < 1, or instead subtract a constant offset ¢ from all radii and remove all MA
balls whose radii are less than ¢ (see Figure 3.4). In our implementation, we chose
the latter technique mainly because the outcome is much easier to compute. We set
0 t0 & X ez, Where 7,4, is the radius of the largest MA ball and « is a constant less
than 1 called the thinning factor; in our experiments, we used a ~ 0.2.

For each sub-MA governed by face e, let P denote the plane obtained by translat-
ing the supporting plane of e inward by the offset distance . We project the portions
of the sub-MA faces that lie on the inward side of P into P. The boundary of the
thinned geometry of X consists of all the projected sub-MAT faces for all governing
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Figure 3.4: Different thinning methods: (a) the radii of MA balls are multiplied by a
constant factor 5 smaller than 1; (b) they are reduced by a constant amount .

Figure 3.5: Thinning of sub-MA

faces of X. This technique is illustrated in 2D in Figure 3.5, where X is a rectangle
(in dashed line) and e is its bottom edge; the sub-MAT governed by e consists of
three edges, which are partially or fully projected into the line P. The offset distance
0 can be set to different values for different objects.

This “projection” technique often leads to transforming a single face e of X into
several co-planar faces of the thinned objects. So, most objects thinned by this tech-
nique have a greater number of polygonal faces than the original objects. However,
this has no discernable impact on the running time of our planner’s collision checker,
which uses a bounding-volume hierarchy approach. An alternative thinning technique
would be to compute the intersection of plane P with the volume bounded by e and
the sub-MAT it governs. We chose the “projection” technique for its robustness, as
it is insensitive to floating-point approximations.

The incompleteness of the MA may cause the boundary of the thinned object
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Figure 3.6: Thinned robot component

to contain gaps. There are simple ways to fill these gaps, and we have actually
implemented one of them. But, in practice, gaps are small enough to be ignored.
At worst, they cause the collision checker to incorrectly classify a few configurations
sampled by the PRM planner as lying in fattened free space. The impact on the
overall performance of the planner is negligible.

Figure 3.6 shows the result of thinning a component of an ABB IRB 2400 robot.
The outer wire frame represents the original component and the inner shaded model
depicts its thinned geometry. Similarly, Figure 3.7(a) displays the entire robot (wire
frame) and its thinned geometry (shaded model). We decomposed this 6-degree-of-
freedom robot into 10 components. The table in Figure 3.7(b) lists the numbers of
polygons modeling each component (original and thinned geometry) and the run-
ning times (in seconds) to compute its MA and thin its geometry. Note that the

computation the sub-MA’s could easily be parallelized.

3.4.3 Object thinning as a pre-computation step

In this work, we consider object thinning as a pre-computation step for our planner.

This means that we do not include its running time into the planner’s total running
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Figure 3.7: Thinning the ABB IRB 2400 robot

(a)
components #polygons #polygons MA computation | thinning time

(original model) | (thinned model) time (sec.) (sec)
1 321 1531 313 0.5
2 1455 10293 1916 2.5
3 205 517 206 0.5
4 137 847 129 0.5
5 135 1086 128 0.5
6 447 2239 461 0.9
7 698 2516 797 1.0
8 119 980 118 0.5
9 376 2713 452 0.9
10 160 863 151 0.5

(b)
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time. Since the algorithms for computing an object’s MA often take more time than
the planner itself, this point deserves some discussion.

The main justification for seeing thinning as a pre-computation is that it needs to
be done only once for each object, independent of this object’s position and orienta-
tion. So, it is not repeated for each new planning problem. Moreover, object models
are often available long before they are used for motion planning, leaving plenty of
time for the pre-computation. Finally, the generation of an object’s geometric model,
e.g., by using a CAD modeler or by sensing real objects, often takes more time than
computing its MA.

For similar reasons, several other computations are classically regarded as pre-
computations in motion planning. For instance, like ours, most planners assume that
geometric models describe object surfaces by polygonal meshes. When models are
not input in this form, extracting polygonal meshes from the given representation is
treated as a pre-computation step. Similarly, if a planner uses a BVH collision checker
(most PRM planners do), computing bounding-volume hierarchies is considered a pre-
computation step, since it is done only once for each object.

Nevertheless, increasing pre-computation has drawbacks. In some robotics ap-
plications, object models are not available in advance and the sequence sensing-
modeling-planning-execution must be executed as quickly as possible. Any additional
computation reduces the robot’s reactivity. When time is less critical, one must still
store pre-computed results and update them if geometric models are later modified.
Fortunately, in most examples, we have observed that, for our planner, it is sufficient

to thin the robot and leave the obstacles unchanged.

3.5 Small-Step Retraction Planner

Our small-step retraction planner SSRP is built upon the pre-existing SBL plan-
ner [104], but we could have used almost any other single-query PRM planners as
well. It combines two algorithms (each calling SBL) - OPTMIST and PESSIMIST. OP-
TIMIST, which is very fast, but not fully reliable, is called first. If it fails to find a
path, then SSRP calls PESSIMIST, a slower but more reliable algorithm.
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Algorithm opTIMIST(S, g, M, M%)
1. 7+ « SBL(s, g, M%)
2. Return REPAIR(7x, M)

Figure 3.8: The algorithm OPTIMIST

Throughout this section, F' denotes robot’s free space and F™* fattened free space.
F (resp. F™) is the set of all configurations where the robot (resp., the thinned
robot) does not collide with workspace obstacles (resp., thinned obstacles). To test if
a sampled configuration or a local path is in F' (resp., F*), the planner uses a BVH
(Bounding Volume Hierarchy) collision checker [42, 80, 96] that determines whether
the boundaries of the robot and the obstacles (resp., the thinned robot and the thinned
obstacles) intersect. By construction of the thinned objects, we have F' C F*. We
call the set 0*F = F*\ F the fattened boundary of F.

3.5.1 OPTMIST

Finding a path in F* is easier for a PRM planner than finding one in F' because
narrow passages have been widened. In addition, as true passages in F™* are the
results of widening passages existing in F', they are usually wider than false passages
(if any), which did not exist in F'. So, as suggested by Observation #2 (Section 3.3.2),
a planner like SBL will more frequently generate paths through true passages than
false ones.

OPTIMIST constructs a roadmap in F* using SBL. It assumes that paths generated
by SBL traverse true passages, hence can be easily repaired. So, it postpones repairs
as much as possible. Only after having found a complete path in F* between the
query configurations s and g does it try to repair this path by retracting the colliding
portions into F'. If it does not quickly repair the path, it simply returns failure. The
algorithm is shown in Figure 3.8, with M referring to the geometric models of the
robot and the obstacles and M* to the thinned models.

At Step 1, SBL searches for a path 7" in F*. Step 2 calls REPAIR to move the
portions of 7+ that are in 0*F into F. REPAIR returns either a path entirely in F,
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Algorithm REPAIR-CONF(c, M)
L. p < pmin
2. Fork=1,..,K do
2.1. Sample a configuration q' uniformly
at random from B(c, p)

2.2. If ¢’ € F then return q' else p < p X n

3. Return failure

Figure 3.9: The algorithm for repairing a configuration that lies in 0*F’

or failure. It first retracts the configurations on 7* out of collision, then its edges
(straight segments). The algorithm REPAIR-CONF, shown in Figure 3.9, is used to
repair every configuration g on 7 that lies in 0*F' by sampling configurations inside
balls B(c, p) of increasing radii p centered at g, starting with some small given radius
Pmin (the factor n > 1 used to increase p is an input constant):

If REPAIR-CONF fails after K iterations, the configuration g and, so, the path
7* are considered non-repairable. Otherwise, the configuration q on 7* is replaced
by the returned configuration ¢’. Once all configurations on 7* have been repaired,
every path edge e that intersects 0*F' is repaired in turn. This is done recursively
by calling REPAIR-CONF(c, M) with g set to the mid-point of e. Again, any failure
causes OPTIMIST to fail. Because repairable paths in F* usually lie close to the
boundary of F', the parameter K is set relatively small, which avoids wasting time

on non-repairable paths. In our implementation, we use K = 100.

3.5.2 PESSIMIST

However, SBL(s, g, M*) sometimes constructs paths through false passages. To il-
lustrate, Figure 3.10 shows a hand-made pathological example in a 2D configuration
space. The white region in this figure is free space F', the light and dark coloured
region the collision space, and the light coloured region the fattened boundary 9*F.
The query configurations s and g are close to each other, but separated by collision

space, so that a path in F' must make a long detour through the passage at the top
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[~
path through
true passage

S 9

path through
false passage

Figure 3.10: A “pathological” example where OPTIMIST is likely to fail

of the configuration space. In this example, F* contains a false passage (bottom)
through which paths between s and g are much shorter. Such paths are more likely
to be generated by SBL(s, g, M*) than paths through the wider, but further away top
passage.

Unlike OPTIMIST, PESSIMIST immediately repairs every configuration sampled in
0*F, instead of waiting until a path in F™* has been found. This is done by modifying
SBL slightly. Within PESSIMIST, each time SBL samples a new configuration q, it

proceeds as follows:

1. If g € F, then add g to the set of milestones

2. Else if ¢ €* F and REPAIR-CONF (¢, M) returns a configuration q'
then add ¢’ to the set of milestones

3. Else discard q

SBL uses a lazy collision-checking strategy that postpones testing edges between
milestones until it has found a path of milestones between the two query configurations
(See Appendix A). Ounly then, it checks that the edges contained in the path are
collision-free. If an edge is found to collide, it is removed from the roadmap. SBL
does not give up, but continues sampling new milestones until it finds another path.
We chose to keep this feature of SBL un-changed in PESSIMIST. So, PESSIMIST does

not repair colliding edges, nor paths through false passages.
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Algorithm SSRP(s, g, M, M*)
1. Repeat N times
If oPTIMIST(S, g, M, M*) returns a path,
then return this path
2. Return PESSIMIST(s, g, M, M*)

Figure 3.11: The small-step retraction planner (SSRP)

For every configuration ¢ sampled outside F', PESSIMIST calls the collision checker
twice and repairs q if it lies in 0* F', even though many repaired configurations will not
end up being on the final path. Hence, on average, it spends more time per milestone
than either OPTIMIST or plain SBL. But, by repairing milestones immediately, it
avoids the fatal mistakes of OPTIMIST. Because its sampling strategy yields better
distributions of milestones, it usually needs smaller roadmaps to generate paths that

the plain SBL planner.

3.5.3 Overall Planner

As the experiments reported in Section 3.6 will show, when OPTIMIST succeeds, it
is much faster than PESSIMIST (often by very large factors). But PESSIMIST is more
reliable and in general still significantly faster than SBL. These results led us to design
our small-step retraction planner, SSRP, by combining OPTIMIST and PESSIMIST as
shown in Figure 3.11.

Our experiments show that if OPTIMIST fails a few times in a row, then it continues
failing consistently. So, we set N small (more precisely, equal to 5 in our implemen-
tation). Since OPTIMIST is much faster than PESSIMIST, the impact of successive

failures of OPTIMIST on the total running time of SSRP is small.

3.6 Experimental Results

OPTIMIST and PESSIMIST are written in C++ using the PRM planner SBL from the
Motion Planning Kit (MPK) available at:
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http : //robotics.stan ford.edu/~mitul /mpk.
All experiments reported below were performed on a 1GHz Pentium III PC with 1GB
RAM.

3.6.1 Test environments

Figure 3.12 shows several environments with difficult narrow passages used to evaluate

our algorithms and overall strategy:

e In (a) and (b) an IRB 2400 robot must move among thin obstacles. In (b), the
robot is in a bar cage and must find a way for its endpoint in and out of the

cage, between bars.

e In (c) the robot must move from an initial configuration where the end-effector
(a welding gun) is outside the car to a goal configuration where it is deep inside

the car. The only way in is through the door window.

e In (d), the robot’s end-effector forms a close loop that must be taken off one of
the tall vertical poles and placed around the other. The robot must first move
up the end-effector along the first pole and then down along the second pole.
In this case, free space contains two narrow passages separated by a large open

area where the end-effector does not encircle any of the two poles.

e (e) is inspired by typical spot welding tasks. The welding gun must be inserted
on both sides of a flat object.

e (f) is a toy example designed to create a short false passage in fattened free

space.

e Finally, the so-called alpha puzzle in (g) is a classical test for PRM planners [4].
One of the two identical objects is arbitrarily chosen to be a 6-degree-of-freedom
free-flying robot and the other to be a fixed obstacle. The geometry of the
objects and the small clearance between them create a very narrow passage in

free space that can only be traversed by a tight coordination of rotation and
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Figure 3.12: Test environments with narrow passages
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(h) (1)

Figure 3.13: Test environments without narrow passages

translation of the robot. The alpha puzzle example exists in several versions
named 1.0 to 1.5. Alpha puzzle 1.0 has the narrowest passage and hence is the

hardest to solve. In our tests, we used the versions 1.0 and 1.1.

In examples (a), (b), (c), (f) and (g), we only thinned the robot. Instead, in exam-
ples (d) and (e), we only thinned the obstacles, because they have much simpler geom-
etry. (Experiments not reported here show that in all these examples thinning both
the robot and the obstacles results in no significant additional reduction of planning
time.) All objects were thinned with the MA-based method described in Section 3.3
using the thinning factor a &~ 0.2. Thinning is considered a pre-computation step,
whose running time is not included in the planning times below (see Section 3.4.3).

