
ARTIFICIAL INTELLIGENCE 27

Extracting Information from
Resolution Proof Trees'

David Luckham
Stanford University, Artificial Intelligence Project,
Stanford, California

Ntis J. Nilsson
Stanford Research Institute, Artificial Intelligence Group,
Menlo Park, California

Recommended by R. Burstall

ABSTRACT
Procedures for generating proofs within a logical inference system can be applied to many
information-retrieval and automatic problem-solving tasks. These applications require
additional procedures for extracting information from the proofs when they are found. We
present an extraction procedure for proofs generated by the resolution principle. The procedure
uses a given proof to find solutions for existential quantifiers in the statement proved in terms
of known quantities in the initial data. This procedure relies heavily on basic subfunctLons in
the resolution program, so that it requires relatively little additional programming. The correct-
ness of the procedure is proved, and examples are given to illustrate how it operates and to
show that it cannot be simplified at certain points without loss of generality.

1. Introduction

Recently there have been described attempts to apply automatic-deduction
programs to information-retrieval and problem-solving tasks [1-3]. In
systems designed for these applications (often called question-answering
systems), it is necessary to extend the basic proof procedure by adding some
sort of mechanism for extracting information from the proofs that the
procedure generates.

1 The research reported here was supported in part by the Advanced Research Projects
Agency of the Office of the Secretary of Defense (ARPA Order No. SD-183 at Stanford
University); and by the Advanced Research Projects Agency of the Department of Defense
and the National Aeronautics and Space Administration (Contract NAS12-2221 at
Stanford Research Institute).

Artificial Intelligence 2 (1971), 27-54
Copyright © 1971 by North-Holland Publishing Company

2 8 DAVID LUCKHAM AND NILS J. NILSSON

The simplest illustration of this sort of application can be roughly described
as follows. Suppose a certain body of information, I, is described in first-
order logic by a set of axioms or hypotheses, S, say. Further suppose that a
question, O, about I can be formulated as "Does there exist an x such that
P(x), given the hypotheses, S?" An equivalent formulation is "Does S
logically imply (3x)P(x)7, , Then if a proof of S =~ (3x)P(x) can be found,
the answer to Q is "yes". Furthermore, in the light o f a "yes" answer, it is
reasonable and useful to ask for an example of the sort of object in I that has
just been proved to exist.

Generally, an example of the object proved to exist might be given by the
interpretation in I of an expression involving function symbols and constant
symbols occurring in S. A naive and highly impractical procedure for con-
structing such an example would be to enumerate the terms tl, t2, t3, ... in
the Herbrand universe of S and to ask simultaneously if S=~ P(t,), S ~ P(t2),
..., S =, (P(t l) v P(tz)), ... etc.

Green [4] has proposed that a special "answer predicate" be added to the
theorem being proved. Its role is to collect the substitutions made by a resolu-
tion-based proof procedure during the search for a refutation of the negation
of the theorem. Finally (after a refutation is found), the arguments of the
answer predicate are taken to be the desired instances of the existentially
quantified variables of the theorem. In this paper we shall study an alternative
procedure that extracts information from a proof after the proof has already
been found. The instances obtained using this procedure are sometimes more
(and never less) general than those found by Green's answer-predicate
method. We prove that our method yields "correct" answers; the proof also
justifies Green's method.

We must emphasize that the major problem in these applications of
proof procedures is still the problem of finding a proof. The answer-extraction
procedure should not affect in any adverse way the efficiency of the proof
procedure, either by increasing the length of the clauses or by adding to the
computation time required for some of the basic operations (e.g. by requiring
extra substitutions to be performed when resolvents are computed). Having
obtained the proof, one can then afford to spend a little extra time extracting
good answers.

Essentially, this problem of obtaining instances for the existentially
quantified variables in a theorem is well known in classical proof theory as
the "realization of existential quantifiers." Indeed, for the usual first-order
predicate calculus, if S is an open formula (e.g. a conjunction of axioms in
Skolem free-variable form) and there is a proofp of S ~ (3x)P(x) , then there
are terms tl, t2, ..., t,, composed from the function symbols of S (and a
bound on their complexity is computable from p) such that the disjunction,
P(t l) v P(t2) v ... v P(tn) is a logical consequence of a finite conjunction of
Artificial Intelligence 2 (1971), 27-54

EXTRACTING INFORMATION FROM RESOLUTION PROOF TREES 29

substitution instances of S. Also, there is a recursive operation which yields
both the terms {t~} and a propositional calculus proof of the disjunction from
the conjunction, given the original proofp. In the case where the consequence
of S has a more complicated quantifier structure (and is not purely existential)
the terms will generally be functions of some of the universal variablesn
e.g., a proof of S ~ (¥x)(3y)P(x, y) will yield a finite disjunction of the form,
v P(x, t~(x)). As Mostowski [5] puts it, "If aH existential assumptions in tho

axioms are made explicit, then all existential theorems will also be explicit."
The realization procedure will of course depend on the inference rules used
in the proof p, and its practicability may depend on p itself.

What we shall do in the following results in a new proof of this classical
meta-theorem for the case where the original first-order proof is obtained
by refutation using the Resolution Principle as the (single) rule of inference.
The procedure for extracting information results as a by-product of the meta-
proof and involves transforming the given resolution refutation in a very
simple way. It requires little extra programming since its basic subfunctions
are those of the resolution procedure.

We shall motivate the discussion by considering some examples of how
the procedure works, which will also serve to illustrate why it cannot be
simplified at certain points without loss of generality. It is assumed that the
reader is familiar with the methods and vocabulary of resolution-based
proof procedures.

2. Examples

The answer-extraction procedure modifies a resolution refutation tree to
yield a direct proof of an answer statement. Although a complete formulation
of the most general version of the procedure must provide for several fine
points, the general idea is quite simple and can be illustrated by some specific
examples.

Example 1. Consider the follov~ing set of statements:

(1) (VxYy){P(x, y) ^ POp, z) ~ G(x, z)}

(2) (Vy x){e(x, y)}.
(We might interpret these as claiming

"For all x and y if x is the parent of y and y is the parent of z, then x
is the grandparent of z,"

and
"Everyone has a parent.")

Given these statements as hypotheses, suppose we wanted to ask the
question: "Do there exist individuals x and y such that G(x, y)?" (That is,
are there x and y such that x is the grandparent of y ?)

Artificial Intelii~rence 2 (1971), 27--54

30 DAVID LUCKHAM AND NILS J, NILSSON

We pose the question as a theorem to be proved: (3x)(3y)G(x, y).
The theorem is easily proved by a resolution refutation showing the

inconsistency of the set of clauses obtained from the free-variable Skolem
form of the hypotheses and the negation of the theorem. The refutation tree
is shown below:

,,, ¢;(u, v) ,.., .n(x, y) v ,,, .nO,, z) v o.(x, z)

(negation of t h e o r e m) ~
~ P(u, y) v ~ P 0 , , v)

efg(w),w) ~ ~ 'f°(w)'w)

nil
(In this and the following examples we underline those literals unified in a
resolution.)

The clause P(o(w), w) contains a Skolem function, g, introduced to
eliminate the existential quantifier in the hypothesis (Vy3x){P(x, y)}. This
function is defined so that (Vy)P(g(y), y). (The function g can be interpreted
as a function that is defined to name a parent of any individual y.)

