Learning the Dimensionality of Hidden Variables

G. Elidan and N. Friedman

In Proc. Seventeenth Conf. on Uncertainty in Artificial Intelligence (UAI), 2001.

Postscript version

PDF version.


A serious problem in learning probabilistic models is the presence of hidden variables. These variables are not observed, yet interact with several of the observed variables. Detecting hidden variables poses two problems: determining the relations to other variables in the model and determining the number of states of the hidden variable. In this paper, we address the latter problem in the context of Bayesian networks. We describe an approach that utilizes a score-based agglomerative state-clustering. As we show, this approach allows us to efficiently evaluate models with a range of cardinalities for the hidden variable. We show how to extend this procedure to deal with multiple interacting hidden variables. We demonstrate the effectiveness of this approach by evaluating it on synthetic and real-life data. We show that our approach learns models with hidden variables that generalize better and have better structure than previous approaches.

Back to Nir's publications page