Figure 3.13 shows two additional test environments (h) and (i) for which there are
no narrow passages in free space. They were also used to evaluate our planner, since
many practical planning problems do not involve difficult narrow passages.

The table of Figure 3.14 gives the number of polygons modeling the objects in all

test environments, except (f).

3.6.2 Results

The table in Figure 3.15 lists the running times of OPTIMIST, PESSIMIST, SSRP, and

plain SBL on planning problems in the environments of Figure 3.12. Each time is
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@ | () | (0 | (d) | (e | (& | (h) | ()

robot 4053 | 4053 | 4053 | 7596 | 4505 | 1008 | 4853 | 4853
thinned robot | 23585 | 23585 | 23585 | 7596 | 4505 | 8976 | 24385 | 24385
obstacles 43530 | 432 | 4028 | 140 | 48 | 1008 | 74681 | 83934

thinned obstacles | 43530 | 432 | 4028 | 286 | 80 | 1008 | 74681 | 83934

Figure 3.14: Number of polygons in models

% success Toptimist Tpessimist Tssrp Tsar,
OPTIMIST
(a) 100 9.4 1284 94 12295
(b) 100 32 1040 32 5955
(c) 100 2.1 15 2.1 41
(d) 100 492 634 492 863
(e) 100 65 351 65 631
(f ) 0 12 325 386 572
(g)—l.l 0 111 2810 3365 | >100000
(g)—l.() 100 13588 | >100000 | 14069 | >100000

Figure 3.15: Performance of opTiMiIsT, PESSIMIST, SSRP, and plain SBL in the
environments of Figure 3.12

expressed in seconds and is an average over 100 runs on the same pair of query con-
figurations, except for SBL in example (g) and PESSIMIST in example (g)-1.0, which
found no path in several runs, some taking more than 30 hours of computation (which
we indicate with “>100000”). The first column of the table identifies the environ-
ment. The second column gives the success rate of OPTIMIST. On problems (a)-(e)
OPTIMIST consistently succeeded to find a path, while on the last two it consistently
failed. The columns Toptimist and Tpessimist give the average running times of OPTIMIST
and PESSIMIST, respectively (for better comparison, we ran PESSIMIST even when OP-
TIMIST succeeded). Except for (g)-1.0, PESSIMIST never failed. The column TSSRP
indicates the total planning time of SSRP. It is equal to Tpptimst in examples (a)-(e)
and (g)-1.0 and to 5 X Tpprimist + Tpessimist in examples (f) and (g)-1.1, since OPTIMIST
is run 5 times before PESSIMIST is invoked. Finally, the last column (Tsp.) gives to

the average time taken by the original SBL planner, which succeeded consistently on
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OPTIMIST | PESSIMIST | SBL
(a) 3202 95559 250515
(b) 20581 76356 132451
(c) 3023 16025 30154
(d) 81015 118829 149359

80

Figure 3.16: Average number of milestones generated by OPTIMIST, PESSIMIST, and
plain SBL in the environments (a) through (d) of Figure 3.12

Toptimist Tpessimist TSSRP TSBL
(h) | 1.68 159 | 1.68 | 1.60
i) | 259 216 | 2.59 | 2.40

Figure 3.17: Performance of OPTIMIST, PESSIMIST, SSRP, and plain SBL in the two
environments of Figure 3.13

all problems but the last problem.

The table in Figure 3.16 lists the average numbers of milestones in the roadmaps
generated by OPTIMIST, PESSIMIST and plain SBL over 100 runs, for the examples
(a) through (d) of Figure 3.12. Recall that milestones generated by OPTIMIST lie in
F* while milestones generated by PESSIMIST and plain SBL lie in F'

The table in Figure 3.17 lists the same results as in Figure 3.15, but for the
two examples of Figure 3.13. In both cases, OPTIMIST, PESSIMIST, and plain SBL

succeeded in all runs.

3.6.3 Discussion

The running times of SBL in examples (h)-(i) are much smaller than in examples
(a)-(g). This gives a good indication of the difficulty of finding paths through narrow
passages in examples (a)-(g).

In all examples (a)-(g), OPTIMIST is considerably faster than PESSIMIST, so that
it is worth running it a few times before invoking PESSIMIST. Even when OPTIMIST
fails in examples (f) and (g)-1.1, the effect on the total running time of SSRP is still

relatively small. In examples without narrow passages (h) and (i), OPTIMIST is only
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as fast as PESSIMIST, but succeeds consistently, so that in practice SSRP does not
invoke PESSIMIST.

In every example, OPTIMIST succeeds or fails consistently. This observation
strongly suggests that the maximum number (N) of calls of OPTIMIST in SSRP be
set low. As indicated before, we set it to 5 in our implementation.

PESSIMIST alone is significantly faster than SBL in examples with narrow passages,
because repairing configurations sampled in 0*F' leads to placing roadmap nodes in
narrow passages with higher probability. Hence, PESSIMIST finds paths with smaller
roadmaps as shown in Figure 3.16.

On average across various problems with narrow passages, SSRP is faster than
PESSIMIST alone, because OPTIMIST often succeeds and costs little when it fails. SSRP
is much faster — often by more than one order of magnitude — than SBL alone and
more reliable.

The results in Figure 3.17 show that in examples without narrow passages (h)-(i)
SSRP is as fast as plain SBL. In fact, in those examples, OPTIMIST, PESSIMIST, SSRP,
and plain SBL take about the same amount of time on average.

Example (g) deserves specific comments. Recall that in (g)-1.1, the clearance
between the two parts is greater than in (g)-1.0. In both cases, we used the same
thinning factor. In (g)-1.1, thinning deforms the narrow passage greatly, to the extent
that rotation is almost no longer needed. Thus, OPTIMIST fails to retract many
configurations sampled in the deformed passage into the true passage of F. The
deformation of the narrow passage in (g)-1.0 is less dramatic and OPTIMIST can
repair configurations sampled in *F. But, in this example, paths in F' consists of
many tiny segments, so that PESSIMIST, which only repairs configurations sampled
in 0*F (and not local paths), fails to find a solution path in reasonable time (as this
would require sampling an unrealistic number of configurations). Making PESSIMIST
repair local paths would be possible, but would yield a much slower algorithm.

SSRP does not recover the partial roadmaps built by OPTIMIST to speed-up PES-
SIMIST. As PESSIMIST builds usually much larger roadmaps than OPTIMIST (see
Figure 3.16), it is not worth recovering and repairing the roadmaps built by OPTI-

MIST. Moreover, we observed that, when OPTIMIST fails, the roadmap it has built is
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often heavily biased toward false passages; hence, it would be an undesirable input
for PESSIMIST.

Figure 3.18 shows plots for standard deviations, means, and maximums of the
running times of the SBL planner in the environments of Figure 3.1(a) and Fig-
ure 3.12(a)-(c), as the free space is fattened. It shows that fattening of the free space
not only quickly reduces the mean running time of a PRM planner, it also quickly

reduces the standard deviation and maximum of the running time.

3.7 Conclusion

In this chapter we presented a new retraction-based sampling and connection strategy
— called small-step retraction — designed to help PRM planners sample paths efficiently
through narrow passages. The core idea underlying this strategy is that retracting
sampled configurations that are barely colliding is sufficient to speed up the generation
of roadmap milestones within narrow passages. Barely colliding configurations are
relatively easy to retract out of collision. In addition, they can be efficiently identified
by running a classical collision checker on thinned geometric models pre-computed
using an MA-based technique. A slight drawback of the method is that it increases
pre-computation time.

Another important idea of our work is the combination of two algorithms, oP-
TIMIST and PESSIMIST, which complement each other well. The entire method was
implemented as a new PRM planner - SSRP - that extends the pre-existing SBL
planner. SSRP was tested on many examples. Results show that on examples with
narrow passages it is significantly faster, and more reliable, than SBL. On examples
without narrow passages, it is as fast as SBL. Although our tests of SSRP have given
excellent results, example (g) in Figure 3.12 with its two versions 1.0 and 1.1 in-
dicates that there likely exist problems for which neither OPTIMIST nor PESSIMIST
would work well, oPTIMIST failing when the shape of a fattened narrow passage is
too different from that of the original passage and PESSIMIST when passages are so
narrow and curved that it would have to repair local paths, in addition to sampled

configurations. However, such a combination is likely to be very rare in practice.
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Figure 3.18: Standard deviations, means, and maximums of the running times needed
to connect start and goal configurations in the environments of Figure 3.1(a) and Fig-
ure 3.12(a)-(c). The z-axis corresponds to the amount of thinning (a=0 corresponds
to no thinning).



Chapter 4

Planning Multi-Goal Tours®

4.1 Introduction

Consider a robotic arm whose end-effector must reach several goal placements. These
placements are defined in some workspace coordinate system, but the sequence in
which they should be reached is not given. The planning problem studied in this
chapter is to compute a near-optimal robot path (a loop) that visits each goal once.
This problem occurs often in practice, e.g., in spot-welding, car-painting, inspection,
and measurement tasks. For example, Figure 4.1 shows a spot-welding workcell in
an automotive body shop, where each robot arm brings a welding tool to successive
placements. At each goal, the robot stops, while its end-effector performs some op-
eration. The time taken by this operation is independent of the goal ordering. The
aim of the planning problem is to minimize the total travel time spent in moving the
end-effector between goals.

Using the robot’s inverse kinematics (IK), we map each goal placement of the
end-effector to a finite set of goal configurations of the robot. We call such a set a
goal group. Figure 4.2 shows two configurations in a group (where the end-effector

placement is defined by the position of its tip). To solve the above planning problem,

*This chapter is based on the journal article: “Planning Tours of Robotic Arms among Partitioned
Goals”, International Journal of Robotics Research, 25(3):207-223, March 2006. Tim Roughgarden
and Jean-Claude Latombe are the co-authors of the article.
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Figure 4.1: A spot-welding workcell (courtesy of General Motors).

we must compute a robot path that both visits one configuration in each group and
has near minimal length over all configurations in every goal group and over all
group orderings. This problem is illustrated in Figure 4.3. While in practice the
configurations in a goal group often correspond to distinct IK solutions of the arm,
this need not be the case, and the methods presented in this chapter do not depend
on how goal groups are obtained. So, we assume that the goal configurations are an
input to our multi-goal planning algorithm.

The multi-goal motion planning problem combines two hard problems. One is to
compute a shortest collision-free robot path between two goal configurations. This
problem is at least as hard as finding a Euclidean shortest path between two points
among polyhedral obstacles in 3-D space, which is NP-hard [23]. The other subprob-
lem is a variant of the classical traveling-salesman problem (TSP), which requires

computing an optimal tour through the vertices of a graph whose edges have known
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Figure 4.2: Two goal configurations in a group

Figure 4.3: Two-dimensional generalized multi-goal motion planning problem
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costs. Here, the vertices are partitioned into groups and the tour must only con-
tain one member from each group. This subproblem is at least as hard as finding
the shortest tour through points in the Euclidean plane, which is NP-complete [93].
In this chapter, we use two functions to compute sub-optimal, but still satisfactory

solutions of these problems. They are:

e PATH — Given two robot configurations, this function returns a satisfactory
collision-free path between them if they can be connected without collision. It

indicates that no path exists otherwise. PATH makes use of a pre-existing PRM
planner (SBL).

e TOUR — Given a collection of points partitioned into groups, with given dis-
tances between all pairs of points in distinct groups, this function returns a
near optimal tour that traverses one point in each group. TOUR makes use of a

recent approximation algorithm for the group Steiner tree problem [26].

Given these two functions, the naive algorithm to solve the generalized multi-goal
planning problem is simply to run PATH on all pairs of configurations from distinct
goal groups — hence, a quadratic number of times — before running TOUR once. We
will show that the length of the multi-goal path computed by this algorithm is within a
factor 23 of the length of the optimal tour that can be computed given the goal-to-goal
paths generated by the function PATH. If the goal configurations are non-partitioned
(i.e., each group has size 1), then 8 = 1; otherwise 8 = O(% x (logn)*™ x logr) for
every fixed constant € > 0, where n is the total number of goal configurations, and
r + 1 is the number of goal groups. The extra factor 2 comes from the fact that our
function TOUR computes a tour by “doubling” a spanning tree [29].

However, in many robotics problems, the number of goal groups typically ranges
between 5 and 50, while each group consists of few configurations (usually less than
10). These numbers are considered small for available TOUR algorithms. In contrast,
robot paths must be computed in complex configuration spaces, so that the running
time of PATH is high relative to that of TOUR. Hence, we wish to use PATH sparingly.

For a multi-goal problem of the size specified above, the naive algorithm may

evaluate PATH several thousand times, or more, which takes prohibitive time. Instead,
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we propose a lazy algorithm that avoids calls to PATH by delaying them until they
are needed. It does this by initializing the distance between every two configurations
from distinct goal groups to an easily computed lower bound. Then, it successively
runs PATH on pairs of configurations whose distances affect the length of the current
best tour through the goal groups. It terminates when a tour has been found that
is guaranteed to be within the factor 25 of the length of the optimal tour, where
[ is defined as above. Hence, both the naive and lazy algorithms have the same
approximation factor. In the worst case, the lazy algorithm calls PATH a quadratic
number of times, but our experimental results (Section 4.6) show that it is usually
much faster than the naive algorithm. Moreover, the paths computed by the two
algorithms have similar lengths.