To extract information from this refutation telling us about what values
of x and y satisfy G(x, y), we modify this refutation tree as follows. Transform
the clause ~G(u, v) obtained from the negation of the theorem into a
tautology by adding the literal G(u, v). Performing the same 2 resolutions as
in the original refutation tree, we now obtain the proof tree: (see top ofp. 31).

This proof tree shows that (¥v)G(o(g(v)), v) follows from the original set
of hypotheses plus a tautology; thus it follows from the original set of
hypotheses alone. Moreover, the statement Oiv)G(o(g(v)), v) provides a
complete answer to the question: "Are there x and y such that x is the grand-
parent of y?" The answer in this case involves the definitional function g:
Any v and the parent of the parent of v are examples of individuals satisfying
the conditions of the question.

This simple example illustrates the general idea of the tree-modifying
process: Transform those clauses arising from the negation of the theorem
to be proved into tautologies and construct a new tree using the resolutions
of the old tree, thus obtaining a proof of a formula providing additional

2 To be made precise in the next section (Lemma 1).

Artificial Intelligence 2 (1971), 27-54

EXTRACTING INFORMATION FROM RESOLUTION PROOF TREES 31

~ ¢(u, v) v O(u, v)
llll i i ~ y) v ~ eCv, z) v ~(x, ~)

~ , , ~ y) v ~ e(v,~) v (~(=,v)

~ _. ~ . _ , ~ j r(w), w)

P(u,g(v)) v (~(u, v)

aO(g(v)), v).
information about the existentially quantified variables in the theorem.
This formula we shall call the answer statement.

Some important complications of this process will now be illustrated by
additional examples.

Example 2. In this example we shall illustrate the way in which more
complex clauses arising from the negation of the theorem are transformed
into tautologies.

Consider the following set of clauses:

(1) ,,, a(x) v F(x) v (;(f(x))

(2) ~ F(x) v B(x)

(3) ~ F(x) v C(x)

(4) ~ t ; (x) v B (x)

(5) .,.. (;(x) v D(x)
(6) aO(x)) v F(h(x)).

We desire to prove from these hypotheses the theorem:

Ox)(ay){{B(x) ^ C(x)} v {D(.v) ̂ B(.v)}}.

The negation of this theorem produces two clauses each with two literals

~ B(x) v ... C(x)

and

~ n (x) v ~ D (x) .

A refutation tree proving the theorem is shown overleaf:
Artificial Intelligence 2 (1971), 27-54

32 DAVID LUCKHAM AND NILS $. NILSSON

!
" a(X) v ~ C(x) !

, . , F(x) v ,S(x)

~ F(x)

v C (x)

~ F(x)

,,. ~x) v ~ B(x) I _
i

-"x'~~(x) v D(x)
~~iX) v ~ c,(x)

~ ~ (x) v S(x)

• ,, .4(x) v F(x) v c,(f(x))

~ A(x) A(o(x)) v FO(x))

~ F(x)
~ ~ ~ ~ . ~ F(~(x))

nil

Now to extract information by transforming this tree, we must convert
the two clauses coming from the negation of the theorem (shown in boxes)
into tautologies. Note that there are four ways in which this can be done:

(1) Add B(x) to the first clause and B(x) to the second

(2) Add C(x) to the first clause and D(x) to the second

(3) Add B(x) to the first clause and D(x) to the second

(4) Add C(x) to the first clause and B(x) to the second.

Each of these corresponds to a different tree transformation; we shall
perform all four and conjoin the results. The proof tree on p. 33 is the result
of one of the transformations:
Artificial Intelligence 2 (1971), 27-54

EXTRACTING INFORMATION FROM RESOLUTION PROOF TREES 33

,', n(x) v ~ c(x) v c(:O

,-. F(x) v n (x)

•,x••x•v•(X)
v ,,: c (x) v C(x)

c(x)

] ,~, D(x) v ~ B(x) v B(x)I
• , , _ _ _

~ F(x) v C(x) ~ G(x3 v n(x)

• ,, a(x) v F(x) v GOt(x))

~ a(x) v C (x) ~) ~ (x)) v tO(x))

,., F(x) v c(x) ~h(iO) v CO(x)) v a (fO(x)))

" ~ a (f . . ; o (x))

D(x)

~x),

The other three produce proofs for

aOCw)) v B(o(w)) v B(f(o(w)))

BO(.v)) v B(g(.v)) v z~f(g0,)))

and

co(z)) v co(z)) v D(f@(z))).

Combining all of these expressions into a formula of first-order logic yields:

(Vw)[B(h(w)) v B(g(w))v B(f(o(w)))]

^ ffx)[C(h(x)) v CO(x)) v B(f(o(x)))l

^ (vy)taO(.v)) v B(o(.v)) v DU'(o0,)))]

^ (v :) [c o (o) v co(z)) v z~f£q(z)))]
Artificial Intelligence 2 (1971), 27-54

34 DAVID LUCKHAM AND NILS J. NILSSON

which is equivalent to

{(Vx)[~sO(x) v a(o(x)) v Btf(g(x)))]

^ [co(x)) v C(g(x)) v B(fto(x)))]

^ [sO(x)) v B(g(x)) v D(f(g(x)))]

^ [c(h(x)) v c(o(x)) v D(fO(x)))]}.

Now by distribution, this formula is equivalent to

(vx){[B(o(x)) ^ c(o(x))] v [z~"(o(x))) ^ ~O"(o(x)))]
v [nO(x)) ^ CO(x))]}.

We note that, here, the answer statement has a form somewhat different
from the form of the theorem. The underlined part of the answer statement is
readily seen to be similar to the entire theorem with g(x) taking the place of
the existentially quantified variable x in the theorem, and f(g(x)) taking the
place of the existentially quantified variable y in the theorem. But, in this
example, there is the extra disjunct [B(h(x)) A C(h(x))] in the answer state-
ment. This disjunct is seen to be similar to one of the disjuncts of the theorem
with h(x) now taking the place of the existentially quantified variable x of
the theorem.

In general, if the theorem itself is in disjunctive normal form, then our
answer-extraction process will produce a statement that is a disjunction of
expressions, each of which is similar in form either to the entire theorem or
to one or more disjuncts of the entire theorem. For this reason we claim that
this statement can be meaningfully interpreted as an "answer" to the question
represented by the theorem.

Example 3. Consider the axioms describing an associative system with
right inverses and a right identity element:

(l) P(xl, g(xl), e)

(2) P(xl, e, xl)

(3) ~ P(xl, x2, xa) v ,~ P(x2, x,,, xs) |
v .'~ P(xl, xs, xe) v P(xa, x4, xe)] (4) ~- P(xl, x2, xa) v ~ P(xz, x4, Xs)
v ,~ P(xa, x , , xe) v P(xi, Xs, xe)

right inverses

right identity

associativity

Artificial Intelligence 2 (1971), 27-54

(Vx3y)ety, x, e).
In this case we seek to extract an expression for the left inverse from the,
proof of its existence.

