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1. Introduction

Social lending, or peer-to-peer lending, is an emerging alternative to banks and personal loans, allowing individuals
to lend or borrow money to each other directly without the participation of traditional financial intermediaries. Social
lending offers borrowers the opportunity to obtain loans at lower interest rates and costs, and lenders with an opportunity
for investments with higher rates of return than from banks or other common alternatives. Since its beginning in 2005,
social lending has grown to become a major business on the Internet: The total amount of money borrowed using such
peer-to-peer loans is projected to reach over $5 billion in 2013, and the total amount funded by the two leaders Prosper
and Lending Club increased from $200 million in 2008 to over $1 billion in 2012 in the US market alone.! Given the large
volume of trade, evidenced by the large number of users and the vast sums of money being lent and borrowed, social
lending is a significant component of electronic commerce. This paper studies the auction mechanism used to finance loans
by Prosper, one of the largest such marketplaces on the Web.

* Part of this work was done while the authors were employed by Yahoo! Research. Preliminary results were presented at the Tenth ACM Conference on
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is supported by the AcRF Tier 2 grant of Singapore (No. MOE2012-T2-2-071), and Lambert gratefully acknowledges the support of Google Research and
the National Science Foundation under grant No. CCF-1101209. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the funding agencies.
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Prosper is the first social lending site launched in the United States, and is today the second largest site (behind Lending
Club) with nearly 1.5 million members and $380 million of funded loans.? From its creation in 2005 to 2010, Prosper, which
described itself as an “eBay for loans”, auctioned off loans amongst interested lenders, using competition amongst lenders
to bring down the final interest rate for the borrower.> In the Prosper mechanism, borrowers create loan listings, specifying
the amount of money they are willing to borrow and a reserve interest rate, which is the maximum rate they are willing
to accept. Lenders choose individual listings to bid on, specifying the amount they are willing to lend and their desired
interest rate for each loan. In addition to standard criteria such as credit categories and histories, lenders can also consider
a borrower’s personal story, endorsements from friends, and group affiliations. The bidding starts at the reserve rate, and
lenders can then bid down the interest rate in an auction. When the auction ends, Prosper combines the bids with the
lowest interest rates into a single loan to the borrower and handles all loan administration tasks including loan repayment
and collections on behalf of the matched borrower and lenders. Each time a loan request is successfully completed, Prosper
charges a transaction fee to the borrower and a servicing fee to the lenders, in equal proportion.

A basic premise of social lending is cheap loans for borrowers. To what extent does the mechanism used by Prosper to
fund loans lead to small borrower payments, given that lenders act strategically, as selfish and rational agents? Each lender has
a private interest rate, which is the minimum interest rate at which she is willing to invest in a particular loan—the rate
equivalent to her best outside option. While the Prosper mechanism certainly selects the lenders with the lowest interest
rates to finance the loan, this does not necessarily lead to a cheap loan—the rate reported by a lender need not be her true
private interest rate, since bidding a higher rate might lead to a better return. (That lenders are strategic is clearly evidenced
by their behavior in Prosper: Lenders are allowed to, and indeed do, decrease their rates to increase their allocation through
the course of the auction.) Given that lenders behave strategically, how does the choice of mechanism—consisting of an
allocation and payment rule—affect the total payment of the borrower?

1.1. Overview of results

We first provide a complete analysis of the Nash equilibria of the Prosper mechanism modeled as a one-shot auction
game of complete information (Section 3), which turns out to be a fairly curious mechanism. The Prosper auction is VCG-like,
but not quite VCG—it is, in fact, a uniform-price mechanism obtained by applying VCG to a modified instance of the problem,
as described below. Suppose a borrower wants to borrow an amount D, and each lender i specifies her budget a; and
her offered interest rate b;. Replace every lender i by a; dummy lenders with budget 1 and interest rate b; each. Now
run VCG on this new instance to determine the winners and their payments. Recall that the VCG mechanism to buy k
identical items from competing sellers (here, k = D and each item is a unit of money) buys from the k cheapest sellers
and pays each of them the same price, which is the bid of the (k + 1)-th lowest bid. Thus, applying VCG to the modified
instance yields a solution where all winning lenders receive the same interest rate, which is either the bid of the first loser
or the last winner, depending on whether or not the last winner exhausts her budget. Since the Prosper mechanism is a
uniform-price mechanism (i.e., every winner receives the same interest rate, also called the price), and we are interested
in the borrower’s payment, we focus on the set of possible prices that can arise in a Nash equilibrium. We show how
to completely characterize the equilibria of the Prosper mechanism, by characterizing the set of possible prices and last
winners (Section 3.1) when losers are restricted to bid their true interest rate.* The characterization of the equilibria can
be sharpened further if we restrict ourselves to equilibria where winners do not bid less than their true interest rates
(Section 3.2).