The rest of this chapter is organized as follows. Section 4.2 relates our work
to previous work on multi-goal planning. Section 4.3 gives a precise statement of
the generalized multi-goal planning problem. Section 4.4 describes and analyzes our
planning algorithm. Section 4.5 presents in detail the implemented function PATH.
Section 4.6 analyzes the experimental performance of the implemented planner on

several examples.

4.2 Related Work

The multi-goal motion planning problem was previously introduced in [31, 107, 115].

We review these works below and relate them to ours.

a) In [107] the multi-goal planning problem is considered in the context of coor-
dinate measuring machines (CMM). In this work, goals do not occur in groups (i.e.,
are non-partitioned). Each goal defines a position of the CMM’s measuring probe.
The proposed planner computes goal-to-goal paths using a Probabilistic Road-Map
(PRM) planner [66]. A roadmap is pre-computed over the probe’s free space. Its
vertices are all the goal configurations, plus additional configurations successively
sampled uniformly at random over the entire configuration space, until all the goals
are in the same connected component of the roadmap. Next, a search algorithm

extracts the shortest path in the roadmap between every two goals. This yields a



CHAPTER 4. MULTI-GOAL MOTION PLANNING 89

reduced, complete graph in which each vertex is a goal configuration and each edge
is labelled by the length of the shortest path extracted between the two goals it con-
nects. A TSP algorithm then computes a near-optimal tour from this graph. Since the
lengths labelling the edges satisfy the triangle inequality, polynomial-time algorithms
are available to compute a tour within a constant ratio of the optimal tour [29, 87].
This planner is based on a set of coherent choices. The CMM problems considered
in [107] are formulated in a quasi-planar, hence low-dimensional, configuration space
(where a configuration is the position of the tip of the measuring probe). In the two
examples given in [107], the generated roadmaps only contain 100 vertices (including
the goals). Thus, pre-computing them does not take much time. Moreover, once a
roadmap is available, the search of a shortest path between every two goals is very
fast. This justifies that all goal-to-goal paths are computed before a tour is extracted.
Our multi-goal planner is based on different assumptions. In many applications
(like spot welding), the cost of pre-computing a roadmap would be too high, espe-
cially if one uses a uniform sampling strategy, due to both the dimensionality of the
configuration space and the geometric complexity of the obstacles and the robot. For
this reason, the PATH function in our multi-goal planner is based on the bi-directional
tree-expansion PRM algorithm introduced in [55] and refined in [103] (more details
are given in Section 4.5). This algorithm makes it possible to construct goal-to-goal
paths one at a time until the multi-goal planning problem is solved. As our experi-
mental results will show (Section 4.6), it is often the case that only a relatively small
number of goal-to-goal paths need to be computed before a good robot tour is ob-
tained. However, to avoid repeating work done at previous evaluations of PATH, each

new evaluation of PATH is expedited by re-using PRM trees previously constructed.

b) The multi-goal planner described in [115] tries to avoid computing a collision-
free path between every pair of goals. But, unlike ours, it neither uses lower bounds
on path lengths, nor the information contained in intermediate tours computed by
the TSP algorithm to guide the selection of the pairs of goals between which paths are
computed. Instead, this planner loops on the following operations: select pairs of goals
using a technique like random or nearest-pair selection, compute a collision-free path

between each pair, run the TSP algorithm. Once the TSP algorithm has returned a
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complete tour, the planner can stop at any time. If more computing time is allocated,
each new tour generated by the planner is at least as good as the previous one. But,
if the planner is stopped before all goal-to-goal paths have been generated, then there
is no formal guarantee on the goodness of the last computed tour. Like ours, the
planner in [115] takes goal groups as inputs. A genetic algorithm generates optimized
tours through the input groups. Goal-to-goal paths are computed by performing a
best-first search on a regular grid in configuration space. This technique is inherently
limited to searching low-dimensional configuration spaces, hence restricts the range
of problems that the planner can handle. The planner was tested on pin-assembly

and spot-welding examples comprising up to 22 goals.

¢) The multi-goal planner in [31] is aimed at generating inspection tours, for
example finding cracks in large structures. The robot, which is modeled as a point in
a polygonal free space F', must go to successive goal positions such that it can see every
point in the boundary of F' from at least one of these positions (goal groups are not
considered). This problem is also known as the “watchman-route” problem. Unlike in
our multi-goal problem, the goals are not given. Instead, in [31], they are computed
using the approximate randomized “art-gallery” algorithm given in [90]. Next, the
visibility graph of these goals and the vertices of F’s boundary are computed, as well
as the shortest path between every two goals [87]. An approximate TSP algorithm
then extracts a tour that is at most twice as long as the optimal tour. An extension

to 3-D workspace is discussed in [31].

d) Other variants of multi-goal robot planning problems, with no or few collision-
avoidance constraints, have been addressed using general optimization techniques

such as simulated annealing [24] and genetic algorithms [15].

4.3 Problem Formulation

4.3.1 Overview

Let C' denote the configuration space of a robot, F' C C' its collision-free subset, and

¢ the measure that maps any given path 7 in C to its length ¢(7). Let go, ¢1, ..., §» be
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r 4+ 1 input groups — called goal groups — of distinct configurations in F', |g;| denotes
the size of §; and g, its k" element.

Any path in F' joining two goals g;; and g; from two distinct groups ¢ and j
is called a goal-to-goal path. Any loop path in F' starting and ending at the same
configuration in gq, and passing through one configuration in each goal group, is called
a multi-goal path. So, a multi-goal path 7 is the concatenation of r 4+ 1 goal-to-goal
paths. The length of 7 is the sum of the lengths (measured by ¢) of the goal-to-goal
paths it contains. This assumption is reasonable since in most applications the robot
stops at each goal; so, the goals divide the multi-goal path into “independent” pieces.

The generalized multi-goal planning problem is to find the shortest multi-goal path,

or a good approximation of it.

4.3.2 Function PATH

We assume that the function PATH defined as follows is given. For any two goals g
and gj;, PATH(g,x, g;1) returns a path in F' joining g;; and gj;, if these configurations
are in the same component of F. For general robot arms, no efficient algorithm is
available to compute a goal-to-goal path guaranteed to be within some approximation
factor of the shortest path. So, by necessity, PATH is a heuristic algorithm. In our im-
plementation, PATH is a bi-directional tree-expansion PRM planner [103], augmented
with an optimization post-processing step. This planner is made deterministic by
resetting the seed of the pseudo-random source at each call to the value of a given
function of the two input goal configurations. (See Section 4.5 for more detail.) With-
out loss of generality, we assume that the three paths returned by PATH between any
three goal configurations satisfy the triangle inequality. This assumption can always
be trivially enforced, if needed, by replacing one path by the concatenation of the
other two.

Note that if the goals are non-partitioned, then for a multi-goal path to exist, all
goal configurations must lie in the same connected component of F'. So, a path must
exist between every two goal configurations. If the goals are partitioned, then there

must exist a component of F' that contains at least one member of each goal group.
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Algorithm TOUR(G,)
1. T < GSTREE(G.,)
2. Return PREORDER-WALK (T')

Figure 4.4: TOUR algorithm

It is then possible for two goals from two different groups to belong to two distinct
components of F.

In the following, we let Lo, stand for the length of the optimal multi-goal path
through gq, g1, ..., g when every goal-to-goal path is computed by PATH.

4.3.3 Function TOUR

We define the goal graph to be the undirected graph G = (V, E), in which the set of
vertices is V = U;g; and the set of edges, F, contains one edge connecting every pair
of configurations from two distinct goal groups. When all goal groups have size 1,
ie, |g;|=1foralli=0,1,...,7, G is said to be non-partitioned. A tour of G is any
list ™ = (Gokgs Giskys -+ Yirkr » Joko) SUCh that < iy, ..., 4, > is a permutation of {1, ...,7}.

A weighted goal graph G is identical to G, except that each edge {gix, g;i} is now
weighted by a positive real number c¢(g;x, g;i), the edge’s cost. Then the cost c(m) of

a tour 7 of G is the sum of the costs of the edges traversed by 7, hence:

m=r+1

C(7T) = Z c(gimflkmfl’ gzmkm)

m=1

where 19 = 7,41 = 0.

In particular, when the cost of every edge {gi,g;} in E is equal to
2(PATH({gik, gj1})), we denote the weighted goal graph by G,. So, the cost of the
optimal tour of Gy is Loyt

A group-spanning tree T is a tree contained in G such that T has exactly r + 1
vertices, one from each goal group. In a weighted goal graph G, the cost of T is the
sum of the costs of the edges contained in 7. The function TOUR defined in Figure 4.4
first computes a group-spanning tree 7. Then it computes a tour by performing a

preorder walk of 7', which recursively visits every vertex in the tree, starting at the
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root, listing a vertex when it is first encountered. Under the assumption that the
edge costs satisfy the triangle inequality, the cost of the computed tour is at most
twice the cost of T' [29].

More precisely, when G is non-partitioned, 7" is simply a spanning tree of G and
GSTREE(G,) computes the minimum-cost spanning tree of G in time O(r?) using the
Prim’s algorithm [29]. In this case, TOUR is a classical TSP algorithm, which has
also been used in the multi-goal planners described in [31, 107, 101]. Then TOUR(GY)
generates a multi-goal path of length Ly < 2 x Lop;. Indeed, the cost of the optimal
spanning tree of G is not greater than Lo, and Ly is at most twice the cost of the
optimal spanning tree.

When G is partitioned, i.e., goal groups have sizes greater than 1, we are facing the
problem of computing the optimal group-spanning tree of GG, a particular case of the
so-called group Steiner problem studied in circuit and network design [26, 99]. This
problem is provably hard, even to approximate closely [45], but the polynomial-time
algorithm given in [26] allows us to compute a group-spanning tree of G. whose cost is
at most 8 = O(Lx (log |V[)**¢ xlog r) times the minimum cost, for any fixed constant'
e > 0. (A slightly better worst-case ratio is possible using linear programming [41],
but this approach would be too computationally expensive for our purposes.) When
G is partitioned, our function GSTREE uses this algorithm. Then TOUR(G,) computes
a multi-goal path of length Lnx <28 X Lop:.

In the following, we let 8 = 1 if G is non-partitioned, and 8 = O(1 x (log |V[)**¢ x

logr) otherwise.

4.3.4 Objective

The naive multi-goal planning algorithm NAIVE-GMGP first computes G, by weighting
every edge {gik, g1} of G by ¢(PATH({gik, g;1})), then evaluates TOUR(G/) once. The
resulting multi-goal path is the concatenation of the goal-to-goal paths between every
two successive goals in the tour returned by TOUR(GYy). Its length is Ly < 28 X Lopt.

This algorithm evaluates PATH for all the edges in G. However, in most robotics

! Note that € is not an input of our algorithm.
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Algorithm LAZY-GMGP
1. Initialize G, to the weighted goal graph in which the cost of every edge
{9ik, gji} is set to the length of the shortest path in C between g, and g;;
2. Repeat
2.1. T + GsTREE(G,)
2.2. k +¢(T)
2.3. Repeat while ¢(T) < a x K
2.3.1. If all edges in T are exact then return multi-goal path defined
by PREORDER-WALK(T)
2.3.2. Pick a non-exact edge e = {g;x, g;;} in T
2.3.3. Modify G, by resetting the cost of e to £(PATH(gik, g;i))

Figure 4.5: Lazy multi-goal planning algorithm

applications, the number r + 1 of goal groups is relatively small (a few dozens at
most). The size of each goal group is usually upper bounded by a small constant.
In contrast, the robot’s collision-free space F' has high complexity. So, here, we are
interested in instances of the multi-goal planning problem where the running time
of PATH is high relative to that of TOUR and we wish to use PATH sparingly, even if
this requires evaluating TOUR (or just GSTREE) more often. But, simultaneously, we
would like the length of the generated multi-goal path to remain within a small factor
of Lopt- The lazy planning algorithm described in the following section attempts to

achieve this twofold objective.

4.4 Lazy Planning Algorithm

4.4.1 Algorithm

Our algorithm first creates a weighted goal graph G, in which the cost of every
edge {gik,g9;} is set to the length of the shortest path joining g; and g; in C.
Since the shortest path in C' may not be collision-free, this length is a lower-bound
approximation of ¢(PATH(gi, g;)).- Usually, this bound is very easy to calculate,

since for many measures £ the shortest path in C' between two configurations is the
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straight line segment joining them. Then, the algorithm iteratively modifies weights
in G, by evaluating PATH for edges picked in the group-spanning tree computed by
GSTREE(G,) and updating their costs accordingly. Once the cost of an edge {gi, g;i}
has been updated to ¢(PATH(gix, gji)), we say that this edge is ezact. This yields the
lazy algorithm LAZY-GMGP shown in Figure 4.5 and discussed below.