The negation of the theorem produces the clause ~ P(y, a, e) where the,
constant "a" is a Skolem function (of no arguments) introduced to eliminate

Suppose we ask of this system, "Does every element have a left inverse ?"
To answer, we attempt to prove the theorem:

EXTRACTING INFORMATION FROM RESOLUTION PROOF M E S 3~

an existentially quantified variable. A refutation tree proving the theorem
is as ~'ollows:

~ P(x, , a, e) ~ P(x, , x2, x3) v ~ P(x=, x4, xD

(negation o ~
v ~ P(x3, x4. xD v P(xz, xs, x ,)

"" P(xs , x6, e) v ,~ P(x4, x6, a) v .~ P(x l , x4, xs)

P(x,. e. x ,)

~ P(e, xs , a) v P(x~, xs, 0

,),0_

~ e(e,o(xD, a~ ,

P(x2, x4, xs) v .., P(x l , xs , x6)

v P(x3, x4, xe)

N P(x l , xs , a) v ... P(x2, O(Xs), xs) v .~ P(x l , x2, e)

~ P(x,, e, xz)

,~ P(a,. x4, e) v P(x4, g(xlo), e)

,~ P(a, x12, e)

' ' ~ P (x , , g (x ,) . e)

nil

Artificial Intelligence 2 (1971), 27-54

36 DAVID LUCKHAM AND NILS J. NILSSON

In order to extract an answer statement from this refutation, we transform
the clause, ~ P(xl a, e), arising from the negation of the theorem into the
tautology ~ P(xx, a, e) v P(xt,.a, e). Our refutation tree then becomes:

~ P(x~,¢,e) v P(x~,a,e) ~ P(x,,x2,x3) v ~ P(x2,,x4,xs)
|

v P(x2, a, e)

P(x~,o(xO, e).

~ P(e, o(x~), a) v ~(x.., a, e)

~ P(x~, x~, x3) v ~ P(x~, x4, xs) v ~ P (xb Xs, x~)

v P(x3, x , , x ,)

~ P(xx, xs, a) v P(x.;, g(xs), xs) v N P(xl, x2, e) v P(xs, a, e)

i 1 ~ 1 i
, g(x~O, e)

~ P(a, xl~, e) v P(xjz, a, e)

~ ~,(x~, g(x,), e)
P(g(a), a, e)

e) v P(Xlo, a, e)
|

ArtO~dal Intelligence 2 (1971), 27-$4

EXTRACTING INFORMATION FROM RESOLUTION PRO~3F TREES 37

Now recall that our theorem was (¥x3y)P(y, x, e), but our transformed t r ~
is a proof of P(g(a), a, e). Our problem is how to interpret the constant a
appearing in this "answer." The constant a, alleged to have no left inverse,
was originally introduced in an attempt to spoil the conjectured theorem.
Our proof of P(o(a), a, e) shows that any such constant does in fact have a
left inverse given by g(a). Since a was arbitrary we might suspect that we
could actually have proved the stronger result (Vx)P(g(x), x, e) which would
serve as a satisfactory answer to the original question. More generally,
suppose from some set d of axioms we can prove a formula P(f(x)) using
the resolution principle. Then, by the soundness of the resolution principle,

~ (Vx)P(f(x)) is a theorem of predicate logic. Now, if f does not occur in
d , the formula d =~ (Vf)(vx)e(.f(x)) is also provable, and hence ~ ~
(¥y)P(y) is a theorem. Well known inference principles justify the replacement
of all terms beginning with Skolem functions occurring in the answer state-
ment but not in the axioms by new universally quantified variables. Such a
replacement procedure will always yield a valid answer statement, but it
might not yield the most general one as we shall show later in the paper.

3. Stage 1: Extracting Solutions to Existential Quantiiiers

We now consider the procedure and its correctness in detail. Suppose we
have a resolution proof for a theorem, T (or rather a refutation of ~ T)
from a set of axioms, S. The procedure for extracting an answer statement
breaks naturally into two stages. In the first stage we transform the refutation
tree into a proof tree of an answer statement, ANS, by converting those
clauses arising from ~ T into tautologies. It is convenient to regard ANS
as a preliminary answer to the question. We shall show that S implies ANS
and also that ANS implies T. This is used to prove similar results for the
output from the next stage.

In the second stage, terms in ANS beginning with those Skolem functions
that appear in ~ T but not in S, are replaced by variables. There are two
alternative methods. The first is simply to carry out the necessary replacement
of terms by variables on ANS itself, converting it to ANS'. The formula
ANS' is an answer to the question T in the following sense.

Suppose T is in prenex normal form, and the quantifier-free matrix of T
is in disjunctive normal form. ANS' is a disjunction of substitution instances
of conjunctions from the matiix of T (as illustrated in the examples of
Section 2), in which a variable is replaced by a functional term only if it is
an existentially quantified variable in T. Hopefully, the terms in ANS' are
correct solutions to the existential quantifiers in T. That this is in fact true:~
is established by showing: (i) S implies ANS', so the terms are provably
solutions to some question having the same matrix as T, and (ii) ANS ~
implies T, so the terms are solutions to a question that is no weaker than T.

Artificial Intelligence 2 (1971), 27-54

,38 DAVID LUCKHAM AND NILS J. NILSSON

(For example, (ii) eliminates the possibility that ANS' is a solution to
(¥x)(3y)P(x, y) whereas T is (3y)(Vx)P(x, y).) One may get an answer to a
stronger question than was asked.

The alternative method at Stage 2 involves eliminating the extra Skolem
functions from the entire proof tree of ANS. This sometimes produces more
general answers than the first (simple)method. It is described in Section 4.

3.1. Correctness of the First Stage

We assume the usual definitions and notation that have been adopted for the
theory of resolution proof trees (see [6-9]). The reader will be familiar with
"leaf node," "branch," "ordinal level," "ancestor," and such like terms.
A resolution proof tree of a clause A is denoted by Tr(A). The base set of
a proof tree is the set of clauses occurring at the leaf nodes of the tree.
The base sequence of Tr is the sequence of clauses occurring at the leaf nodes
o f Tr enumerated from left to -ight, and includes repetitions of clauses that
occur at more than one leaf.

First we need the following technical lemma about resolution proof trees.
It is closely related to Lemma 4. of Andrews [8] but is stated for the general
case instead of the ground case.

LEMMA 1. Let Tr(A) be a resolution proof tree with base set S. Let the
clause C at leaf node ~ be replaced by C u B and each clause D at a node
below ~ be replaced by the appropriate D u B'x as follows:

f"
D = (E - ,,~')o u (F -- ,~)o

and E is replaced by E u B'p, then B~p = B'p - .~, and z = po.
Then we obtain a resolution proof tree Tr'(A') isomorphic to Tr(A), having

base set S u {C u B}, and such that A' = A u BO where B ~_ B and 0 is the
composition o f the substitutions used to compute resolvents on the branch from

to root(TO.

REMARKS 1. Notice that Lemma 1 in fact contains an algorithm for con-
structing Tr' given Tr and B.

