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We present a protocol for eliciting dynamic beliefs from forecasters. At time t = 0, forecasters
hold beliefs about a random variable of interest that will realize publicly at time t = 1. Between
t = 0 and t = 1, forecasters observe private information that impacts their beliefs. We design a
class of protocols that, at the outset, elicit forecasters’ beliefs about the random variable and elicit
beliefs about any private information they expect to receive over time, and then elicit the private
information that forecasters receive as they receive it. We show that any alternative elicitation
mechanism can be approximated by protocols in our class. The information elicited can be used
to solve optimally an arbitrary dynamic decision problem.
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In this letter we introduce the idea and purpose of dynamic belief elicitation as
explored in our working paper [Chambers and Lambert 2014]. In many economic
situations, decision makers have less payoff-relevant information than do some other
agents. To deal with these situations, the decision maker may delegate the decision
to the better informed agents. Alternatively, the decision maker may extract beliefs
from the agents and then use these beliefs to decide on the best course of action.
Our paper is about the latter case; specifically, it addresses the problem of eliciting
beliefs from the agents.

To illustrate, consider a simple stylized situation. The decision maker is an in-
vestor who contemplates buying shares in a risky venture. The venture, if successful,
yields a payoff B = 1000 to the investor. If it fails, it pays nothing. The outcome
of the venture will be known at time ¢t = 1. The investor must decide at ¢ = 0. If
she buys the shares, she incurs a cost C' = 450.

This simple setup is easy to analyze. If the investor is risk neutral without
discounting, she is better off buying the shares when the expected benefit exceeds
the cost, or p x B > (', where p is the probability that the project is successful.
Note that to make the optimal decision, she only needs to assess the probability
p. If she is unable to form such assessments, she can elicit probability beliefs from
better informed forecasters using scoring rules and related methods.

In our context, a scoring rule is a function s(p,z) € R that takes as input a
probability forecast p and a realization x = 1 if success and = = 0 if failure, and
assigns a score to the forecaster. It is typically assumed that forecasters want
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to maximize their average score, for example when the scoring rule is used as a
direct incentive scheme with scores mapping to payments or lottery tickets, or
when it is used as an indirect incentive scheme that compares average scores of
different forecasters over time. (Strictly) Proper scoring rules ensure that it is
a strict best response for the forecaster to provide his true belief, meaning that
E[s(p, X)] > E[s(p, X)] whenever p = Pr(X = 1) and p # p, where X is the
random variable associated with the project outcome. For example, the Brier score
s(p,x) = 1 — (p — x)? is proper [Brier 1950]. More generally, scoring rules elicit
information about the uncertainty of random variables. Such information can be
used to solve optimally a static decision problem, in which the decision maker must
choose among a set of alternatives at one particular instant.

However, in many situations of practical interest, decisions can be made at dif-
ferent times. These decision problems are dynamic. In such situations, assessing
the uncertainty of payoff-relevant random variables at every decision stage is not
enough. To decide optimally, the decision maker must know how and when un-
certainty unravels over time. To illustrate this point, let us revisit our investor

story.

The investor can now decide to delay the decision to invest to time ¢ = %

However, if she invests at that time, she loses the offer made to her at ¢ = 0: her
cost of participation increases from 450 to 600. By adding the option to invest at
a later time, the optimal time-0 decision—invest or delay—depends not only on
her current belief about chances of success, but also on how she expects her belief
to change over time. Consider one instance where the investor believes at ¢t = 0
that the project has 50% chances of success, and does not expect to receive any
further information by ¢t = % With such beliefs, the investor is best off investing
at t = 0, as she expects to make 1000 x 0.5 — 450 = 50 by investing right away
(better than delaying the decision to invest or not investing at all). In another
instance, suppose that the investor continues to believe in 50% chances of success
at t = 0, but now expects to conduct further investigation by t = % The outcome
of the investigation is a signal at ¢t = %, taking values good news or bad news, each
occurring with equal probability. If good news was to arrive, the investor expects
to revise her assessment to 80% chances of success, while in case of bad news, she
would update her assessment to 20%. With such beliefs, if she delays decision
and invest at ¢t = % but only upon observing good news, she makes on average
0.5 x (1000 x 0.8 — 600) = 100, which is better than investing right away. So what
does this simple analysis tells us? When dealing with dynamic decision problems,
beliefs about future beliefs (or equivalently beliefs about future information) matter.
This property is common to most dynamic decision problems—unless decisions are
reversible, beliefs over future beliefs impact optimal decisions.