Step 1 initializes the weighted goal graph G.. Next, each iteration of Step 2 first
computes a group-spanning tree 7 of the current G, (the optimal spanning tree if G.
is non-partitioned, or a near optimal group-spanning tree if the graph is partitioned).
Throughout the rest of Step 2, ¢(T') denotes the current cost of 7. Each iteration of
Step 2.3 leads to evaluating PATH for a non-exact edge picked in 7" and updating the
cost of this edge in GG.. During this iteration, the topology of 7" remains fixed, but
its cost ¢(T') varies, as long as it remains within factor « of the initial cost recorded
in k, where a > 1 is an input number. If ¢(7T") ever grows greater than a x k, then a
new iteration of Step 2 is performed which recomputes a new tree T from the current
G.. Step 2 exits with a solution when all edges of T are exact.

In addition, whenever PATH fails to find a path at Step 2.3.3, the corresponding
edge is removed from G (this is equivalent to resetting its cost to infinity) and a new
iteration of Step 2 is performed. If GSTREE fails to find a group-spanning tree at
Step 2.1, then LAZY-GMGP returns failure. Note that if the goals are not partitioned,
LAZY-GMGP returns failure at the first failure of PATH. For simplicity, these cases are

not shown in the algorithm of Figure 4.5.

4.4.2 Analysis

Let Ly and L denote the lengths of the tours respectively computed by NAIVE-GMGP
and LAZY-GMGP for a given instance of the multi-goal planning problem. We assume
that, whenever these two algorithms evaluate PATH for the same two goals g;; and g;;,
each evaluation yields the same goal-to-goal path. Recall from Subsection 4.3.3 that

Ly <28 X Lopt, where Loy is the length of the optimal tour in G4. The following



CHAPTER 4. MULTI-GOAL MOTION PLANNING 96

theorem relates Lg and Lop:.

Theorem 1: The length Lo of the multi-goal path computed by LAZY-GMGP
satisfies:
EG < 20{5 X *COpt'

Proof: Let T} and T denote the optimal (group-)spanning trees of graphs G, and
G, respectively. Let T, be the tree returned by GSTREE(G.). We have:

o(T7) < o(T7)

and:
o(T,) < B x e(TY).

So: ¢(T,) < B x c(Ty).

Therefore, at Step 2.2, we have K < 8 x ¢(T}). Step 2.3 computes goal-to-goal
paths for non-exact edges in T, until either the cost of T grows larger than a X k, or all
edges in T are exact. When this second condition turns true, we have ¢(7T) < a x k <
af x ¢(T}). Since the length L of the multi-goal path determined by PREORDER-
WALK(T') at Step 2.3.1 is within factor 2 of ¢(7T"), we have Lg < 2af X ¢(T}). We
also have c¢(T}) < Loy, hence Lo < 2af X Loyt W

Note that when « is set to 1, the lengths of the paths respectively computed by
NAIVE-GMGP and LAZY-GMGP are within the same factor 23 of Lo,:. Note also that,
in the case of non-partitioned goals (then, 8 = 1), the upper bound 2a x Lo, on Lg
is tighter than the bound 2« x Ly established in [101].

The tour returned by PREORDER-WALK(T') at Step 2.3.1 may contain edges of G
that are still non-exact. To transform the tour into a multi-goal path, it is necessary
to evaluate PATH on every such edges. The weighted goal graph after this computation
may still contain edges that are non-exact, so that the triangle inequality may not be
satisfied by every triplet of vertices. But as long as the triangle inequality holds for
the edges in T" and its preorder walk, the tour returned by PREORDER-WALK(T') has
cost within a factor 2 of that of 7'



CHAPTER 4. MULTI-GOAL MOTION PLANNING 97

The experimental results of Section 4.6 will show that LAZY-GMGP is usually much
faster than NAIVE-GMGP, but that the lengths of the paths respectively computed by
the two algorithms are comparable. As one would expect, the running time of LAZY-
GMGP also decreases as « gets larger, while the lengths of the paths only increase
slightly.

However, for any given value of «, in the worst case, LAZY-GMGP evaluates PATH
for all the ©(|V'?) edges of the goal graph. A worst-case instance with non-partitioned
goals can easily be constructed as follows. Let the r+1 goal configurations gg, g1, ---, gr
be very close to each other in C. More precisely, let the length of the shortest path
in C' between any two of them be less than some small £. Assume that F' is made of
“pipes” connecting the goal configurations so that the length of the shortest path in
F between any two of them is greater than some sufficiently large L (see Figure 4.6).
Then, each execution of Step 2.3 (except the last one) evaluates PATH exactly once,
because the increment L —¢ in the cost of the spanning tree T causes ¢(T) to become
greater than o x k. Moreover, until all edges of G, are exact, the minimal spanning
tree at Step 2.1 necessarily includes at least one non-exact edge. Therefore, LAZY-

GMGP will terminate only when all goal-to-goal paths have been computed.

4.4.3 Improvements

Below we briefly discuss three possible improvements of the LAZY-GMGP algorithm

shown in Figure 4.5. Only the first two have been implemented.

a) In general, one may expect LAZY-GMGP to make fewer calls to PATH if the
edge costs of G, approximate the exact values more tightly. This leads our planner
to exploit the triangle inequality among goal-to-goal paths, as follows. If the edges
{9k, gji} and {g;i, gs:} in G, are exact, but {gix, gs:} is still non-exact, then c(gix, gst)
should not be smaller than |c(gik, g;1) — c¢(g;i, gst)|- So, we can replace Step 2.3.3 of
LAZY-GMGP by the steps given in Figure 4.7, where v > 0 is a real constant aimed at
skipping the update when PATH(gi, g;i) is not longer, or only marginally longer than

the lower-bound cost weighting edge {gix, gji}-

b) In order to avoid unnecessary iterations at Step 2.3 of LAZY-GMGP, we can try
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Figure 4.6: A worst-case example for LAZY-GMGP in a two-dimensional configuration
space C. The free space F' is shown in white and each of the 4 cross-marks denotes a
goal configuration. The dashed and plain lines depict the shortest paths between the
goals in C and in F, respectively. The length of the shortest path in C' between any
two goals is much smaller than the length of the shortest path in F' between any two
goals.

to pick, at Step 2.3.2, the non-exact edge that is likely to yield the maximum increase
of the cost of T. A heuristic used in our implemented planner is to pick the longest
non-exact edge, since it is the most likely to require a long detour around obstacles
(see [103)]).

c¢) Step 2.1 of LAZY-GMGP re-computes a new group-spanning tree 7 at each
iteration. However, between two successive computations of 7', it is often the case that
only a small number of edges of G, (at most ) have changed cost. This suggests saving
time by updating the tree computed at the previous iteration. For non-partioned
graphs, if k£ is the number of edges in G, that have changed costs, then the optimal
spanning tree of G, can be updated in time O(k+/r) [35, 39]. We are not aware of a

similar algorithm for updating group-spanning trees.

4.5 Implementation of PATH

For robot arms, no algorithm is available to efficiently compute a goal-to-goal path

guaranteed to be within a given factor of shortest paths. So, our implementation of
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e \ < cost of ein G,
e Modify G. by resetting the cost of e to X' = £(PATH(gix, g;1))
o If (N — A)/A > « then for every g, € V other than g, and g;; do
- If edge {g;i, 9t} is exact and edge {gix, gs+} is not exact, then reset the

cost of {gik, gst} to max{c(gix, gst), [c(gir, gi1) — (g1, gst)|}-
- If edge {gik, g5t} is exact and edge {g;i, gs+} is not exact, then reset the

cost of {gj1, gt} to max{c(gji, gst), |c(Gir, 9j1) — c(Gik, gst)|}-

Figure 4.7: Improvement of Step 2.3.3 of LAZY-GMGP

PATH uses a heuristic two-phase approach: first, compute a collision-free path; next,
optimize this path. This approach was introduced in [13].

We use a bi-directional tree-expansion PRM planner (more precisely, the SBL
planner presented in [103]) to generate an initial collision-free path between two given
goals g;; and g;. This planner grows two trees of sampled configurations, called
milestones, that are rooted at g; and gj;, respectively. At every iteration, it picks
a milestone m in one of the two trees and samples configurations at random in a
neighborhood of m until one, m/, tests collision-free. It installs m’ as a child of m in
its tree and creates a connection between m’ and the closest milestone in the other
tree, thus establishing a path of milestones between g;; and gj;. If all connections in
a path of milestones are collision-free, the planner returns the path (a polygonal line
in configuration space), otherwise it removes the colliding connection from the trees
and samples more milestones. The planner exits with failure if it has not found a
path after generating a given maximum number of milestones. The planner has been
shown, both theoretically and empirically, to have fast convergence rate [55, 103].
Failure to find a path, when one exists, has not been an issue in our experiments.

SBL samples configurations by using a pseudo-random source of numbers parame-
terized by a seed. For a given seed, such a source produces a deterministic sequence of
numbers that approximates the statistical properties of a random sequence. At each
evaluation, our function PATH resets the seed to the value of a function of the two
input goal configurations. By doing so, we guaraantee that an important assumption

for Theorem 1 — that if NAIVE-GMGP and LAZY-GMGP evaluate PATH for the same
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two goals, then each evaluation yields the same goal-to-goal path — is satisfied.

The trees grown by the planner are not biased in any particular direction. So, in
both the naive and the lazy algorithms, rather than discarding the two trees produced
by a run of PATH, we store them. When PATH is invoked again, if any of the two goals
in the new pair of goals has already been considered before, then the tree rooted at
this goal is retrieved and re-used by the planner, thus saving considerable amount of
work. As more evaluations of PATH are performed, each evaluation, on average, takes
less time. This implementation of PATH is reminiscent of the Probabilistic Roadmaps
of Trees (PRT) described in [3], except that in PATH all trees are rooted at goal
configurations.

Several optimizers can be used to improve a path generated by the PRM planner.
For instance, the variational optimization technique used in [13] iteratively deforms a
path to minimize the time that the robot will take to execute the path. It takes the
robot’s dynamic model and torque limits in the joints into account. Our implementa-
tion of PATH uses a simpler (and faster) optimizer described in Figure 4.8 [49]. This
optimizer assumes that the shortest path in configuration space between two arbi-
trary configurations is the straight segment. The input path, 7, is a polygonal line in
configuration space. The optimizer repeatedly replaces sub-paths of 7 by collision-free
straight segments. Though the outcome is only locally optimal at best, it is usually

quite satisfactory.

4.6 Experimental Results

In this section we report on some of the experiments we have performed using our
implementations of both the NAIVE-GMGP and LAZY-GMGP algorithms. All results
given below have been obtained on a 1-GHz Pentium-IIT computer with 1Gb of mem-
ory running Linux. All times are in seconds, with a resolution of 0.01 (hence, a few
times are reported to be 0.00). All performance data are averaged over 50 runs of
each of the two planners, such that in each pair of runs PATH computes the seed of
the pseudo-random source with a different function (see Section 4.5).

For PATH we used the same implementation of SBL as used in Chapter 3. When
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Algorithm opPTIMIZE(T)
Repeat N times
1. Pick two configurations g and ¢’ on 7 at random
2. T < SHORTEN(q, ¢, T)

Algorithm SHORTEN(q, ¢', 7)
If the straight segment between ¢ and ¢’ is collision-free
1. Then return the path obtained by replacing the sub-path of 7 between
g and ¢’ by this segment
2. Else
2.1. Let ¢"” be the midpoint on the sub-path of 7 between ¢ and ¢’
2.2. T < SHORTEN(q, ¢",T)

2.3. Return SHORTEN(q", ¢, T)

Figure 4.8: Path optimizer

goals are not partitioned, a minimum-cost spanning tree is computed using the Prim’s
algorithm [29]. Otherwise, a near-optimal group-spanning tree is computed using an
implementation of the algorithm given in [26] (since the input to this algorithm must
be a tree, as suggested in [26], we use the algorithm proposed in [36] to approximate a
weighted goal graph with a tree). We further optimize the output tree by replacing it
with the optimal spanning tree of the subgraph of G, reduced to the nodes in the tree.
Our implementation of LAZY-GMGP incorporates the two improvements described in
Subsections 4.4.3 a) and b).

Throughout this section, we consider the three examples depicted in Fig-
ures 4.9, 4.10, and 4.11, in which there are 10, 31, and 50 goal groups, respectively.
All three examples use a six-degree-of-freedom arm. The arm in Example 1 is mod-
eled by 3,791 triangles and the arms in Examples 2 and 3 by 2,502 triangles. The
workspaces (obstacles) of Examples 1, 2, and 3 are modeled by 74,681, 19,668, and
31,184 triangles, respectively. Each goal group corresponds to a given position of the
end-effector’s tip. Since the arm has six degrees of freedom, such a position yields

an infinity of IK solutions forming a continuous IK subset of C'. To construct a goal



CHAPTER 4. MULTI-GOAL MOTION PLANNING 102

(b)

Figure 4.9: (a) Example 1 (10 goal groups); (b) some goal configurations
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Figure 4.10: (a) Example 2 (31 goal groups); (b) some goal configurations
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Figure 4.11: (a) Example 3 (50 goal groups); (b) some goal configurations
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group of size p, we sample a large number of IK solutions at random and we cluster
them into p clusters, in order to select p very distinct configurations providing a good
coverage of the IK subset. A goal group of size 1 simply consists of one of these

configurations.

4.6.1 Non-partitioned case

Here, we compare the performances of LAZY-GMGP and NAIVE-GMGP on the three

examples when each group has size 1.