2. Notice that 0 is independent of B.
3. Clearly the lemma can be extended to allow the addition of different B's

to more than one leaf node.
Let us represent the theorem T by the form, Q.(X, ~')M(.Y, Y), where

is the quantifier prefix, 0~ is the set of universally quantified variables, Y is
the set of existentially quantified variables, and M(X, Y)is the quantifier-
free matrix. The free variable Skolem form of the negation of T may be
written in different ways, each representation reflecting greater detail, as
follows:
Artificial Intelligence 2 (1971): 27-54

EXTRACTING INFORMATION FROM RESOLUTInN PROOF TREES 39

~ T (P , = ~ M (P , Y) ,

ffi C I (F (1) , Y(1)) ^ .. . ^ e m (P (m) , Y (m)) ,
m

= A (1~1 V . . . V l~,) (P(i) , Y (i)) ,
/ffit

where P is the set of new Skolem functions replacing the existential quanti-
tiers in ~ Tin the standard way; C1, ..., Cm are the clauses in a c.n.f, expres-
sion for ~ M(P, Y); P(i) and Y(i) are those function symbols (from F) and
variables (from Y) that occur in Ci, and lit, ..., I~, are the literals of C~.
Correspondingly, we can represent the Skolem free variable form of the
unnegated statement T by,

T(X, ¢~) = M(X, ~,)
m

= v ~ c , (, Y (i) , G (O)
i = 1

m

ffi v (~ 1,1 ^ . . . ^ G(i)).
iffil

Let us denote provability by the usual rules of first order logic by I-L, and
provability by the resolution principle by I-R.

Suppose now, that T is a logical consequence of a set of axioms and
hypotheses, {A1, ..., Ap}. 3

A~ ^ . A ,4pl-,.~(X, Y)M(X, Y). (1]

By the completeness of the resolution principle, we then have,

A x ^ ... A Ap A ~ T(F, Y)I-R nil. (2)

Let Trl (nil) be a proof tree with base set {A l, ..., Ap, ~ T(F, Y)}. Now
let ~' be a choice sequence containing the negation, ~ It~(l:(i), Y(i)), of exactly
one literal from each occurrence of clause C~ in the base sequence. ~f may
contain different literals for different occurrences of C~. Using the procedure
of Lemma 1 we add the member ~ I~ of ~f to the corresponding occurrence
of C~ at a leaf of Trt. This transforms Trt (nil) into an isomorphic tree,
Trz(B), which contains a tautology C~, at each leaf node corresponding to a
leaf of Trt which contains Cl.

We will assume for the moment that every ~ laj that was added to a leaf
of Trt to form Tr2 has a successor in B. This means that in applying Lemm~
1, no literal having a ~ lt~ as an ancestor was eliminated by a resolution in
Tr2. Let us call this assumption A.

The formula B is of the form v ,-, l~jO~, where 0~ is the substitution 0 defined

in Lemma 1 on the branch from the rth leaf (which contains C~ v ~ l~l) of

a In what follows, we use the same notation to denote both open and closed forms of the
axioms.

Artificial Intelligence 2 (1971), 27-54

4 0 DAVID LUCKHAM AND NILS J, NILSSON

Tr2 to its root. There may be more than one occurrence of an instance of
~ lij for some i, or there may be no occurrences, depending on the number
of leaves containing C~. However, we assume B is not empty because this
would imply that the axioms a~e inconsistent. We may write B as

v ~ I,~ (i~(i)O[, Y(i)OD.
i

A , ^ ... ^ Ap ^ ^ C~(f(k) , Y(k)) I'a v ~,, li~(F(i)~, Y(i)~) . (3)
k l

Now 3 holds for any choice sequence, ~f, and the 0f is independent of the
~ l~l added at the rth leaf node. Hence, for all choice sequences we have,

AI ^ ... a Ap ^ ^ C~ ^ (^ /O(F(0~, Y(0ffd)I-~ nil. (4)
k i

By the soundness of the resolution principle and the fact that tautologies
are theorems of logic, we have for any choice sequence,

At ^ ... ^ Ap ~_ r~(v ~ lo(F:(i)~ , Y(i)~)) , (5)
i

where 9 denotes the universal closure of the tormula within its scope. Thus,
the conjunction of all possible right-hand sides of 5 (for each choice sequence)
is also a logical consequence of the axioms. By applying the quantifier rules
of logic and the distribution laws (governing the ^ and v connectives) to
this conjunction, we can collect together all those literals having an ancestor
in the occurrence of C~ at the rth leaf node, for each i and r. Since, by assump-
tion A, no such literals are eliminated in Tr2, this yields,

AI ^ ... ^ Ap FL 9 (v ~ Cj(F(i)~, Y=(i)~)), (6)
i

Where ~ C~ is the ith conjunction in the disjunctive normal form of M (see
above). It is the right-hand side of 6 that we take to be the preliminary
answer statement, ANS. By 6, ANS logically follows from the axioms.

I f assumption A was false, this would simply mean that one or more of
the disjuncts in the right.hand side of 6 could be deleted. For example,
~lppose a successor of ~ l, 1 when added to Cx at leaf ul, is eliminated by a
resolution in Tr2. Then ~ l~Ol does not occur in B (at step 3). So, restricting
the above argument (steps 4 to 6) to those choice sequences which are fixed
to choose ~ l~t for C~ at ~1, results in deleting ~, CI(F(I)0|, Y(I)0|) from 6.
A more precise (preliminary) answer would then be obtained. This sort of
inefficiency in the proof is easily tested for.

We shall use the substitutions, 0[to realize the existentially quantified
variables in the theorem.
STAOE 1. The first stage of our procedure merely involves computing the
terms F(i)Of and Y(i)O[and constructing the right-hand side of 6. One way of
doing this is to extend Green's procedure [4] as follows: First the clauses at
A?tifxiai Intelligence 2 (1971), 27-54

EXTRACTING INFORMATION FROM RESOLUTION PROOF TREES 41

the leaves of Trz are checked to see if they belong to the negation of the
theorem; if C~ in the negation of the theorem occurs at the rth leaf node, a
"new" predicate atom, ANSi' (Y(0) is appended to that occurrence. The
resolvents of the tree are then recomputed according to Lemma 1. Notice
that ANSi'(Y(i)) contains only those existential variables that occur in C~.
This yields a proof tree of a disjunction of the form, v ANSI(Y(i)Oi'), which

l
contains all the information necessary to compute a preliminary answer
statement.

This method is inadequate if one wants to check if the answer statement can
be improved because assumption A fails for some literal. This must be tested
separately, for example, by computing the tree Trz for those choice sequences
which choose the first literal from each Ci, the second literal from each Cz,
and so on.

It remains to show ~'L ANS ~ T. This is the case if and only if the con-
junction of the set of clauses {ANS, ~ T} is unsatisfiable. Recall that
~ T--C~(F(I) , Y(I)) ^ ... ^ C,(F(m), Y(m)). Let {0q, ~,,, ..., up} be the
sequence (from left to right) of those leaves of Tr~ at which clauses in ~ T
occur, and suppose that the corresponding sequence of clauses at these
leaves is {C., Cv, ..., C,,}. Let {0~, 0~, ..., 0Pw} be the sequence of substitutio, s
from Lemma 1 for these leaves; each 0~ is the composition of substitutions
on the branch of Tr, from leaf 0q to root Try. Then ANS, in the form of the
righthand side of 5, is the conjunction,

ANS = ^ [0,,, l,i(F(u), Y(u))O~ v ~ Ivj(P(v), Y(v))~ v ...