Next we use this characterization to compare the Prosper mechanism against the VCG mechanism from the perspective
of the borrower’s payment (Section 4). Since the Prosper mechanism is not incentive-compatible, we compare the payment
in the best and worst Nash equilibria of the Prosper mechanism against that of the VCG outcome. While neither mechanism
dominates the other, we show that the VCG mechanism leads to a payment that is always within a factor of O (logD)
of the cheapest Nash equilibrium of the Prosper mechanism, whereas even the cheapest Nash equilibrium of the Prosper
mechanism can be as large as a factor D of the VCG payment (both factors are tight). A similar result holds for the worst
Nash equilibrium of the Prosper mechanism.

We next analyze the Prosper auction under alternative information structures. We first investigate an incomplete infor-
mation setting. Under some assumptions on the joint distribution of budgets and rates, we address the question of deriving
the Bayesian-optimal auction for the borrower, and discuss how such an optimal auction differs from the Prosper auction
(Section 5). Finally, we examine the Prosper mechanism when modeled as a dynamic auction, and provide tight bounds on
the price for a general class of bidding strategies (Section 6).

2 Data as of August 2012. Source: http://www.prosper.com/.

3 In 2011 Prosper moved from the auction mechanism to a pre-set rate mechanism in which loans are allocated among lenders on a first-come, first-serve
basis. This rate is set by Prosper for each listing as a function of personal information available from the borrower, such as credit scores, debt-to-income
ratio, and transaction history.

4 It turns out that without this restriction, computing the Nash equilibria with the smallest and largest prices is, in general, NP-hard, and hard to
approximate within any reasonable factor.


http://www.prosper.com/

N. Chen et al. / Games and Economic Behavior 86 (2014) 367-391 369

The appendices are organized as follows. (i) Appendix A investigates the complexity of equilibrium computation when
bid profiles are not restricted; (ii) Appendix B compares the Prosper auction to other uniform-price mechanisms, and (iii)
Appendix C contains the omitted proofs.

1.2. Related work

The literature on social lending thus far has largely focused on empirical studies. Freedman and Jin (2011) study the
loan-level data of Prosper auctions over a 2-year period, establishing relations between interest rates, actual returns, default
rates, and credit grades. They show that the informational limitation due to the non-disclosure of credit scores is partially
compensated by reputation effects generated via the Prosper social network. In a similar fashion, Iyer et al. (2010) examine
the extent to which the lenders that participate in Prosper can infer borrowers’ creditworthiness by comparing actual credit
scores to the interest rates of funded loans. This literature does not attempt to model or analyze the mechanisms used by
social lending platforms from a theoretical standpoint. Chen and Ghosh (2011) model the Zopa online lending market, which
allows lenders to only specify acceptable borrower categories rather than bid for individual borrower’s loans, as a two-sided
matching market, and investigate the question of what is a computationally feasible, good allocation to clear this market
if lenders are additionally allowed to express preferences across borrower categories. This work differs significantly in the
market model (due in large part to the differences between Prosper and Zopa) and consequently the nature of the questions
addressed—among other differences, Chen and Ghosh (2011) investigate allocations among multiple borrowers and lenders
assuming non-strategic agents, and address the problems of what constitutes a fair allocation and the algorithmic problem of
computing such a fair allocation, whereas our work analyzes strategic behavior in the auction actually deployed by Prosper
for a single borrower’s loan.