NAIVE-GMGP LAZY-GMGP
Ex.1 Ex.2 Ex.3 Ex.1 Ex.2 Ex.3
Total-time 229.98 2509.60 5358.19 | 116.71 230.93 218.49
Total-length 12.79 27.34 39.79 12.79  27.34  39.79
#PATH 45 465 1225 26 57 75
#GSTREE 1 1 1 27 50 69
Time-PATH 229.98 2509.60 5358.19 | 116.71 230.25 216.45
Time-GSTREE | 0.00 0.00 0.00 0.00 0.68 2.04

Table 4.1: Comparison of NAIVE-GMGP and LAZY-GMGP, when goal configurations
are non-partitioned and o = 1 (all times are in seconds)

Table 4.1 lists performance data with the parameter « set to the minimum value
of 1. The columns correspond to the three examples. The rows successively indicate
the total running time of a planner, the length of the generated solution (using the
¢ = Lo metric in configuration space), the number of evaluations of PATH, the number
of evaluations of GSTREE, and the times spent in those evaluations.

On all three examples, LAZY-GMGP is much faster than NAIVE-GMGP — about
ten to twenty times faster in Examples 2 and 3, respectively. Figure 4.12, which
plots the running times of LAZY-GMGP and NAIVE-GMGP when the number of goal
configurations increases from 5 to 50 in Example 3, further indicates that the speedup
of LAZY-GMGP over NAIVE-GMGP increases with the number of goals. Additional tests
not shown here indicate that the speedups achieved by LAZY-GMGP over NAIVE-GMGP
are almost cut in half when the improvements described in Subsection 4.4.3 a) and

b) are not included.
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Figure 4.12: Running times of NAIVE-GMGP and LAZY-GMGP as the number of goal
configurations grows from 5 to 50 in Example 3 (non-partitioned case)

In each example, the two planners generate the same multi-goal path. This is
not surprising. Indeed, when G is non-partitioned and « is set to 1, LAZY-GMGP
terminates at Step 2.3.1 with a spanning tree 7" that is optimal in both G. and G,.
So, if G¢ has a unique optimal spanning tree, then both NAIVE-GMGP and LAZY-GMGP
return the same multi-goal path. This is because our implementation of PREORDER-
WALK returns a unique preorder walk for an input tree (by choosing the same root
and the same ordering on the nodes). It is easy to see that in almost all practical
cases, GGy has a unique optimal spanning tree. This is the case in our three examples.

Table 4.1 indicates clearly that on all three examples LAZY-GMGP obtains the
optimal spanning tree from a graph G, that still contains many non-exact edges,
hence without having run PATH on all pairs of goals. In particular, in Example 3, it
runs PATH on only 6% (on average) of the 1225 pairs of goal configurations.

Note that NAIVE-GMGP actually pre-computes a multi-tree roadmap that con-
nects all pairs of goal configurations. We compared the cost of this pre-computation
with that of running our own implementation of the roadmap-construction algorithm

proposed in [107] (see Section 4.2 a). On each of the three examples, NAIVE-GMGP



CHAPTER 4. MULTI-GOAL MOTION PLANNING 107

pre-computes a roadmap 2 to 3 times faster than this algorithm. But, of course,
the main reason for implementing PATH as a bidirectional tree-expansion PRM plan-
ner is to generate goal-to-goal paths incrementally, one at a time, a capability that

LAZY-GMGP exploits to avoid computing un-necessary goal-to-goal paths.

4.6.2 Partitioned case

Table 4.2 compares the performances of LAZY-GMGP and NAIVE-GMGP on the three
examples when each goal group consists of 5 configurations. In Examples 1 and 2, the
speedups achieved by LAZY-GMGP over NAIVE-GMGP are even more impressive than
in the non-partitioned case. In particular, in Example 2, LAZY-GMGP is 100 times
faster than NAIVE-GMGP. However, in the third example, the speedup is more modest
(about 2). This observation will motivate the improved lazy algorithm presented in
Section 4.6.3.

NAIVE-GMGP LAZY-GMGP
Ex.1 Ex.2 Ex.3 Ex.1 Ex.2 Ex.3
Total-time 5828.59 49238.58 87322.75 | 215.91 478.38 40036.51
Total-length 10.33 18.01 21.53 11.67  19.28 16.94
#PATH 1225 11935 31125 50 81 169
#GSTREE 1 1 1 51 75 159
Time-PATH 5828.48 49212.14 87103.98 | 208.27 223.46  346.77
Time-GSTREE 0.11 26.44 218.77 7.64  254.92 39689.74

Table 4.2: Comparison of NAIVE-GMGP with LAZY-GMGP when each goal group con-
tains 5 configurations and a = 1 (all times are in seconds)

We note that, unlike in the non-partitioned case, the paths computed by NAIVE-
GMGP and LAZY-GMGP in each example are different, but have comparable lengths.
In Example 3, the paths computed by LAZY-GMGP are even shorter (on average).
There are two reasons for this. First, even though edge costs in GGy are greater than
or equal to those in G, GSTREE(G,) may be luckier than GSTREE(G,) and compute a
tree T, whose cost is less than that of the tree T, computed by GSTREE(G,). Secondly,
even if ¢(T,.) > ¢(Ty), it is still possible that T, leads to a shorter pre-order walk than
T;.
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Figure 4.13: Lengths of paths returned by LAZY-GMGP for ten different sets of non-
partitioned goals for Examples 1, 2 and 3

Since GSTREE is exact in the non-partitioned case, but only approximate in the
partitioned case, it is interesting to compare the lengths of the multi-goal paths
obtained with LAZY-GMGP in the partitioned case with the lengths of paths also
computed by LAZY-GMGP for non-partitioned problems generated by picking one goal
at random from each goal groups. In fact, the three non-partitioned examples used
to produce Table 4.1 were generated in this way, and all three lengths reported in
Table 4.2 by solving the partitioned problem are significantly better. We conducted
more experiments summarized in the three bar graphs of Figure 4.13. Each graph
reports the lengths of the paths computed by LAZY-GMGP on 10 non-partitioned
problems for Example 1, 2, or 3. In each of these problems, every goal was picked at
random from the corresponding group of five goals used in the partitioned problem. In
most cases, the paths are significantly longer than the corresponding paths computed

by LAZY-GMGP on the partitioned problems.

4.6.3 Improved lazy algorithm

We noted above that in the partitioned case, the speedup achieved by LAZY-GMGP
over NAIVE-GMGP is much smaller in Example 3 than in the other two examples.
Table 4.2 reveals that, in Example 3, evaluating GSTREE takes more than 99% of
the total running time of LAZY-GMGP. In fact, because the total number of goal
configurations (250) is much larger than in the other examples, the running time of

GSTREE dominates that of PATH, which violates the assumption on which the design
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2.1. Ogstree < TIME(GSTREE)

2.2, dpatn < 0

2.3. Repeat while ¢(T") < o X K Or dpatn < Ogstree
2.3.1. If all edges in T are exact
23.2. thenif¢(T)<axk

2.3.3. then return multi-goal path defined by PREORDER-WALK (7))
2.3.4. else exit loop 2.e
2.3.5. else

2.3.6. Pick a non-exact edge e = {gir, g;i} in T’
2.3.7.  Modify G, by resetting the cost of e to £(PATH(gix, ;1))
2.3.8.  Opath ¢ Opatn+TIME(PATH)

Figure 4.14: Replacing Step 2.3 of LAZY-GMGP by the above steps results in LAZY-
GMGP-2, an improved version of the lazy planner when the running time of TOUR is
greater than that of GSTREE

of LAZY-GMGP is based.

This observation led us to create a variant of LAZY-GMGP — we call it LAZY-
GMGP-2 — in which we balance the total times spent evaluating GSTREE and PATH.
We obtain LAZY-GMGP-2 by replacing Step 2.3 of LAZY-GMGP with the steps shown
in Figure 4.14. The function TIME(z), where x = PATH or GSTREE, returns the time
spent in the last evaluation of z. Thanks to the test at Step 2.5.2, Theorem 1 still
holds for LAZY-GMGP-2. While LAZY-GMGP assumes that finding a good tour in
G with given edge costs is faster than computing the exact cost of an edge in G
by running PATH, LAZY-GMGP-2 operates under the more relaxed assumption that
finding a tour in G is only faster than computing the exact costs of all the edges in
G.

Table 4.3 reports the results obtained with LAZY-GMGP-2 on the three examples.
As expected, LAZY-GMGP-2 is much faster than LAZY-GMGP in the third example,
and marginally faster than LAZY-GMGP on the other two examples. Hence, it is
always much faster than NAIVE-GMGP. In all the three examples, the lengths of the
paths computed by LAZY-GMGP-2 are similar to those computed by LAZY-GMGP.
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LAZY-GMGP-2
Ex.1 Ex.2 Ex.3
Total-time 214.69 419.95 9621.64
Total-length | 11.61  19.41 17.22
#PATH 50 86 198
#GSTREE 51 37 32
Time-PATH 207.17 24298 427.94
Time-GSTREE 7.52 176.97 9193.70

Table 4.3: Results obtained with LAZY-MGP-2 when each goal group contains 5 con-
figurations and « = 1 (all times are in seconds)

LAZY-GMGP-2 has an interesting additional property over LAZY-GMGP. In a
worst-case example, like the one shown in Figure 4.6, GSTREE is called O(r?) times.
If the number r + 1 of goal groups grows very large, then each run of GSTREE may
get much more costly than a run of PATH, so that LAZY-GMGP may become much
slower than NAIVE-GMGP. Instead, in such an example, LAZY-GMGP-2 spends about
the same total time evaluating GSTREE and PATH. Hence, in the worst case, LAZY-
GMGP-2 can only be at most twice slower than NAIVE-GMGP. However, such a case
is very unlikely in practice, and in all the examples on which we have experimented
our planners, NAIVE-GMGP is significantly slower than both LAZY-GMGP and LAZY-

GMGP-2.

4.6.4 Influence of parameter «

Here, we measure the impact of the parameter « on the performance of LAZY-GMGP.
The three plots in Figure 4.15 correspond to the three examples of Figures 4.9, 4.10,
and 4.11, with non-partitioned goals. Each plot shows three curves that respectively
represent the total running time of LAZY-GMGP, the length of the computed multi-
goal path, and the number of evaluations of PATH when « grows from 1 to 3. Again,
each value is averaged over 50 independent runs.

These plots indicate that the number of calls to PATH and consequently the running

time of LAZY-GMGP first decrease sharply when « increases, but then level out. In
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Figure 4.15: Running time of LAZY-GMGP, length of solution, and number of calls to
PATH on Examples 1, 2, and 3 when o« grows from 1 to 3
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fact, when the value of o gets greater than a certain threshold vy, Step 2 of LAZY-
GMGP returns a solution at the first cycle. Then, the average running time of LAZY-
GMGP stops improving. The value oy depends on how well the lengths of the straight
line segments joining all pairs of goals approximate the lengths of the collision-free
paths computed by PATH. The tighter the approximations, the lower the threshold.

In our examples, oy ranges between 1.2 and 2.3.

4.7 Conclusion

The main contribution of this chapter is a new PRM-based planner LAZY-GMGP
for solving multi-goal motion planning problems (MGP). The objective in MGP is
to compute an optimal or near-optimal collision-free path for a robot arm through
several goal configurations given as input. The order in which the robot should visit
the goal configurations is not given and must be automatically determined. MGP
can be seen as a generalization of the classical goal-to-goal shortest path problem. In
fact, MGP combines two notoriously hard sub-problems in computer science — the
collision-free shortest-path and the traveling-salesman problems (TSP). MGP occurs
in many basic industrial operations, such as in spot-welding, car-painting, inspection,
and measurement tasks.

NAIVE-GMGP, a naive algorithm to solve the MGP, uses a single-query PRM
planner to find a collision-free path between every pair of goal configurations — hence
quadratic number of times — to determine a near-optimal multi-goal tour. Since
invoking a PRM planner quadratic number of times could be prohibitively expensive,
the main challenge for LAZY-GMGP has been to avoid computing paths between every
pair of goal configurations and still be able to determine a multi-goal tour as good as
the one that NAIVE-GMGP would determine.

LAZY-GMGP generates a near-optimal tour of the goal configurations. It operates
under the assumption that finding a tour in a goal graph with edges of given cost is
much faster than finding the exact cost of all the edges in the graph. The algorithm
can handle both the case where the goals are non-partitioned (then each goal must

be visited once) and the case where the goals are partitioned into groups (then each
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group must be visited once). The partitioned case typically occurs when each goal is
specified by the placement of the robot’s end-effector and the robot’s IK gives several
solutions. It is much harder than the non-partitioned case. Our solution makes use
of a recent approximation algorithm for the group Steiner tree problem [26].

As mentioned before, LAZY-GMGP tries to compute as few goal-to-goal paths as
possible. For this purpose, it uses the minimum spanning tree of a weighted goal graph
(non-partitioned case) or a near-minimum group-spanning tree (partitioned case) to
decide which goal-to-goal paths to compute. It returns a solution guaranteed to be
within the same approximation factor of the optimal path as the solution returned
by the naive algorithm that first computes all goal-to-goal paths. Experiments show
that in general the lazy algorithm LAZY-GMGP invokes a PRM planner to compute a
goal-to-goal path much less frequently than NAIVE-GMGP and hence is much faster,

while producing paths of similar lengths.