~ l . ~ (F (m) , Y(m))O~],
where the conjunction is taken over all possible ways of choosing a literal l~
from each occurrence of C~ in the base sequence of Try. None of these
disjunctions is empty if the axioms are consistent.

Now consider the following conjunction of instances of clauses from
~ T containing C~O~ for each Cj and O~ in the above sequences:

c,(F(u), ^ c (P(O, Ir(v))0 ^ ... ^ c , (F (w) ,

If this is consistent, it is possible to choose one literal from each clause in
the conjunction without choosing a complementary pair. But any such
choice must contain the negation of every literal in one of the clauses of ANS.
Thus the conjunction, ANS ^ (~ T)OI. ^ ... ^ (~ T)O~ is inconsistent.
Since the terms of the 0~ substitutions belong to the Herbrand domain of
{ANS, ,,. T}, it follows from Herbrand's theorem that the conjunction of
these clauses is unsatisfiable.

We have thus proved the following theorem:

TH~ORFM 1. I f T is a logical consequence of consistent axioms ,~, and AN$
,4rtifwial Intelligence 2 (1971), 27-54

42 DAVID LUCKHAM AND NILS J. NILSSON

is the preliminary answer statement obtained from a resolution refutation with
base set ,~ u {,~ T}, then ..¢¢1-LANS and ANSI-LT.

4. Stage 2: EHminating Skolem Functions

Stage I of the extraction process produces a preliminary answer statement
given by the right-hand side of 6-

A N S = ~
i

Now, if T is not purely existential, ANS will contain terms beginning with
Skolem function symbols introduced in ,-, T and not occurring in the
axioms or initial hypotheses, namely, the terms F(i)O[. Such terms may also
occur in Y(i)O~. ~tese terms are not interpretable from the initial data.
Their ~placement by "new" variables (not already occurring in ANS) will
yield an answer, ANS', which is also a consequence of the axioms. These
replacements are easily justified on the basis of standard inference rules of
logic (see the reasoning following Example 3, Section 2).
STAGE 2(a). Let {z~, z2, z3, ...} be a sequence of variables not occurring in
ANS. Set ANSo ANS. For i = 0, 1, 2, ..., let ANSH be obtained from
ANSr by replacing every occurrence of the first (leftmost) term beginning
with a symbol from F by zr+t; if there are no such occurrences, let ANS' =
ANSi.

Clearly there is a substitution ¢r which reverses this replacement operation
so that ANS - (ANS'),. Therefore I-LANS' =~ ANS. Thus we have,

At ^ ... ^ ApI-LANS' and ANS'I-LT. (7)

To see in what sense we mean that ANS' can be considered as an answer
to the original question, suppose we replace by x, each occurrence of a
z-variable that rephced a t e rm beginning with ~ in going from ANS to
ANS'. We will then have an instance of ANS"

V(v ~ C,(~(i), Y(i)0~*)). (8)
i

Finally, note that 8 implies a generally weaker statement of the form,

¢¢(M(~, Y01)v ... v M(X, YOq)). (9)

The description of both stages of one versio~ _,:,f the procedure is now
complete. We shall show that a more compiex operation in Stage 2 can
yield more general answer statements. We firs~ present a q example to illustrate
that, without this modification, the procedure as it stands might not produce
sufficiently general answer statements.

Exa'rnple 4. Suppose from the hypothesis

O/xVu)[P(x, u, x) v P(a, u, u)]
Artificial Intelligence 2 (1971), 27-54

EXTRACTING INFORMATION FROM RESOLUTION PROOF TREES 43

we want to prove
(3wVv3y)P(w, v, y).

A refutation tree for the set of clauses obtained from the free-variable
Skolem form of the hypothesis and the negation of the theorem is shown
below:

N P(w,f(w), y) . P(x, u, x) y P(a, u., u)

(negation of theorem)

N P(r,f(r), t)

(negation

Stage 1 of the procedure yields the following resolution tree for ANS:

• ,~ P (w , f (w) , y) v P (w , f (w) , y) P(x, u , x) v P(a, u, u)

p(x,~
N.P(r,f(r), tp(i,v~f(a), a) ~ e(o, f(a),f(a))

In Stage 2(a), we replace the Skolem function f(a) in the answer statement
by a new universally quantified variable, say z, to obtain the final answer
statement:

(¥z)[P(a, z, a) v P(a, z, z)].

It is easily seen that a more general answer statement, namely the hypo-
thesis itself in this example, should be given. In the above resolution tree, the
unification of terms within the Skolem function f in the final resolution,
reduced the generality of the answer statement. This sort of loss of generality
can be avoided by reconstructing the proof tree for ANS using new variables
in place of terms beginning with f That is, instead of merely replacing

./=terms in ANS by new variables, we do so throughout the ANS tree. This
replacement operation in the ANS tree constitutes an alternative Stage 2(b)
procedure.

Artificial Intelligence 2 (1971), 27-54

44 DAVID LUCKHAM AND NILS J. NILSSON

The main idea of the transformation algorithm is easily stated: In those
clauses converted into tautologies we replace those Skolem functions not
appearing in the axioms by new variables, called z-variables. With the clauses
resulting from this replacement operation we will then construct a tree Tr3
isomorphic to the ANS tree, Tr2. The resolutions used in Trs will be computed
from those used in Tr2 according to a certain rule described in the next
section.

We are particularly concerned with a special property of this rule, namely
that in Tr3 no terms are ever substituted for z-variables. Since the z-variables
correspond to the universally quantified variables in the original theorem,
we want them to appear in the answer statement at the root of Trs. Thus
we need to be certain that substitutions in "l'rs do not eliminate any of them.
One of the major tasks will be to show that the standard unification process
employed in Trs does not substitute terms for z-variables. Of necessity this
argument must be rather detailed and requires some special definitions and
lemmas concerning the process of replacing Skolem functions by z-variables.

4.1. Notation and Definitions

In addition to the usual definitions and notation of resolution proof theory
(see [6-9]), we will need some special definitions to explain the procedure.

If z4 is a set of atoms, we denote the result of applying the standard
unification algorithm (defined in [6 or 7]) by ~ (d) . If d is unifiable, ~ (~) =

(a simplest or most-general unifier), else ~ (d) -- F (false). Substitutions
are sets of replacements; here we use the notation, {(t ~ x)} to denote that
a substitution replaces x by t. We note in passing that if ~ (d) - ~r, then ~r
has the property that if (t --, x) ~ ¢r then x does not belong to any of the terms
t' suchthat (t' - , x') ¢ ~. Finite or infinite sequences of variables are denoted
by ~, F~ Z, In the usual formulation of resolution and u n i ~ t i o n ,
lexical ordering is used to make certain decisions (e.g. what to substitute for
what). We shall use the lexical ordering of all well-formed terms (variables
and functional terms) in the theory below; in any implementation some more
practical ordering would be used. We assume that all the variables used in
any resolution proof belong to a sequence X. We shall need an infinite
sequence of "new" variables, 2, disjoint from X, all the members of which
succeed all members of X in the lexical ordering; we denote this by X < Z.
The bar notation, zi, is also used to denote the set of negations of literals in
d ; this will not be confused with the vector notation for sequences of
variables.