There is an extensive body of work in the economics literature on auctions in general and multi-unit auctions in par-
ticular (for a review see, for example, Part II of Krishna, 2010); we discuss the relevant work from this literature next.
The auction used by Prosper is a variant of multi-unit auction with uniform price and identical items—and, since different
lenders offer to lend different amounts to a borrower, we must consider a multi-unit demand (or rather, supply) auction. In
multi-unit auctions, the precise format of the auction matters, even in a private-value setting. While it would be tempting to
use the well-known properties of, say, the multi-unit Vickrey auction, and use revenue equivalence to derive the borrower’s
payment in the Prosper auction, this approach has the difficulty that while the Revenue Equivalence Theorem continues to
hold in multi-unit auctions, the revenues of two auctions are only guaranteed to be the same (up to a constant) when the
items are allocated to the same bidders. Unfortunately, as opposed their single-unit analogs, multi-unit auctions typically do
not allocate units in the same way, even when looking at the common formats such as Vickrey, discriminatory, or uniform-
price auctions. For this reason, the specificities of the Prosper auction matter, and the analysis does not reduce to that of a
standard auction model.

In unit-demand auctions where multiple items are sold but bidders are each interested in only one item, the mechanics
of uniform-price auctions are generally well understood. However the case of multi-unit demand turns out to be a great
deal more difficult, and equilibrium analysis of uniform-price auctions with multi-unit demand has only been carried out
in special cases. Noussair (1995) and Engelbrecht-Wiggans and Kahn (1998) consider the case where bidders demand at
most two units and derive equilibrium behaviors in the sealed-bid private-value setting. In their version of the auction
the clearing price is set to be the first-rejected bid. In the same setting, Draaisma and Noussair (1997) derive equilibrium
conditions for a different version of the auction, where the price is the last-accepted bid. Still with two-unit demand, Bresky
(2009) analyzes the impact of a reserve price on the efficiency and revenue of a uniform-price auction. For general multi-unit
demand, Nautz (1995) derives optimal bidding strategies under the assumption that bidders act as price takers. Swinkels
(2001), Chakraborty and Engelbrecht-Wiggans (2005) and Katzman (2009) examine properties of the auction outcome in
asymptotic cases. Ausubel and Cramton (2002) investigate efficiency properties of the sealed-bid uniform-price multi-unit
auction, and describe the general phenomenon of “demand reduction”: To pay less for the items won, bidders may prefer
to shade their bids in order to lower the market-clearing price, thereby generating inefficiency and reducing the seller’s
revenue, an important and common phenomenon in multi-unit auctions. Weber (1997) and List and Lucking-Reiley (2000)
discuss demand reduction from an empirical and experimental standpoint in sealed-bid uniform-price auctions.

The Prosper auction is also related to multi-item ascending-price auctions, the open-format equivalent of the uniform-
price auctions, since Prosper releases partial information regarding bids during the auction process. In these ascending-price
auctions, the seller starts by announcing a low per-unit price for the items. Every buyer indicates how many units she wants
to purchase at that price. The seller then raises the price until supply equals demand, that is, until the number of items de-
manded equates the number of items auctioned off. There is a single price for these items, set at the market-clearing price
(Ausubel, 2003; Krishna, 2010). Ausubel and Schwartz (1999) perform an equilibrium analysis of a model of ascending-price
auctions in which two bidders place bids alternatively until the market clears, in a complete information setting. Using a
backward induction argument, they show that bidders are best off reducing their demand to the market-clearing condition,
so that the market clears at the first round of trading, and the outcome is efficient but generates low revenue. Under sim-
ilar assumptions, Grimm et al. (2003) and Riedel and Wolfstetter (2006) characterize the unique equilibrium in the open
ascending-price dynamic auction game, with multiple rounds of bids but assuming bidders bid simultaneously in every
round. They reach a similar conclusion: The market clears at the first round of bids, where every bidder will have reduced
demand so as to attain the market-clearing condition. Jun and Wolfstetter (2004) study an instance of the auction under
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incomplete information. They show that the result of Riedel and Wolfstetter continues to hold with two bidders, two types,
and two units. Kagel and Levin (2001) present experimental evidence of demand reduction in both sealed-bid and open
formats. Brusco and Lopomo (2008) examine the impact of budget constraints on the incentives for demand reduction and
its consequences on social welfare. Brusco and Lopomo (2002) investigate collusion in general multi-unit ascending-price
auctions, and show existence of collusive equilibria where bidders share the objects for sale and keep a low price. Aside
from the literature on standard ascending-price auctions, Ausubel (2004) introduces a variant that is outcome-equivalent
to the Vickrey auction, and characterizes equilibria under complete and incomplete information. Bikhchandani et al. (2011)
consider a matroid setting, and show that a dynamic ascending auction can converge to the Vickrey outcome when a greedy
algorithm can solve the winner determination problem. However, Prosper gives all winning lenders the same rate, i.e., is re-
stricted to a uniform-price auction, which is not guaranteed by the Vickrey outcome; a major focus of our study is therefore
on the characterization of Nash equilibrium.