Chapter 5

Manipulation Planning for

Deformable Linear Objects”®

5.1 Introduction

There are many important tasks, such as surgical suturing, assembling and manip-
ulating cable harnesses, laying out household carpets, and handling fabric, where it
is necessary to manipulate deformable objects. However, so far research in manip-
ulation planning (including PRM-based) has mainly focused on manipulating rigid
objects. In this last chapter we consider the problem of planning for manipulation
of a deformable linear objects(DLO), such as a rope, a cable, or a suture, with robot
arms. The two main challenges arise when trying to apply the PRM approach to this

class of planning problems:

e DLO exhibits a much greater diversity of behaviors than a rigid object, by taking
many different shapes when submitted to external forces. It may interact with
other objects (sliding and knotting) and also with itself (to form self-knots).
While planning the complete sequence of robot motions which achieves the

desired goal, the planner must keep track of how the shape of the deformable

*This chapter is based on the conference publication: “Motion Planning for Robotic Manipulation
of Deformable Linear Objects”, International Symposium on FExperimental Robotics, July 2006.
Pekka Isto and Jean-Claude Latombe are the co-authors in the publication.
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object is altered. The physical behaviors are different for different DLOs. The
planner should not rely on any particular type of DLO and should be able to
generate manipulation plans for various DLOs, ranging from ropes to thin nylon

surgical sutures.

e Unlike in more traditional motion planning problems, the goal is a topological
state of the world, rather than a geometric one. For instance, if the task is
to wind a cable around an object, it is more important to achieve the desired
number of wounds than any specific shape. Similarly, when tying a knot with

a rope, the exact geometry of the knot is not important.

The contribution of this chapter is a new PRM motion planner for manipulating
DLOs and tying knots (self-knots and knots around simple static objects) using co-
operating robot arms. We blend new ideas with pre-existing concepts and techniques
from knot theory, robot motion planning, and computational physical modeling of
DLOs. Our planner does not depend on any particular physical model of the DLO.
Instead, it takes a model as input, in the form of a state-transition function. The
goals to be achieved are specified as topological states of the world. The planner
constructs a probabilistic roadmap that is biased toward achieving the goal topology
of the goal state of the DLO. During roadmap construction, the planner tests that
the grasp points on the rope are accessible by the arms without collision. The planner
assumes that simple static sliding supports (independent of the robot arms), which
we call needles (by analogy to the needles used in knitting) are available and can be
used when needed, to maintain the integrity of certain portions of the DLO during
manipulation. A novel method is used to account for the interaction of the DLO
with simple rigid objects. Curve representations of the objects, obtained from their
skeletonization, are “chained” with the DLO to produce a composite semi-deformable
linear object (sDLO). Thereafter, the problem reduces to that of tying self-knots with
the composite sDLO. We implemented the planner and tested it in simulation and
with real robots.

The implemented planner was tested in simulation to achieve various knots like

bowline, neck-tie, bow (shoe-lace), and stun-sail. We also used it to tie bowline knots
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with various household ropes on a hardware platform with two PUMA 560 robots.
The rest of the chapter is organized as follows. Section 5.2 introduces the prob-
lem of planning for robotic manipulation planning of deformable linear objects. Sec-
tion 5.3 relates our work to previous work. Section 5.4 describes our modeling strategy
for DLOs. Section 5.5 precisely formulates the class of manipulation planning prob-
lem that our new planner addresses. Section 5.6 provides a technical description of

our new planner. Section 5.8 presents experimental results.

5.2 Planning for Robotic Manipulation of DLOs

Robotic manipulation of rigid objects is a rather well-studied problem. Here, we are
interested in manipulating deformable linear objects (DLOs), such as ropes, cables,
and sutures. Progress in robotic manipulation of DLOs can benefit many application
domains, like manufacturing, medical surgery, and agriculture, where DLOs are ubig-
uitous. It can also benefit humanoid robots, since tying knots is a common activity
in daily life. However, DLOs add a number of difficulties to the manipulation task.
They exhibit a much greater diversity of behaviors than rigid objects, by taking many
different shapes when submitted to external forces. In particular, self-collisions are
possible and must be considered. Furthermore, the manipulation of DLOs almost
inevitably requires two, or more, arms performing well-coordinated motions and re-
grasp operations. Finally, the topology of the goal state of a DLO is usually far more
important than its exact shape.

Figure 5.1 shows two typical problems enoucntered while manipulating DLOs. In
Figure 5.1(a), a segment of rope is initially unwound. Figures 5.1(b) & (c) depict two
types of goal states in which the rope forms a self-knot (bowline) and winds around
some static objects, respectively. Our planner does not depend on any particular
physical model of the DLO. Instead, it takes a model as input, in the form of a state-
transition function. Using this function and the model of the robot arms, the planner
constructs a probabilistic roadmap in the configuration space of the DLO. The sam-
pling of this roadmap is biased toward achieving the topology of the goal state of the

DLO. During roadmap construction, the planner tests that the grasp points on the
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Figure 5.1: Initial (a) and goal (b)-(c) states in a manipulation problem

rope are accessible by the arms without collision. The planner assumes that simple
static sliding supports (independent of the robot arms), which we call needles (by
analogy to the needles used in knitting) are available and can be used when needed,
to maintain the integrity of certain portions of the DLO during manipulation. A
novel method is used to account for the interaction of the DLO with simple rigid
objects. Curve representations of the objects, obtained from their skeletonization,
are “chained” with the DLO to produce a composite semi-deformable linear object
(sDLO). Thereafter, the problem reduces to that of tying self-knots with the compos-
ite sDLO. We implemented the planner and tested it in simulation. We demonstrated
its effectiveness by tying commonly used knots like bowline, neck-tie, bow (shoe-lace),

and stun-sail.

5.3 Related Work

5.3.1 Manipulation planning

Robot manipulation planning with rigid objects was first addressed in [113]. The ran-
domized algorithm proposed in [70] generates motion paths for multiple cooperating

manipulators to manipulate a movable rigid object. The algorithm assumes that a
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set of discrete grasps is given as input. The algorithm proposed in [106] works with
continuous sets of grasps of rigid objects but plans for a single manipulator. The re-
grasp is done by releasing the object. In the case of a DLO, releasing the grasp makes
the DLO very unstable due to its deforming nature. An algorithm for planning paths
for elastic objects, especially for flexible plates and cables, is presented in [77]. This
algoritm plans motions only for the object, not for the manipulator. The problem of
path planning for DLOs in presence of obstacles is addressed as a variational prob-
lem in [109]. Their formulation does not consider the manipulator either. All these
works focus on geometric planning while we focus on topological planning, because
while manipulating DLOs, especially to tie knots, it is more important to achieve an

acceptable topology than a specific geometry.

5.3.2 Application of knot theory in robotics

Knot theory provides means to capture and analyse the topological states and state
transitions of a DLO [2]. Its applications in robotics include work presented in [88].
Like us, they present a data structure for describing the state of a DLO as a sequence
of signed crossings. State transitions are caused by Reidemeister moves and a crossing
operation that moves the end of the DLO over another part to make a new crossing.
Similar ideas are being used in [110] to build a vision guided robot system for one-
handed manipulation of a DLLO with the aid of the floor. However, collision constraints
and the physical behavior of the DLO are not considered during the planning phase.
In [72], motion planning techniques from robotics are used to untangle mathematical

knots.

5.3.3 Vision-based DLO manipulation

The difficulty of accurately modeling deformable objects has motivated vision-based
approaches to DLO manipulation. Among other examples, in [85], methods for DLO
modeling, recognition, and parameter identification are presented, which have been
embedded in a system capable of tying a rope around a cylinder with two manipu-

lators. In [100], a sensing-based method is proposed for picking up hanging DLOs.



CHAPTER 5. PLANNING FOR DEFORMABLE LINEAR OBJECTS 119

Figure 5.2: Representation of a DLO

The implementation of our proposed manipulation planning algorithm could be used
on the sensing and manipulation hardware, developed in these works (and in [88]),

to achieve real-life manipulation of DLOs.

5.4 Modeling a Deformable Linear Object

5.4.1 Geometric model

We describe the geometry of a DLO by a curved cylinder of length L and circular
cross-section of constant non-zero radius (see Figure 5.2). The axis of this cylinder

is a smooth curve c parameterized by the Euclidean length s along the DLO, i.e.:
c:s5€[0,L] = c(s) € R3,

where ¢(0) is the tail of the DLO and ¢(L) its head. Whenever the physical model of
the DLO includes torsion or twist, we also attach a Cartesian coordinate frame FE(s)
with each point ¢(s) as shown in Figure 5.2. We call ¢ = (¢, E) a configuration of
the DLO.

5.4.2 Physical model

Designated points located at si,..., sy on the DLO are grasp points. These are the
only points whose positions c(s;) and orientations E(s;),7 = 1,..., k, can be directly
controlled by the robotic manipulation system.

The physical model of a DLO is given in the form of a state transition function f

that maps both a configuration ¢,4 of the DLO and a k-vector u of small displacements
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Figure 5.3: (a): The crossings in the “figure-8” knot. (b): The sign convention for
the crossings

of the grasp points (the control input) to a new configuration ¢ne,. We assume that
both ¢, and ¢y, are stable configurations, although the DLO may exhibit dynamic
behavior (e.g., snapping) during the transition from guq t0 ¢new. We do not consider
elapsed time between ¢,q and ¢ne,, although it could be easily added to the model.

We assume that the model in f handles collisions with obstacles, as well as self-
collisions, so that the DLO does not “jump” over itself or obstacles. In addition, if
u would cause violations of physical constraints associated with the DLO, e.g., over-
stretching, then the function f indicates that the execution of v is impossible. As we
do not allow the robot arms to touch the DLO at points other than the grasp points,
f reports failure if it detects a collision between the DLO and an arm.

Several physical models of DLOs proposed in the literature (e.g., [18, 33, 92, 94,

111]) are relevant to the construction of f.

5.4.3 Topological model

We characterize the topology of the DLO at some configuration ¢ = (¢, F) by means
of its crossing configuration [2]. A crossing configuration is defined with respect to a
reference plane P. Let ¢’ be the projection of ¢ into P. The crossing configuration
of ¢ with respect to P is defined only when no more than two points in ¢ project to
the same point in P. Morever, for any two points a and b in ¢ that projects to the
same point ¢’ = b’ in P, ¢’ must admit two distinct tangents at o' = &', which are the
respective projections of the tangents to ¢ at a and b. Then a crossing X in P is any
point on ¢ that is the projection of two distinct points of c.

Let ¢(s1) and c(sg), with s; < sy, be the two points on ¢ that projects to the
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crossing X in P. Let 7y and 75 be the projections of the tangent to ¢ at c¢(s;) and
c(s2), respectively. The status of X is said to be over if ¢(s1) lies above ¢(s2) with
respect to P, otherwise it is under. Moreover, X is assigned a sign. This sign is + if
(1) X is over and the counter-clockwise angle between 7, and 7» is less that 7, or (2)
X is under and the clockwise angle between 71 and 75 is less than 7. The sign of X
is - in all other cases. The sign convention is also depicted in Figure 5.3(b).

Suppose that ¢ has n crossings X, ..., X,,. Let us “walk” along ¢ from s = 0 to
s = L and assign the integral labels 1,...,2n in increasing order to the crossings as
they are encountered. Since each crossing X is encountered exactly twice, it receives
two distinct labels X} and X7. Figure 5.3(a) illustrates the labeling of crossings in
the “figure-8” knot. The crossing configuration of ¢ with respect to P is defined by
the set of triplets:

{(X]la X]27 6j)}j:1,...,n-

where €; denotes the sign of the crossing X;. Morever, the over/under status as-
sociated with X; can be encoded by assigning opposite signs to X; and X7. In
Figure 5.3(a) and in the rest of the chapter we will ignore the signs, when listing the
crossings, for the sake of compactness.

Note that many configurations ¢ of a DLO can achieve the same crossing config-
uration with respect to P. We denote by C(z) the set of all configurations ¢ of the

DLO that achieve a crossing configuration x.

5.5 DLO Manipulation Planning Problem

A DLO manipulation planning problem is defined by the following inputs: the radius
and length L of the DLO, the coordinates si,...,s; of the grasp points, the state
transition function f, an initial configuration g;,; of the DLO, a reference projection
plane P, a goal crossing configuration 4., of the DLO, a model of the robot arms
forming the manipulation system, and a set of fixed obstacles.

The solution to this problem is a sequence of collision-free paths of the robots that

achieve the goal crossing configuration x40, Wwith respect to P, that is, a configuration
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q € C(zga). Any two consecutive paths are separated by (re-)grasp operations.
During the manipulation, the robots are not allowed to touch the DLO, except at
the grasp points. The DLO is allowed to touch obstacles. The transition function
f models the interaction between the DLO and the obstacles, and rejects attempted
moves that cause the DLO to touch an arm.

In the rest of this chapter, we make the following assumptions:

e The DLO admits only two point grasp, located at s = 0 (tail) and s = L (head).

The tail of the DLO is fixed at some given position and orientation.

e The robotic system consists of two arms, which can both grasp the DLO’s head.
At any point of time, a single arm moves the head, but both arms simultaneously

grasp the head to eventually switch grasp.

e In its initial configuration ¢;,;, the DLO has no crossing in P (we say that it is

unwound).

e Simple passive/static sliding supports, which we call needles (see Section 5.6.3),
are available and can be used to maintain the integrity of certain portions of

the DLO during manipulation.