Let d be a set of well-formed expressions (e.g. atoms or terms) all ofwhose
variables belong to .~. Let P = {fl,fz' ...,f~} be a finite sequence of (some
of the) function symbols in d , and let 2 = {21, Z,, ..., Zt} be a finite
sequence of disjoint infinite sequences of variables, one for each member of F.
Artsficial Intelligence 2 (1971), 27-54

EXTRACTING INFORMATION FROM RESOLUTION PROOF TREES 45

We assume further that all the proof variables precede the variables in 2,
i.e., xi < zj for all x, ~ X and zj ¢ 2, and in ~ddition, that if i < j, all
members of 2~ precede all members of Zj.

DEFINITION. ,.~'* denotes the result of performing the following replacement
operation on the expressions of ~ ' : For each i in the order i = 1, 2, 3, ...
all occurrences of thejth term beginning with f~ in the lexical ordering of all
terms (i.e., the term beginning with f~ which is preceded in the lexical order
by j - 1 terms beginning withft) are replaced in ~ ' by z~ (thejth variable of
i i) .

In forming a '*, all occurrences in a ' of the same term beginning with a
function symbol in F, are replaced by the same z-variable. All terms begin-
ning with f~ are replaced before any term beginning with f~+l. We shall refer
to this as a .-operation. In what follows, F and 2 are fixed so that the ,-
operation is uniquely determined..~* is said to be obtained by a .-operation
on .~ w.r.t.F.

REMARKS. 1. The .-operation is defined for any set of pairs of expressions
(e.g. substitutions). Thus, or* denotes the result of performing the .-operation
on the expressions of ~.

2. If all variables of a ' belong to X, then I~! = i~f*i. That is, the .-
operation does not unify distinct expressions; this is because distinct new
variables are substituted for distinct terms.

3. (d u ~) * = ~ ' * u ~*; (~' - ~) * = (~ ' * - ~*).
Certain substitutions have the effect of leaving unaltered in any expression

they operate on, the set of 7.~'s having members in the expression. The
number of distinct members of any Z~ may be changed. Such substitutions
play a special role in what follows so we give them a name (a temporary
name which the reader may want to forget at the end): z-conserving
substitutions.

DEFINITION. A substitution ~ is called z-conserving (notation: ~ is z.c.) if for
each 2~ in 2, the only terms it substitutes for variables in 2i are other variables
in 7.1. That is, in any member of ~ of the form (t --, z~), the term t must also

"be a member of 7.1.

DEFINITION. The depth o f nesting function, d, is defined on terms, t, and
finite sets of terms, d , as follows:

d(t) - 0 if t is a variable or constant,

d (f (h ... t ,)) = max (d(t ,) , . . . , d(t,))+ 1,

d(a') = max {d(t) : t e ~'}.
Artificial Intelligence Z (1971), 27-54

46 DAVID LUCKHAM AND NILS J. NILSSON

4,2. Preliminary]Lemmas

LEMMA 2. Let d be any set o f terms all o f whose variables belong to X and 0
any substitution that replaces only variables b, !onging to "X. Then there exists
a z.c. substitution, lz, such that

(dO)* = d*O*~.

PROOF. By induction on d(d) . In addition, we shall also prove that the
z-variables replaced by/~ result from applying the ,-operation to functional
terms of depth at most d(d) .

First let us consider the simplified situation where F contains a single
function letter, f , and the corresponding Z contains one set of variables,
Z = {{z z', ...}}.

Basis step, d(d) = 0. Consider any term t such that d(t) = O.
If t is a constant, tO = t.
Therefore, (tO)* - t*

= t*O* because all variables replaced by 0* belong to
and t* is either a constant or a z t.

If t is a variable, x, say, then

(xO). = {t~ if (t* ~ x) ¢O}
otherwise = x*O*.

If d (d) = 0, d is a set of constants and variables so, by remark (3) above,
we have proved that

(dO)* ffi d*0*.

Induction step, d(d) = n + 1. Induction Hypothesis: For any se~ of terms
.~, all the variables of which belong to X, such that d(.~) ~< n, and any
substitution 0 that replaces only variables in X, there is a z.c. substitution
/~ such that

(i) (~'0)* = ~*0"/~,

(ii) All the z-variables replaced by/~ belong to ~*.

We consider first a single term t such that d(t) ffi n+ 1.

CASE 1.

Thus

and

t = f (h , h , ..., t ,) .

tO ffi f(t ,O, ..., t,O),

(t O) * - zp

where the term f(t tO, ..., t,O) is replaced by zp under the ,-oi~eration.
But,

t*O* -- z¢O* --, zq

Artificial Intelligence 2 0971), 27-54

EXTRACTING INFORMATION FROM RESOLUTION PROOF TREES 47

where t is replaced by zq under the ,-operation, and no z-variable is replaced
by 0 (nor by 0*).
Hence

(tO)* = t*O*{(zP-) zq)}
- - t * O * l t

where # is z.c. and satisfies the hypothesis since zq belongs to {t}*.

CASE 2.

L e t

t = g (t t , tz , . . . , tin).

8 -- {tl, t,, ..°, t=}.

We note that d(8) -- n so that by the induction hypothesis,

(~0)* = ~*o*~ (1)

where # is z.c. Now,

tO = o(t~ , . . . , tm)O = g(t~O, . . . , ~ ,0) .
(tO}* =. g((t tO)*, . . . , (tmO)*)

since the ,-operation does not replace g,

= g(t*O*g, , frO*p) by (I),

= g(tT, . . . , t~)o*~

- t * O * # .

Thus the induction hypothesis is extended to single terms of depth n + 1.
Let d (d) --- n + 1. Let 8 be the set of all proper subterms of terms of d ,

together with all terms d of depth less than n + 1. Note that d(8) = n.
8o, by hypothesis, (8 0) * = 8*0*# where # is z.c. and replaces only z-
variables belonging to 8* .

Then

(.dO)* - {(t10)*, (t,O)*, ..., (tmO)*}

where d(t~) ~< n + 1,

= { t ~ o * ~ , , t~o*~, , . . . , t*.0*~.}
by the above extension to single terms of depth n + 1; each/is is either tt
(if t~ falls under Case 2 or d(tt) <~ n), or is a unit substitution of the form
(zp ", zq) where zq = t~' and d(t t) = n + 1, so that zq is not replaced by/~.
Such unit substitutions occur under Case 1 above. Any two such zq's must
be distinct because t~' = t~ implies tt --- t i. We may therefore conclude that
' = / ~ 1 u #z u ... u g,, is an unambiguous substitution. Clearly #' is z.c. and
only replaces variables belonging to d * .

Artificial Intelligence 2 (1971), 27-54

48 DAVID LUCKHAM AND NILS J, N I ~ N

From the above equation, (dO)* ffi d*0*/t ' . This completes the induction
step.

It is clear that the lemma is now established for unit P, whenever d
contains variables (and 0 replaces variables) that do not occur in the range of
the .-operation. The restriction to 2 is not essential. The extension to
.-operations on more than one function symbol can be done by iterating the
one-function 6perations. For example, let P -- {f l , f2} , Z ffi {Z1, Z2}, and
let , i denote the operation of replacing terms beginning withf~ by members of
Z~, i -- 1 or 2. Then

(d O) * = ((~0)* t) .2
- (d*~0*~#~) *z by the lemma for one function symbol,

-- (d*~0*~)*2(p,)*2/~2 by the lemma for one function symbol,

- (d*a0*~)*2/q/t2 since/~ only contains members of Z~,

- d*x*'0*t*2/t~q/~z by the lemma for one function symbol,

- d*0*# ~ where # is z.c.