If the investor is not well informed, she will want to extract beliefs from well
informed forecasters. Scoring rules and related methods can help her extract static
beliefs, i.e., beliefs about the chances of success, at both decision stages. However
they fail to extract a valuable piece of information: the forecaster’s belief at ¢ = 0
that concerns his future belief at t = 1. Without such information, the investor

2
cannot make decisions optimally.
Our paper extends the theory of scoring rules to the time dimension, allowing to
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extract such information. To fix ideas, consider a forecaster who is about to form
a belief at time ¢t = % about success of the project (X = 1). Denote by P this
belief. Note that P is a random variable, because the forecaster generally does not
know at the outset what his belief will be later on. At ¢t = 0, the forecaster forms
a prior about his future belief, captured by a cumulative distribution F" about P.
We want to design a scoring function s(F,p,z) taking as input a report of belief
over beliefs, F , made at time 0, a report of the posterior belief p at time %, and a
realization x, so that to maximize his expected score, the forecaster must provide
his true prior belief over beliefs, F', at time 0, and his true posterior belief over X
at time % Our main results show that such scoring functions exist and show how
to construct them; in many cases an analytic expression can be found. Here for
example we can use the following scoring function:

s(ﬁ,ﬁ,x)/; <1+/0aﬁ) (ax)da;/ol </Oaﬁ)2da.

Knowing F' and the realization of P turns out to be exactly what is needed
to solve optimally any two-period decision problem where the only payoff-relevant
variable is X. Solving a three-period decision problems requires beliefs over beliefs
over the final posterior belief of X, and so forth.

Our framework includes this instance but is significantly more general. The fore-
caster may receive high-dimensional private information at multiple times (even
continuously or at random times) before the realization of the public random vari-
able of interest, which itself can be high-dimensional. We design a family of pro-
tocols that elicit the entire belief structure of the forecaster at the outset, and the
updated structure whenever the forecaster observes new private information.

A common approach in the mechanism design and scoring rules literatures relies
on convex analysis, making use of the fact that payoffs or scores are the subdifferen-
tials of convex value functions [McCarthy 1956; Savage 1971; Rochet 1985; Gneiting
and Raftery 2007]. In our framework, the high dimensionality of the object being
communicated and the presence of private information makes this approach less
practical. Instead, we apply an idea that originates from Allais and relies on the
use of randomization devices [Allais 1953]. Allais applied his technique to elicit
preferences of an individual over pairs of choices in the context of revealed pref-
erences. In the context of probability elicitation, similar ideas have been used by
[Becker et al. 1964] and [Matheson and Winkler 1976].

Each protocol in our setup is described by a pair (D, i), where D is a collection of
“simple” dynamic decision problems and p is a probability measure over D. Every
such protocol works as follows: at the outset, the elicitor selects a decision problem
d* € D at random according to u. The forecaster knows D and u, but does not know
d*, which the elicitor keeps secret. At time 0, the forecaster is asked to announce
his belief structure, and then asked to send updates at subsequent times whenever
he receives new information. The elicitor solves the decision problem d* optimally
according to the information communicated by the forecaster over time. Upon
realization of the public random variable, the elicitor collects the overall payoff from
d* and transfers it to the forecaster (such a payoff need not be monetary, it can be
interpreted as a score). For example, the scoring function s(ﬁ , D, x) displayed above
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corresponds to the expected payoff for a particular (D, u)-protocol. In our more
general setup, we use a class D whose elementary decision problems correspond to
making choices when holding a hierarchy of option menus to exercise with random
deadlines.

A key tradeoff in the design of these protocols is that the collection D should be
large enough to recover the entire belief structure—a complex, infinite dimensional
object—while D should also be small enough for the existence of an associated
1 that induces a strict best response. Our first main result shows that, for a
carefully selected class D, and with appropriate probability measures p, the protocol
is “proper” in that it elicits dynamic beliefs of the forecaster as a strict best response
at every instant. Our second main result shows that any protocol that elicits
dynamic beliefs delivers scores or payoffs that can be approximated arbitrary closely
using some (D, p)-protocol in our class.
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