There is also a growing body of literature devoted to core-selecting auctions, a family of combinatorial auctions designed
for its appealing properties in heterogeneous-item environments with complementarities (Milgrom, 2006; Day and Ragha-
van, 2007; Cramton and Day, 2008; Day and Milgrom, 2008). Day and Milgrom (2008) analyze core-selecting auctions in
terms of “truncation strategies”. They show that the strategy profiles in which bidders misreport their true valuations by
shading their bids uniformly (i.e., where a bidder lowers her bid on all packages by some uniform number) form Nash
equilibria under complete information, a result that applies to all core-selecting auctions. Sano (2013) extends these results
to the Vickrey-reserve auctions, a larger class of efficient, individually rational auctions in which bidders never pay less
than what they would pay in a Vickrey auction. It is easily seen that the Prosper auction discussed in this paper is core-
selecting. However, truncation strategies are generally not possible in social lending auctions given the restricted bidding
format, which only allows the specification of a budget and interest rate. We therefore describe analogous Nash equilibria
where those existing results cannot be applied. In both cases, the results indicate situations in which a specific bidder can,
at equilibrium, shade her bid down to the Vickrey-price-setting bid of a (truthful) loser.

In spite of its apparent similarities, the Prosper auction is quite distinct from these existing uniform-price auction for-
mats. In consequence our analysis differs from the above works along several dimensions. First, in a large part of our paper,
we study a one-shot auction model under complete information. We choose this approach because an equilibrium analysis
of the dynamic Prosper auction appears difficult, even under a complete information setting. In contrast, the previous stud-
ies on uniform-price auctions do not combine these two features. Another difference concerns the form of bids that can
be submitted—in the aforementioned sealed-bid auction models, bidders bid a full demand curve. In our model, however,
a bid is a demand of (actually, an offer to supply) some quantity at some price, and each bidder submits a single bid to
prevent them from announcing a demand curve by an appropriate bid combination (we do so for tractability reasons, since
equilibrium analysis where bidders announce a demand curve is known to be intractable). Finally, we are also particularly
interested in worst-case comparisons between the borrower’s payment in different mechanisms, an approach that, until
recently, has seldom been used in economic analysis.

Finally, our work is also related to the work on frugal mechanism design in the computer science literature, which seeks
mechanisms with small payments for the buyer in a reverse auction. In “hiring a team” problems (Archer and Tardos, 2002;
Talwar, 2003; Elkind et al., 2004; Immorlica et al., 2005; Karlin et al., 2005; Chen and Karlin, 2007), a principal wants to hire
a team of selfish agents at a low cost to perform a task, where each agent has a private cost for performing her sub-task.
Only feasible teams are able to complete the task. In the context of social lending, one can consider lenders as agents, and a
feasible team is simply one whose total budget is greater than or equal to the borrower’s demand. However, our work differs
significantly from these hiring a team problems in that the system of feasible sets in our setting is quite different from those
considered in the frugality literature, and the existing results do not apply to the feasible sets in our social lending setting.
Also, rather than attempt to derive the optimal incentive-compatible frugal mechanism, we examine the most commonly
used social lending mechanism, and compare it with other natural alternatives. To the best of our knowledge, this is the
first paper to propose a theoretical analysis of the auction mechanisms used in social lending.

2. Preliminaries
2.1. The Prosper marketplace

To motivate the model of social lending auctions used throughout the paper, we start with a brief description of the ac-
tual mechanism employed by Prosper until 2010.° Auctions are initiated by members who want to borrow money (hereafter
borrowers), which can be any amount from $1000 to $25,000. The term of a loan can be one, three or five years. Borrowers
also specify a reserve interest rate, which is the maximum interest rate above which they are not willing to borrow. This
rate could be, for example, the interest rate that would apply if the borrower were to obtain the funds from a bank. By
convention all rates are annualized and net of fees.

The normal duration of the bidding process is fourteen days, unless the borrower closes the auction early. Members who
wish to lend money (hereafter lenders) can participate in the auction by bidding the amount they wish to lend to this

5 The Prosper interface is described on the company’s Web site and the prospectuses filed at the Securities and Exchange Commission.