This completes the proof of the lemma.

CogotzagY 1. I f ~/ is a set o f atoms and 0 is any substitution, and all
variables o f .c /and 0 belong to 2 , then (dO)* - d*O*# where It is z.c.

COROLL~Y 2. Let ~ be a unifiable set o f atoms all o f whose variables belong
to 2 , and let q l (~) - Oo Then there is a !~ such that O# is a unifier o f ,~* and
0"1~ is z.c.

PROOF. Since q / (d) - 0, all the variables o f 0 belong to X. Hence, by
Corollary 1, there is a z.c. substitution/t such that d*0*~ - (,~0)*. (.~0)*
is a unit set. Therefore 0"# unifies d * and is clearly z.c.

LEMMA 3. Let ~ be a unifiable set of atoms, let 0 be a z.c. unifier of.el , and
let q / (~) ffi p. Then

1. p is z.c.

2. there is a t such that p~ = 0 and z is z.e.

PROOF. Since 0 unifies .~, there is a ~ such tlutt p~ -- 0. Thus, the composition
p~ is z.c. Now, p is an output of ql and therefore has the property: for any
variable v, if (t --, v)¢ p then v does not occur in any te rm t ' such that
(t' --, v ')¢ p. That is, if v is replaced by p then it is not substituted by p,
It follows from this that if (t--, z)~. p and (t' --, z)¢ T then (t ' ~ z) is
redundant in the sense that it may be omitted from z without affecting pz.
Hence we may assume that ~ is chosen without redundant replacements,
in which case all replacements of ¢ appear in p~. Thus ~ is z.c.

Consider p, and suppose (t --, z~) belongs to p. If t is a functional term,
Artificial Intelligence 2 (1971), 27-$4

EXTRACTING INFORMATInN FROM RESOLUTION PROOF TREES 49

then (tz .-, z~) belongs to p~, contradicting z.c. If (z~ --, z~) belongs to p,
this can be prevented from appearing in p~ only if ~ contains a replacement of
the form (z[' ~ z~); but then this latter replacement is nomedundant and
will appear in p~, again contradicting z.c. Finally, (x~ - , z~) cannot belong to
p becaus~ X' < ~. Thus the only replacements of z-variables in p are of the
form (z[' --, z~), so that p is z.c.

LEMMA 4. Let E be a resolvent ..of cla~ses A and B all o f whose variable# belong
to X. Let C and D Le clauses and ~ and z~ z.c. substitutions with the property
that Czx = A* and D~e - B*. Then there is are, volvent H o f C and D obtained
by a z.c. unifier, and a z.c. substitution ~ such that Hz3 = E*.

PgOOF. We may assume that A and B have no common variables, and C and
D have no common variables. Let

E = (A - . ~ ,) 0 , . , (a - ~r,)o.

where

~ (~ 1 u ~ 1) = 0.

Define subsets of literals, -~'2 c_ C and -~'a ~ D by,

m ¢ ~gz <*" m ~ D & m'c 2 ~ ~(~.

Note that

and . (2)

First of all, we show that ~ 2 u .~'2 is unifiable. Since Cand D have no common
variables, z - zz ~-~ ~2 is an unambiguous substitution (and is z.c.). Now,

((.~', v .~,)0)* = (~ * v . ~ 0 " ~ ,

by Lemma 2, Corollary 1, since all the variables of .ZI, ~ '~ and 0 belong to

- (.~°2 u .~'2)~0*p by (2).

But ((.Zl u .~gt)0)* is a unit, so ~0*/t unifies .Z2 u .Afz. In addition, ~0*p
is a z.c. substitution. Thus we may apply Lemma 3: Let

~(-~2 u ~ z) = P
where p is z.c. Then

H - (C - -~2)P u (D - .~g2)P

is a resolvent of C and D, and is obtained by a z.c. unifier.

Artificial Intelligence 2. (1971), 27-54

50 DAVID LUCKHAM AND NILS J. NILSSON

It remains to show that there is a z.co ~3 such that H~3 - E*. First,

E* = ((A - .~,)0 u (B - ~ ,)0)*
= (A - ~ ,) * 0 " / ~ u (B - ~ ,) * 0 " ~

by Lemma 2, Corollary 1,

= (A * - u (B * -

by Remark 3 above.
Now by I.emma 3 there is a z.c. substitution, zs, such that PZ3 ffi ~0"/~.

Then,

H~3 - (C - -~'2)P~3 u (D - .At'2)pz3
= (C - u (D -

= (C - ~2)~10"p u (D - A~)~20*p

because C and D have no common variables,

= (Czl - .Y2~1)0"# u (Dr2 - ~2z~)0*p

from the definition of .Z2 and -~'2,

ffi (A* - ~ *) 0 " ~ u (B* - ~ *) 0 " ~

R~MAn~:. Notice from the proof of Lemma 4 that gieen A, B, E, C, D, ~1 and
z2 it is possible to compute H and ~3. This involves the following sequence of
steps, each of which is clearly computable"

(1) Find -~1 and J'tl by recow~ :.:~:~ng E.

(2) Compute .~* and dr'*, and then, using C, D, zl, z2, compute X#2 and
~ .

(3) Compute H.

(4) Find a z.c. ~3 such that H ~ E*.

4.3, Alternative Procedure for Eliminating Sko lem Functions

The following theorem justifies the alternative procedure:

THEOREM 2. Let Tr(A) be a proof tree of A with base sequence S. Let S* be
the result of performing a ,-operation on the members of S with respect to
some set o f Skolem function symbols occurring in S. There exists a proof tree,
Tr'(B), satisfying:

(1) S* is the base sequence o f Tr'.

(2) Each resolvent in Tr' is obtained by a z.c. unifier.

(3) There is an isomorphism, m, mapping Tr' onto Tr.

Artificial Intelligence 2 (1971), 27-$4

EXTRACTING INFORMATION FROM RESOLUTION PROOF TREES 51

(4) For every node • in Tr', the clause C(~) at • subsumes the clause C(m(~)),
at m(~) in Tr. In particular, B subsumes ,4. Furthermore, for each
there is a z.c. substitution z, such that C(~)T~ -- C(m(~))*.

PROOF. By induction on the level of Tr(A), using Lemrna 4. We denote the
level of Tr by I(Tr).

BASIS STEP. Ifl(Tr(A)) - 0, the theorem is clearly satisfied merely by applying
a ,-operation to S; m is the 1-1 correspondence {root(Tr') ~ root(Tr)} and
-c~ is the empty substitution.

INDUCTION STEP. Suppose the theorem is true for a|l trees of level n or less,
and let I(Tr(A)) ffi n + 1. Let the parent clauses of A be C and D, so that
Tr(A) is obtained by composing Tr(C), Tr(D) and root(Tr(A)) in the obvious
way.

