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George John proposed an algorithm, SQUISH, for learning teleo-reactive (T-R) programs 
from teacher-guided action sequences (John, 1994).  John’s formulation of SQUISH, and 
subsequent experiments with it (Nilsson, 2000), assumed that the states traversed were 
described by vectors of sensory inputs. Here, we consider modifications to the algorithm 
to allow state descriptions consisting of ground atomic formulas in relational calculus.  
That is, the learning agent represents its world state by a collection, P, of ground atoms. 
We use examples from the blocks world to explain and illustrate the modified algorithm. 
 
Consider a world consisting of n blocks that can be arranged in any configuration such 
that some blocks are on the tops of others and some might be directly on a table.  The 
predicate forms sensed by an agent, which are used to describe its current state are 
instances of On(x,y), where x can be any block and y can be some other block or the 
table.  The blocks are denoted by letters, A, B, C, D, . . ., and the table is denoted by Ta.  
So, for example, the configurations shown on the left below would be described by the 
atoms shown on the right: 
 
 
 
 
 
 
 
 
 
 
(We don’t distinguish configurations differing only by horizontal placement of blocks.) 
 
Our blocks world agent has actions described by the action schema move(x,y), which 
moves a block denoted by x, to the place denoted by y, where y can either be another 
block or the table.  In order to apply move(x,y), the block denoted by x cannot have 
any other block on top of it, and, if y denotes a block, it cannot have another block on top 
of it either.  A move action has its intended effect on a block configuration if its 
conditions are satisfied; otherwise the action has no effect. 
 
The first phase of SQUISH proceeds exactly as John originally described.  A teacher 
guides the agent toward a goal from various initial configurations, and the learning agent 
keeps track of the states traversed and actions taken in each sequence.  The second phase 
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involves combining (“squishing”) nodes and then generalizing them.  In the case in which 
there are just two blocks, A and B, and a goal of having A on top of B, there are only two 
non-goal configurations and one goal configuration.  The only two possible different 
sequences of state descriptions that the teacher could use are: 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
The SQUISH rule for combining two sibling state descriptions leading to a parent through 
the same action specifies that the two vector-valued descriptions be replaced by their 
union, which can later be generalized to a region (see Nilsson, 2000). Applying this same 
idea to states described by logical formulas would have us replace the two sibling state 
descriptions by their disjunction, which could later be generalized. Implementing this 
combination rule in our example yields the following T-R tree: 
 
 
 
 
 
 
 
In this tree, we have eliminated the atom On(B,Ta)from the goal node since it is not  
part of the goal description. 
 
Combining the two state descriptions was easy in this case because both descriptions 
were identical. Furthermore, no generalization would be needed because the state 
descriptions used in the T-R tree are the only ones possible with only two blocks.  
Suppose, however that we add one more block.  There are then 13 possible configurations 
(of which two satisfy the goal condition of having A on B) and several possible teaching 
sequences. (A graph showing these 13 configurations appears at the end of this note.) 
Consider, for example, the following three teaching sequences: 
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Applying the combination rule (recursively from the goal and again assuming the goal 
state is described simply by On(A,B)) to these three sequences yields the following T-R 
program: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here, we have disjunctions in two of the state descriptions. Even though this T-R tree has 
been developed from inadequate teaching experience, we are interested in the problem of 
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how to generalize nodes so that they will correctly capture more state descriptions than 
those from which they were derived.   
 
Our first suggestion is to over-generalize by eliminating the disjunctions entirely 
(keeping only the atoms common to both state descriptions) and then to correct this over-
generalization by successively adding negated atoms as required by additional experience 
with the developing T-R tree.  (Negations will be handled by “negation as failure”; that 
is, an atom is assumed to be false if it cannot be proved true.) 
 
The generalized T-R tree would then be the following: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We illustrate the process of adding any necessary negated atoms by an example in which 
the above tree is used to control actions---calling on a teacher for guidance only when the 
tree fails us.  Consider the configuration described by the conjunction of On(B,A), 
On(A,Ta), and On(C,Ta).  This configuration is “captured” by the node whose action 
is move(A,B), but that action cannot be applied. Evidently it is the extra conjunct, 
On(B,A), in the state description  that prevents the action.  Suppose we add the negation 
of this conjunct to the node to prevent it from capturing this description.  This addition 
produces the following T-R tree: 
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This tree correctly handles 7 of the 13 possible configurations. The other six are not 
captured by the tree at all.  Therefore, if one of them is encountered, the system must 
appeal to the teacher.  Suppose the next situation encountered is described by one of these 
six, namely the conjunction of On(B,A), On(A,C), and On(C,Ta).  No node in the 
tree matches this description.  Suppose the teacher applies the action move(B,Ta), 
which produces the configuration described by On(B,Ta), On(A,C), and On(C,Ta).  
Again, no node matches this description.  Suppose the teacher next applies the action 
move(A,B), producing the configuration described by On(B,Ta), On(A,B), and 
On(C,Ta).  This description matches the goal.  We graft this teaching sequence onto 
the T-R tree and root it at the goal to produce the following tree: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here again, we can effect a combination. Eliminating the disjunction (but keeping the 
important negation) yields the tree: 
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One way to justify our keeping of ¬On(B,A)is to note that in one of the nodes 
participating in the combination, namely On(B,Ta),On(A,C), On(C,Ta), we 
could have added ¬On(B,A)because it is implied by the existence of On(B,Ta).  With 
this addition, On(B,Ta)occurs in both nodes to be combined and thus would be 
retained. 
 
Now there are just three configurations not captured by the tree.  Teacher-guided moves 
from these configurations lead to the following final T-R tree: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here are some additional matters not yet investigated: 
 

1) Converting a learned T-R program to one in which constants are replaced by 
variables 

2) Other ways of generalizing (and particularizing) a node 
3) Inventing new predicates 
4) Converting a learned T-R program to one that is applicable to situations with 

different numbers of blocks than the situation encountered in teaching experiences 
5) Producing recursive programs 
6) Converting common action sequences into macro-operators 
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The 13 configurations of three blocks linked by actions: 

 

 

 

 

 

 

 

 

 

 

 

 

 
 