N. Chen et al. / Games and Economic Behavior 86 (2014) 367-391 371

particular borrower (which can be any amount greater equal $25), together with an interest rate, which is the rate they
seek to receive from the loan.

Prosper auctions are dynamic, semi-open auctions, in the sense that bids are submitted sequentially and Prosper releases
bidding information through the course of the auction. Specifically, every time a bid is received, Prosper recomputes the
auction outcome—the rates and amounts allocated to lenders—as if the auction were to close at that time. Given a set of
bids, Prosper allocates the loan amount requested by the borrower to the bidding lender with the lowest interest rate. If
the amount bid does not cover the entire loan, Prosper allocates what remains of the loan to the bidding lender with the
second-lowest rate, and so on until the entire amount has been allocated, or until no bidding lender remains. In case of
ties, bids placed earliest in time takes precedence over later bids. Once allocations are determined, Prosper sets a single
loan rate that applies to all winning lenders (i.e., lenders who receive a positive allocation). This loan rate is set to be the
interest rate demanded by the winning lender whose bid amount is only partially allocated (i.e., the lender who bid the
highest interest rate amongst the winning bids but did not lend the full amount he bid), or, if there is no winning lender
with such a partial allocation, to the next highest rate which is the lowest interest rate among the losing bids (or, if neither
applies, to the reserve rate set by the borrower). The auction outcome is announced publicly at all times. In addition, all
information about losing bids is public, while for winning bids, Prosper displays only the amount bid and lender identity
(the interest rate requested by the winning bidders remains undisclosed). Lenders who are outbid can compete by placing
new bids, as long as the rate bid is at least 5 basis points (0.05%) below the current loan rate. Note that while a lender can
submit any number of bids in the course of the auction, these cannot be withdrawn: once placed, bids are irrevocable.®

Once the auction closes, the loan is made provided the bids received cover the full amount requested by the borrower.
Lenders transfer the funds to the borrower, from which Prosper deducts transaction fees. The borrower, in turn, sends
repayments to the lenders, from which also Prosper deducts servicing fees.” Repayments are made on a monthly basis and
are calculated so as to amortize the loan amount, over the term of the loan, and at the loan interest rate.

2.2. Modeling the Prosper auction

In most of this paper we consider a simple static model of the Prosper auction in a complete information setting, which
offers a tractable alternative to the dynamic auction game. We note here that it is common to analyze open auctions
under complete information (for example, the analysis of Ausubel and Schwartz, 1999; Grimm et al., 2003 and Riedel
and Wolfstetter, 2006 assumes complete information). Complete information reflects the idea that agents learn through
interactions, and in the semi-open auction format used by Prosper, it is arguably a better choice of information structure—as
claimed, for example, by Varian (2007) and Edelman et al. (2007) who observe a similar situation regarding auctions for
online advertising. The claim is supported, in part, by the fact that even with minimal knowledge about one’s opponent,
strategies of rational players in a repeated game converge to a Nash equilibrium of the one-shot game (Kalai and Lehrer,
1993). Here our auction game can be interpreted as a limit case of the dynamic Prosper mechanism, in which lenders will
have learned entirely the private information of their opponents by the end of the 14-day period, and submit their last
bid all at once strategically given full information. We extend this static model in Section 5 to an incomplete information
setting, and in Section 6 to a dynamic setting.

To support some of our modeling assumptions, we retrieved a dataset provided by Prosper and extracted bidding data of
all the auctions that took place since the company’s debut until the abandonment of the auction model.® The data extracted
consists of 28,135 auctions and 4.7 million bids. All Prosper statistics that we refer to in the remainder of this section are
derived from this data.

We focus the analysis on a single auction for a loan of one year with a single repayment at the end of the term, with
participating lenders who have private interest rates but fixed, publicly known amounts, or budgets, that they are willing to
lend to this borrower. A possible interpretation of the fixed-budget assumption is that lenders do not behave strategically
with respect to the amounts they bid in the course of the auction—every lender decides the amount he is willing to lend
in this auction once and for all, and always bids this amount in every subsequent round. Because Prosper uses a semi-open
format which makes public all the amounts bid, lenders will have learned each other’s budgets after the first round of
bids. Budgets then become common knowledge among the participants. The assumption does not preclude that the amount
first bid be strategically chosen, for example as a function of the borrower’s information, the lender’s portfolio and the risk
involved. What is important is that this amount becomes known and fixed through the auction process.