In Section 5.7 we will extend the definition of a crossing configuration of a DLO
to take obstacles into account, in order to tie knots around obstacles or, instead, to

avoid undesired loops of the DLO around obstacles.

5.6 Planning Approach

5.6.1 Forming sequence

The first step of our planning approach is to ignore the manipulating arms and derive
a “qualitative” plan, which we call the forming sequence of the crossings in the goal
topology % g0 of the DLO. It will be used later to bias the sampling of a probabilistic
roadmap in the DLO’s configuration space.

Suppose we walk along the DLO, in a given configuration, from its tail to its

head. We say that a crossing is formed when it is encountered for the second time.
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Figure 5.4: A knot can be tied crossing-by-crossing in the order implied by its forming
sequence. The above figure illustrates this fact for the “figure-8” knot, whose crossing
configuration is {(1,6),(2,5),(3,8),(4,7)} and the associated forming sequence is

((2,5),(1,6),(4,7),(3,8)).

Figure 5.5: The loop structure for the “figure-8” knot

Forming sequence is the sequence in which crossings are formed during the walk.
Alternatively, if the goal crossing configuration is zgow = {(X},X7)}j=1,..n, then
its forming sequence is ((X},Xf))j:jl,___,jn, where {71, 2, ..., jn} iS a permutation of
{1,2,...,n} such that ka < Xfl if k < 1. Qualitatively, knots can be tied crossing-by-
crossing in the order implied by the forming sequence of the goal crossing configuration

(see Figure 5.4).

5.6.2 Loop structure

The loop structure is built to later identify portions of the DLO whose integrity must
be maintained during manipulation by means of needles (see Section 5.6.3). Let ¢’ be
any curve in the reference projection plane P that forms the crossings defined in xgq-
Let us draw ¢’ from the tail to the head. Each time a crossing is formed, either a new
loop is created, or an existing loop is split into two loops. For example, in Figure 5.5,
the crossing (2,5) is first formed, which creates the loop denoted I; then crossing (1,6)
creates loop II and crossing (4,7) creates loop III; finally, crossing (3,8) splits loop I
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Figure 5.6: (a): Reidmeister move I (b): Reidmeister move 11

into two loops denoted by I-a and I-b. The loop structure is the hierarchy of all the
loops thus formed. The root of this structure points to the newly created loops (I, II,
and IIT in Figure 5.5). Each loop in the structure that has been split (only loop I in
Figure 5.5) points toward the two loops resulting from that split. The structure may
have arbitrary many levels.

During manipulation, it is critical to maintain some loops sufficiently wide open,
so that they can later be split. In addition, some loops could be undone by pulling the
head of the DLO. The planner guarantees the integrity of all such loops by introducing

needles through them, as described below.

5.6.3 Pierced and slip loops

Reidmeister moves are a classical technique used in knot theory to simplify crossing
configurations without changing the topology of a knot [2]. Figure 5.6 shows the
Reidmeister moves I and II. We do not use such moves to simplify the input goal
crossing configuration z4,,. Instead, we assume that the planner’s user has appropri-
ately described x40, so that all the loops it implies are desired loops. However, since
common knots do not contain arbitrary loops, we make some additional assumptions
about the loops that x 4., may imply.

Let us say that a goal crossing configuration of a DLO in P is tight if it cannot be
simplified (i.e., no crossing can be removed) by any Reidmeister move and its forming
sequence is alternating, i.e., the successive crossings in the sequence are alternately
over and under. The crossing configuration depicted in Figure 5.3(a) is tight.

In a tight goal crossing configuration, each split loop O (loop I in Figure 5.5) is

eventually pierced, meaning that split occurs just after two consecutive crossings of
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Figure 5.7: (a): After a loop has been created, it is not guranteed that its size will
be maintained during further manipulation (b): Passive/static sliding supports (tri-
needle) is used to maintain the size of the loops to be pierced in future.

Figure 5.8: A semi-tight configuration

different over/under status are formed. O must be wide enough to make it possible
for the robot arms to move the head of the DLO through it. The planner achieves this
condition by using a tri-needle. The role of the tri-needle is illustrated in Figure 5.7.
Its size depends on whether any of the two loops resulting from the split of O will be
split in turn. The tri-needle could be defined in many ways. Here, it consists of three
thin straight bars inserted through the loop perpendicular to P.

We also allow 404 to be semi-tight. A semi-tight crossing configuration is one in
which (1) at most two consecutive crossings in the forming sequence have the same
over/under status and (2) any two consecutive crossings (X, X7) and (Xy, X7) in the
forming sequence that have the same over/under status are such that [ X} — X} | =1
and |X? — X7?| = 1. Figure 5.8 shows a semi-tight crossing configuration. Most
practical knots that rely on friction along the DLO for their integrity (e.g., shoe-lace
knot) yield semi-tight crossing configurations. In such a configuration, a loop bounded
by a curve segment joining two consecutive crossings with the same over /under status
is called a slip loop. In Figure 5.8 there are two slip loops shown with striped
interiors. To prevent a slip loop from being undone during manipulation, a mono-
needle perpendicular to P is used, as shown in Figure 5.9. Pierced loops in semi-tight

crossing configurations are handled with tri-needles as previously described.
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slip-loop

Figure 5.9: A needle, inspired from real-life (right figure), is used to preserve a slip
loop.

step 2
make a loap

step 3 ;tep 4
reach thru loop grab string and pull thru

Figure 5.10: In real life, sliding supports (fingers in (a) and scissors in (b)) are
commonly used while tying knots.

We assume that the goal crossing configuration . is either tight or semi-tight.
Once 2444 is achieved, all needles can be removed by translating them perpendicular
to P.

The needles are structural supports along which the DLO can slide during ma-
nipulation. They are inspired from the way people use their extra fingers and tools
during manipulation. While two fingers in one hand (usually, the thumb and the
index) are used to grasp a DLO, other fingers are often used to maintain the integrity

of loops (see Figure 5.10(a)). Tools such as scissors and needles may also be used as

sliding supports (Figure 5.10(b)).
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Algorithm TWO-ARM-KNOTTER (¢init, Zgoal, P)
1. F'S, < Forming-Seq(Z4oa1), Hy < Loop-Struct(F'S,)
2. T.Insert(NULL, ¢n;t)
3. Loop Max times
3.1. Pick ¢ from T with a probability measure biased towards zgsq
3.2. Pick control vector u at random
3.3. Gnew < [(q,u)
3.4. Return to Step 3 if:
- f returned that the move is impossible, or
- the forming sequence of g, is not a sub-sequence of F'S,
3.5. Inspect H, and add needles if needed
3.6. Return to Step 3 if the arms cannot perform u
3.7. T.Insert(q, ¢new)
3.8. If gnew € C(Tgour), then exit with manipulation path
4. Exit with failure

Figure 5.11: The DLO manipulation planning algorithm

5.6.4 Motion planning algorithm

The algorithm is shown in Figure 5.11 (also see Figure 5.12). At Step 1 it computes
the forming sequence F'S; and the loop structure H, of x4,. Then it constructs a
tree-shaped single-query probabilistic roadmap 7" in the DLO’s configuration space.
Our approach is similar to those proposed in [52] and [73] to plan trajectories under
kinodynamic constraints. The roadmap 7T is a tree rooted at the initial configuration
Ginit- Each node of T is a sampled configuration of the DLO and each edge is a
transition computed by the state-transition function f (see Section 5.4.2). T is built
iteratively. At each iteration (Step 3), the algorithm selects a node ¢ from T (Step
3.1) and a small move of the DLO’s head u (Step 3.2), and evaluates f(g,u) to obtain
a new configuration gy, which is then inserted in 7" as a successor of ¢ (Step 3.7).
However, before ¢, is added to T, the algorithm checks that a number of condi-

tions are satisfied. Any violation of these conditions leads to start a new iteration at
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o -

Figure 5.12: Our manipulation planning algorithm works by growing a tree-shaped
probabilistic roadmap in the topologically-partitioned configuration space of the DLO.
The tree is grown until it discovers the goal subspace where all configurations have
the same topology characterized by the crossing configuration z .. The initial DLO
configuration and the goal subspace is separated by a sequence of subspaces (state-1,
..., state-n). The subspace state-i consists of all DLO configurations whose crossing
configuration is a subsequence of F'S, (forming seqence of z444) formed by the first
crossings of F'S,.

4

initial DLO configuration and
probablistic roadmap root

Step 3. First, f(g,u) must have indicated that the control vector u is possible (see
Section 5.4.2). If this is the case, the planning algorithm verifies that the forming
sequence at gney is a subsequence of F'S; beginning at the same crossing as F'S, (this
causes the topological biasing of T'). If yes, it checks whether new needles are needed
and adds them (they then become obstacles). Needles are placed when a slip or split
loop is about to be formed, as indicated by H,. They are placed along the DLO where
the loop is expected to be formed (see Figure 5.13). However, the planner does not
plan for the manipulation of the needles. It can be done with the help of additional
manipulators and some movable fixtures for the needles. Throughout the planning,
the crossing configuration of x,.,, is determined with respect to P. Next, the planner
checks that the robot arm currently grasping the head of the DLO can track the
motion of the DLO’s head without colliding (using the arm’s IK). If not, it checks
whether the other arm can perform the motion instead, after a grasp switch between
the two arms at ¢q. The collision free motion of the arms for performing a grasp
switch can be computed using any single-query probabilistic-roadmap planner [27].
In our implementation, we use the SBL planner [104]. The motion of the arms and

the needle placements are stored along with ge, in 7.
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Figure 5.13: Suppose a split loop is created when the crossings Y followed by X are
formed. A tri-needle is placed, just after YV is formed, along the DLO in the region
infered by matching the crossings associated with the current configuration of the
DLO and the crossings in x4, which define the loop.

The planner succeeds when it achieves a configuration ¢ne, € C(Zgoa), Which
occurs when the number of crossings in ¢, is equal to the number of crossings in
Tgoai- 1t Teturns a manipulation path, retrieved by backtracking from gue, t0 Qinit
in T, which consists of sequence of collision-free paths of the robots, separated by
(re-)grasp operations, and the description of needle placements. The planner fails if
it has not achieved a desired configuration after a specified number of iterations at
Step 3.

At Step 3.1, the configuration q is selected at random among the nodes currently
in 7', with a probability measure that favors the nodes with more crossings, since
they are topologically closer to C(zgoa). At Step 3.2, the control vector u is a small
move of the DLO’s head selected uniformly at random. Here, one can also bias this

choice to favor the creation of the next crossing in F'S,.

5.7 Tying knots around static rigid objects

So far, we have focussed on achieving topological states of a DLO defined with respect
to itself, i.e., tying self-knots. But in many applications, DLOs also knot around static
objects. Here, we provide a simple technique to account for the topological interaction
of a DLO with static objects for which curve representations exist. We say that for a
given object B, its curve representation exists if there exists a curve r(B) such that
any point in B is within ¢ distance from r(B), where § is small compared to the

length of the curve. Examples of such objects are torus, cylinders, and long bars. In
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Figure 5.14: A composite semi-deformable linear object sDLO is constructed by
chaining the curve representations of the rigid objects with the DLO axis. There-
after, sDLO is used to account for the topological interactions of the DLO with rigid
objects in the environment.

the case of a torus, the curve swept by the center of its generator conic and in the case
of cylinder its central axis could be chosen as their curve representations. In general,
curve representations can be obtained by skeletonizing the objects by the methods
presented in [40] and pruning less prominent branches of the skeletal tree to obtain a
curve.

We will account for the interaction of the DLO with rigid objects by defining a
composite semi-deformable linear object (sDLO), and work with the crossing con-
figuration of the sDLO thereafter. Let S be the set of curve representations of the
concerned static objects. sDLO is created by “chaining” the curves in S and c se-
quentially, ¢ being the last (see Figure 5.14). There will be virtual links connecting
consecutive curves in the sequence. We will ignore the crossings between the curves
in S, and also any associated with the virtual links.

Here we choose a reference projection plane such that the curves in .S are minimally
distorted after projection. This reduces the possibilities of crossings, between the
projections of a curve in S and the DLO axis ¢, lumping into a small region. Any
plane parallel to the one that minimizes the sum of squares of distances between
the points of the curves in S and the plane could be used. However, it is difficult
to choose a good plane in situations when a plane suited for one object is bad for

another object, or when an object is not quasi-planar.
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5.8 Experimental Results

We implemented the DLO manipulation planner TWO-ARM-KNOTTER in C++ and
ran knot-tying experiments on a 1.5GHz Intel Xeon PC with 1GB RAM. In this
implementation, we use the physical model of a DLO described in [111], which takes
into account the essential mechanical properties of a typical DLO such as stretching,
compressing, bending and twisting, as well as the effect of gravity. It manages self-
collisions efficiently and also accounts for the interaction of the DL.O with other static
objects in the environment. We tuned the parameters of the rope model such that
the simulated rope “visually” behaved like a typical rope, as one of its ends was
being manipulated and the other end was kept fixed. Two robot arms, each with 6
degrees of freedom, are used to perform the manipulation. The videos of the results
are available at: http://ai.stanford.edu/~mitul/dlo.