First, apply the ,-operation to the base sequence, S, of Tr(A). If the base
sequences of Tr(C), Tr(D) are respectively $1, $2, then {$1, $2} - S, so
that applying a ,-operation to S is equivalent to applying the ,-operation
to $1 and S~. Since lfrr(C)) ~< n, and I(Tr(D)) ~< n, the theorem is true for
these trees by hypothesis. So let Try(E), ml, zl, and Try(F), m2, T2 be trees,
isomorphisms and z.c. substitutions satisfying the theorem for Tr(C) and
Tr(D) respectively.

Let 0 be the necessary change of variables so that E and FO have no common
variables. Clearly 0 can be chosen to be z.c. There is an inverse substitution
(denoted by 0 -1) which is also z.c., such that FO0 -~ ffi F. Then Ezt -- C*
and FOz'~ ffi D*, where z~ ffi 0-1~2 and is obviously z.c. Applying Lemma 4,
there is a resolvent B of E and FO obtained by a z.c. unifier, and a z.c. z3
such that B~3 - ,4".

Form Tr'(B) by composing Tr~ and Tr~ with a new node • which is the
immediate successor of root(Try) and root(Try); let C (~) - B and m - -
ml u m2 u {0~ - , root(Tr(A))}. Then Tr'(B), m, z3 satisfy the theorem for
Tr(A). This completes the induction step.

SI:GE 2(b). The proof of Theorem 2 clearly indicates an algorithm for
covstructing Tr3 given Tr, and a set F of Skolem functions to be eliminated.
¥,~? sketch the main steps of such an algorithm as follows. Assume a standard
enumeration of nodes of a tree such that no node is enumerated unless both
of its parents have already been enumerated, and also that the leaves are
enumerated first.
Let node 0(' in Tr3 correspond to • in Tr2

(0) If F ffi ~, set Tr3 = Tr,.
(1) Compute the sequence S* w.r.t.F. Enumerate the leaf nodes of Tr2, and

for each such 0~, construct a node ~t' and label it with both the clause
C(u)* from S* and the substitution za --- nil.

Artificial Intelligence 2 (197 |) , 27-54

52 DAVID LUCKHAM AND NILS J. NILSSON

(2)

O)

(4)

Enumerate the next node of Tr2, say u, with immediate predecessors/~
and and ~.Select C(oO, C(~), C(7), C(/3'), C(y'), xp,, ~,. Find a z.c. change
of variables, O, such that C(fl') and C(~')O have no common variables,
and use the algorithm of Lemma 4 (remark) to compute a resolvent H
of C~'), C(y')O and a z.c. x~, such that Hz~o = C(u)*.

Construct a new node u' immediately below/~' and ~', and label it with
H and x.,.

If • is not root(Tr2) go to (2). Otherwise, eliminate all substitutions
~., from the constructed nodes {u'}; the resulting proof-tree is Tr3.

It should be noted that the standard unification and resolution algorithms
are used in computing Tr3. This yields correct answers providing the proof
variables, X, (those normally used by the procedure) precede in lexical order
the "new" variables, Z, introduced to replace the Skolem functions. In fact
(Lemma 3) any condition will do that forces the unification algorithm to
unify an X-variable and a Z-variable by substituting for the X.variable.

4.4. The Correctness of the Procedure

We must now show that the answer statement ANS' produced by the Stage
2(b) logically follows from the axioms and implies the theorem.

First we note directly from condition 4 of Theorem 2, that ANS' subsumes
ANS and thus ANS'I- L ANS and ANS'I-LT. Furthermore, Tr3 is a resolution
proof tree for ANS' with a base set consisting of the axioms and tautologies
(since the .-operation preserves the tautologies in Tr2). By the same reasoning
justifying 1-6 in Section 3.2 we conclude that ANS' logically follows from
the axioms. Thus we have a theorem for ANS' (obtained using either of the
second stages) analogous to Theorem 1 for ANS:

TI-I~OREM 3. I f T is a logical consequence of consistent axioms d , and ANS'
is the answer statement obtained by applying Stages 1 and 2(a or b) to a
resolution refutation with base set ~ u { N T}, then d [- t ANS' and ANS'I- L T.

Let us illustrate the complete procedure using Stage 2(b) by considering
Example 4 again. Recall that from the single hypothesis

(VxVu)[P(x, u, x) v P(a, u, u)]

we wanted to prove

(3xVv3y)e(w, v, y).

Artificial Intelligence 2 (1971), 27-54

EXTRACTING INFORMATION FROM RESOLUTION PROOF TREES 53

We repeat below the tree Tr~ for ANS:

~ p(w,f(w), y) v P(w,f(w), y) P(x, u, x) y P(a, u, u)

,~ P(r,f(r), t) v P(r,f(r), t) P(x,f(a), x) v P(a,f(a),f(a))

Now, in Stage 2(b) we use the algorithm of Theorem 2 to create a'new
tree Try. This step produces the following proof tree:

~ e(w, z', y) v P(w, z', y) e(x, u, x) y e(a, u, u)

~ P(r, z 2, 0 v P(r, z , t) P(x, z , x) v P(a, ,)

We note in particular that the unifying substitution used in the final resol~,
tion of this tree is more general than the corresponding one of Tr2. Converting
the clause at the root of this proof tree to a closed formula it, classical logic
finally produces the answer statement:

(¥xYz)[P(x, z, x) v P(a, z, z)].

In this case the answer statement is equivalent to the hypothes:z.
In conclusion we note that the answer statement extracted by this process

depends on the refutation obtained by the proof procedure. When alternative
refutations exist, there may thus be alternative answer statements some
stronger than others. In the general situation, of course, we have no way of
knowing whether the answer statement corresponding to a particular refuta-
tion is the strongest possible answer statement.

REFERENCES

1. Green, C. and Raphael, B. The use of theorem-proving techniques in question-answering
systems. Proc. 2$rd Nat'L Conf. ACM, Brandon Systems Press, Princeton, New Jersey
(1968), 169-181.

2. Slagle, J. Experiments with a deductive question-answering program. Comm. ACM, 8
(December 1965), 792-798.

3. Waldinger, R. and Lee, R. PROW: a step toward automatic program-writing. Proc.
Int'l. Joint Conf. on Artificial Intelligence, Washington, D.C. (May 1969).

Artificial Intelligence 2 (1971), 27-54

54 DAVID LUCKHAM AND NILS J. NILSSON

4. Green, C. Theorem-proving by resolution as a basis for question-answering systems.
Machine Intelliflenee 4, Meltzer, B., and Michie, D. (Eds.), American Elsevier Publishing
Co., Inc., New York (1969), 183-205.

5. Mostowski, A. Thirty years of foundational studies. Acta Philosophica Fennica, 17
(1964), 47-48.

6. Robinson, J. A. A machine-oriented logic based on the resolution principle. J. ACM,
(1) 12 (January 1965), 23-41.

7. Luckham, D. The resolution principle in theorem proving. Machine Intelligence 1,
Collins, N. and Michie, D. (Eds.), American Elsevier Publishing Co., Inc., New York
(1967), 47-61.

8. Andrews, P. Resolution with merging. J. ACM, (3) 15 (July 1968), 367-381.
9. Luckham, D. Refinement theorems in resolution theory. Proe. IRIA 1968 Syrup. on

Automatic Demonstration, Springer V©rlag Lecture Notes in Math¢matics No. 125,
pp. 163-190 (1970).

Accepted February 7, 1971

drtiflcial Intelligence 2 (1971), 27-54