5.8.1 Results in simulation

Figure 5.15 shows sequences of snapshots from the manipulation motions generated
by the planner for five manipulation problems. In the first four sequences, the goal
is to tie common knots, respectively bowline, neck-tie, bow (shoe-lace), and stun-
sail. In the fifth sequence the goal requires winding the DLO around static objects.
Bowline and bow require one tri-needle each, while neck-tie and stun-sail require two
tri-needles each. Bow also requires a mono-needle to maintain its slip loop. The fifth
problem does not require any needle. The planner took between 10 to 15 minutes of

CPU time to generate each of these motions.

5.8.2 Test on hardware platform

We tested manipulation plans generated by TWO-ARM-KNOTTER on a hard-
ware platform made up of two PUMA-560 arms. Figure 5.16 shows sev-
eral snapshots of the two arms tying a bowline knot (see the entire video at:

http://ai.stanford.edu/~mitul/dlo). For this plan, a single tri-needle is needed as
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Figure 5.15: Sequences of snapshots along manipulation plans generated by Two-

ARM-KNOTTER for five manipulation problems.
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Figure 5.16: Two PUMA-560 arms tying a bowline knot
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Rope Material | Thickness(mm)

(a) _ polypropolene 9.66

O e— cotton 3.44

(c) _ polyester 6.48

() | N  yion 5.66
R 5.94
B plastic 4.55
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Figure 5.17: (a): Different types of ropes used. (b): Final shapes of bowline knots

achieved with different ropes.
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soon as the execution of the plan starts (see snapshot (a) of the first example in Fig-
ure 5.15). This needle, which is made of three thin aluminium rods, was hand-placed
at the position determined by the planner. We executed the same plan computed by
TWO-ARM-KNOTTER using six types of ropes with different materials and diameters
(Figure 5.17(a)). The rope model used by the planner did not exactly represent the
physics of any of these ropes. However, the execution of the plan succeeded consis-
tently on the first five ropes, but failed with the plastic rope, which turned out to
be too stiff for the motion plan. Figure 5.17(b) shows a final bowline shape obtained
with each of the first five ropes.

The ability of our planner to generate robust plans relies critically on the needles.
We consider them as key tools for manipulating deformable objects. However, both
sensory feedback and re-planning could still be used to further improve robustness,
at least to detect when the physical model used for planning is too far off for a plan

to succeed.

5.8.3 Sensitivity analysis

In the above experiment, we were actually surprised that the same manipulation plan
worked well with quite different ropes. This led us to quantify the sensitivity of plans
generated by TWO-ARM-KNOTTER to inaccuracies in the rope model. Since rope
manufacturers do not usually provide numerical values for the mechanical properties
of ropes, we proceeded in the following manner. After generating a manipulation plan
for tying a bowline using a particular rope model, we tested in simulation if the same
manipulation plan still achieves a bowline after corrupting the rope model parameters
with Gaussian noises. Table 5.1 lists the means and standard deviations (estimated
numerically) for the Gaussian distributions from which three main parameters «, 3,
and 7 of the model' were independently chosen, such that a bowline was achieved
more than 90% of the time. The mean values correspond to the original model
parameter values, used to generate the manipulation plan. The high values of the

standard deviations indicate high degree of robustness.

'In [111], a, B, and v correspond to stretching, bending, and twisting constants of the spring
primitives, respectively.
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model mean standard
parameter deviation
Q 13500 3950
15} 1250 455
0% 25 15

Table 5.1: Means and standard deviations of Gaussian distributions from which the
three main rope model parameters were chosen for the robustness analysis

5.9 Conclusion

The main contribution of this chapter is a new PRM motion planner for manipulating
deformable linear objects (DLOs) using cooperating dual robot arms to tie self-knots
and knots around simple static objects. We have blended new ideas with pre-existing
concepts and techniques from knot theory, robot motion planning, and computational
physical modeling of DLLOs. The ability of robots to autonomously manipulate DLOs
is desirable in application domains such as medical surgery (suturing), manufacturing
(loading cable harnesses and robot dresses), and service-based robotics (laying out
household cables).

Unlike a typical PRM planner, our new DLO manipulation planner achieves topo-
logical goals. This is important in DLO manipulation, because it is usually more
important to achieve an acceptable topological state of the DLO rather than an exact
geometry, especially when tying knots or winding loops around objects. Our planner
does not assume a specific physical model of the DLO. To our knowledge, it is the
first planner of its kind, i.e., we are not aware of any other planner that can generate
collision-free motions for robot arms for manipulating a DLO in an environment with
obstacles.

We have demonstrated the effectiveness of our planner by tying the popular Bow-
line knot with various household ropes on a hardware platform with two PUMA
robots, using a manipulation plan generated by the planner. Additionally in simu-
lation, the planner was tested to achieve popular knots like bowline, neck-tie, bow

(shoe-lace), and stun-sail.



Chapter 6
Conclusion

Probabilistic roadmaps have emerged as a powerful approach for solving complex mo-
tion planning problems with many degrees of freemdoms, involving complex geometry
and various types of motion constaints such as collision avoidance, non-holonomic,
kinodynamic, stability, visibility, and contact. Current PRM-based research focuses
on challenges that arise as PRMs are being applied to motion planning problems
in various scenarios. These challenges are of two types: basic (i.e., independent
of any specific problem or application — for instance the narrow passage issue) and
application-specific (for instance, dealing with deformable objects). In response to

some of these challenges, our thesis makes the following contributions:

e Dynamic Collision Checking: We proposed a new dynamic collision checker
to test path segments in configuration space or collections of such segments,
including continuous multi-segment paths, in response to the basic need of ef-
ficient collision checking in PRM planning. The main advantage of our new
checker over the commonly used fixed-resolution approach is to never miss a
collision. In addition, it eliminates the need for experimentally determining a
suitable value of the configuration space resolution parameter and its running

time compares favorably to that of a fixed-resolution checker.

e Dealing with Narrow Passages: We proposed a new retraction method

— called small-step retraction — designed to help PRM planners sample paths
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through narrow passages. The core idea underlying this method is that retract-
ing sampled configurations that are barely colliding is sufficient to speed up the
generation of roadmap milestones within narrow passages. Barely colliding con-
figurations are also relatively easy to retract out of collision. In addition, they
can be efficiently identified by running a classical collision checker on thinned

geometric models pre-computed using an MA-based technique.

e Multi-Goal Planning: We proposed a multi-goal motion planning algorithm
for a robot arm whose task requires visiting multiple goal configurations. This
algorithm generates a near-optimal tour through these configurations. It oper-
ates under the assumption that finding a tour in a goal graph with edges of given
cost is much faster than finding the exact cost of all the edges in the graph. The
algorithm can handle both the case where the goals are non-partitioned (then
each goal must be visited once) and the case where the goals are partitioned into
groups (then each group must be visited once). The partitioned case typically
occurs when each goal is specified by the placement of the robot’s end-effector

and the robot’s IK gives several solutions.

e Manipulation Planning for Deformable Linear Objects: We proposed a
new PRM-based topological motion planner for manipulating deformable linear
objects (DLOs) using cooperating robot arms to tie self-knots and knots around
simple static objects. Some examples of DLOs are ropes, cables, and surgical
sutures. Unlike previous PRM planners, this planner takes a topological state
of the world (the crossings of the DLO with itself and with static obstacles) as
the goal to achieve. During planning it communicates with the input physical
model of the DLO to construct a probabilistic roadmap. To our knowledge, our
planner is a first of its kind, i.e., we are not aware of any other planner that can
generate collision-free motions for robot arms which lead to DLO manipulation
in environments with obstacles. We have demonstrated the effectiveness of our
planner by tying some commonly used knots both in simulation and in real-life

on a two-PUMA robot hardware platform.
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In the future, additional research can still be done to improve on these contribu-

tions. For example:

(a) Our dynamic collision checker (Chapter 2) samples a path in configuration space
at an adaptive resolution determined by relating motion in configuration space
to motion in workspace. A similar idea could be used to determine how much to
thin objects in the workspace in order to achieve a desired amount of widening of
narrow passages in configuration space. This could lead to improving our small-step
retraction method (Chapter 3).

(b) The multi-goal planning problem addressed in Chapter 4 could be generalized
even further. For instance, in some applications, a partial ordering is imposed on
the input goals. In those cases, how to efficiently incorporate this ordering into
the multi-goal planner? When the robot kinematics is redundant, there may be
infinitely many inverse kinematics solutions. In our experiments, we pre-sampled
some of those solutions. Could a multi-goal planner deal directly with continuous
goal groups?” When goals are partitioned, for a tour to exist, it is only necessary
that one component of F' contains at least one goal from each group. So, many
pairs of goals may not belong to the same component, making it more difficult to
set a “good” time limit for PATH. Too small, and PATH may fail to find critical
goal-to-goal paths. Too large, and PATH may waste time trying to connect pairs of
goals lying in different components of F'. This issue did not arise in our experiments
because in each example F' had a single component. But it deserves more attention
in the future. It would also be interesting to investigate the multi-goal problem for

multi-robot systems, when each goal may be reached by several robots.

(c) Our DLO manipulation planner (Chapter 5) assumes that the DLO is being
manipulated through a single grasp point located at one of its end. But in practice
many knots, for instance the shoelace knot, are tied by grasping a DLO at locations
other than the end points. In the future, we would like to generalize the DLO

manipulation planner so that it can also accept grasp points at locations other than
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Figure 6.1: (a): Large number of robots involved in a manufacturing cell. (b): Con-
gested workeell (courtesy of General Motors)
the end points. Such a generalization would also make the overall manipulation

strategy and execution more complicated.

We believe that today we are at a point where one can seriously think of integrating
design and motion planning. Figure 6.1 shows photographs of robotized automotive
manufacturing cells. Designing such workcells is a tremendous challenge: (1) How
many robots are needed? (2) Where should they be placed? (3) How to maximize
cooperation between robots? (4) Is there any waste of space? The designer simulates
the workcell using computational and graphic visualization tools. Usually he/she
has to hand-design collision-free robot trajectories. An integrated motion planner
would automatically compute the trajectories. But its most appealing task would be
to prompt the designer when the targets are no longer reachable, after some robots
have been moved, added, or removed by the designer in his simulation. This use
of a planner would be similar in concept to that of an integrated spell-checker that
detects spelling errors on the fly while a text is being edited. Along the same line, the
integrated motion planner would continuously notify the designer of consequences as

he/she is changing the design parameters of the workcell.



Appendix A

Overview of SBL Planner [102]

SBL (which stands for Single-query Bi-directional Lazy-collision-checking) builds a
probabilistic roadmap made of two trees (7, and T}) of milestones, each rooted at one
of the two query configurations (s and g), until a collision-free local path connects
a milestone in one tree and a milestone in the other tree. Its efficient lazy collision-
checking strategy postpones collision tests along the edges of the roadmaps. The

overall algorithm is the following:

Algorithm SBL(s, g)
1. Install s and g as the roots of T, and T, respectively
2. Repeat K times
2.1. EXPAND
2.2. T - CONNECT
2.3. If 7 # nil then return 7

3. Return failure

Each loop of Step 2 performs two operations: EXPAND adds a milestone to one of
the two trees, while CONNECT tries to connect the two trees. SBL returns failure if
it has not found a solution path after K iterations at Step 2.

Each extension of the roadmap is done as follows:
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Algorithm EXPAND
1. Pick T to be either T}, or T}, each with probability 1/2
2. Repeat
2.1. Pick a milestone m from 7" at random,
with probability 7 ~ 1/n(m)
2.2. Fori1=1,2,...
2.2.1. Pick a new configuration g uniformly at random
from B(m, p/1).
2.2.2. If q is collision-free then install it as a child milestone

of m in T and return

The algorithm first selects the tree T' to expand. The alternation between the
two trees prevents one tree from eventually growing much bigger than the other. The
number 7(m) associated with each milestone m in 7' measures the current density
of milestones of T" around m. A milestone m is picked from 7" with probability
proportional to 1/n(m) and a collision-free configuration g is picked at close distance
(less than some pre-specified p) from m. gq is stored in 7" as a new milestone. The
probability m(m) ~ 1/n(m) at Step 2.1 guarantees that the distribution of milestones
eventually diffuses through the component(s) of free space reachable from s and g.

Step 2.2 selects a series of milestone candidates, at random, from increasingly
smaller neighborhoods of m, starting with a neighborhood of radius p. When a
candidate g tests collision-free, it is retained as the new milestone m'. The segment
from m to m’ is not checked here for collision. On the average, the distance from m
to m’ is greater in wide-open regions of free space than in narrow regions.

The connection between the two trees is performed by algorithm CONNECT:
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Algorithm CONNECT

1. m < most recently created milestone

2. m' + closest milestone to m in the tree
not, containing m

3. If d(m,m') < p then
3.1. Connect m and m’ by a bridge w
3.2. 7 < path connecting s and g
3.3. Return TEST-PATH(T)

4. Return nzl

Let m now denote the milestone that was just added by EXPAND and m' be the
closest milestone to m in the other tree. If m and m' are less than p apart, then
CONNECT joins them by a segment, called a bridge. The bridge creates a path 7
joining s and g in the roadmap. The segments along 7, including the bridge, are now
tested for collision. TEST-PATH returns 7 if it does not detect any collision and nil
otherwise. In the latter case, the segment found to collide is removed, which separates
the roadmap into two trees (in this process, some edges may shift from one tree to
the other).
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