That lenders do not behave strategically with respect to budgets allows considerable simplifications and makes the
analysis tractable. Yet the assumption is not innocuous. The major reason why lenders might engage in strategic behaviors
is the phenomenon of demand reduction described by Ausubel and Cramton (2002). Ausubel and Cramton examine the case

6 Because Prosper considers every bid independently, in theory lenders need not wait to be outbid to submit new bids, but in practice such cases are
rare.

7 Fees are in percentage of the loan amount. In 2010, a transaction fee of 3.0% of the loan amount was charged to the borrower, and a servicing fee equal
to an annualized rate of 1.0% of the outstanding principal balance was deducted from each lender’s share of loan repayments.

8 The dataset is publicly accessible at http://www.prosper.com/about/academics.aspx. We extracted the auctions which (i) were successfully completed
and ended up in a funded loan, and (ii) which had at least one losing bid. This second condition allows us to separate the auctions from Prosper’s pre-set
rate alternative which was first made available in 2009, as the dataset does not distinguish between the two.
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of sealed-bid uniform-price auctions to sell multiple identical units of an item to bidders. Under fairly general conditions
and incomplete information, they show that every Bayesian-Nash equilibrium yields an inefficient outcome with positive
probability, because some bidders have incentive to bid a reduced demand. The idea is that by reducing demand, a bidder
can also reduce the price she pays for the items won. For example, a bidder with a demand for two units which she
values the same can end up bidding her true value for the first unit, but bid less for the second unit, in effect bidding
a reduced demand function. What drives the result is that while shading her bid reduces the chances to be allocated the
second unit, it also increases the probability of a low price for the first unit. Demand reduction is also present in the
open-format counterpart of the sealed-bid uniform-price auction, the open ascending-price auctions (Ausubel and Schwartz,
1999; Grimm et al., 2003; Jun and Wolfstetter, 2004; Riedel and Wolfstetter, 2006).

Demand-reduction strategies can also be profitable in the Prosper (reverse) auction. Recall that in the actual Prosper
auction, a bid is simply an amount and an interest rate. In principle, Prosper does not prevent a lender from submitting
several bids for different amounts and interest rates, so that a lender can essentially bid a full demand (actually supply)
schedule all at once via an appropriate combination of bids, as in the sealed-bid auctions considered in Ausubel and Cramton
(2002). Even if limited to placing a single bid, reducing one’s budget can potentially increase a lender’s profit—by reducing
the amount, a lender generally increases the final loan rate because more lenders will be needed to clear the loan so that
the auctioneer will have to look further up for its last winner or first loser. If that increase is significant enough, it may
compensate for the loss of revenue due to lesser demand.

Because we assume that lenders do not attempt to manipulate their budget, our framework does not capture a potential
loss of utility due to demand reduction. Instead we explain the borrower’s payment via competition on interest rates. It
is worth noting that, according to bidding data, demand-reduction strategies seldom occur in Prosper auctions. Indeed, we
observe that a lender wins with multiple bids about 2% of the time, so that lenders submit a single winning bid in the vast
majority of the cases. This indicates that lenders do not submit multiple bids at once, rather, they submit a new bid only
after being outbid. This also helps justify that in our model, each lender places a single bid.

A possible explanation is that, in the context of social lending, the cost of employing such demand-reduction strategies
outweighs the benefits. From a lender’s perspective, Prosper is an investment platform that offers a large number of loans
to invest in. While Prosper limits every borrower to a maximum of two loans at a time, lenders can participate in as many
auctions as they want. If lenders are at all risk-averse, they will prefer to diversify their risk through a portfolio of small
loans. Indeed, the data shows that on average, a lender participates in about 70 auctions. If a strategy is costly in terms of
time and effort, then that cost is multiplied by the number of auctions. Demand-reduction strategies can be costly, because
they require a careful assessment of an indirect price impact. And given the low amounts bid on individual loans—on
average, lenders bid $80 per auction—the cost of lender participation is not negligible. In fact, as it can be cumbersome
to scrutinize so many auctions, Prosper even provides an automated portfolio plan that facilitates the process and places
bids for the lender.” On the other hand, demand-reduction strategies and the like may not be very profitable, since these
strategies are most effective when (1) the lender bids a sufficiently large amount and (2) the competition is restrained. To
take advantage of risk-sharing lenders should, and do bid small amounts for each loan—indeed, over 95% of the bids are for
an amount of $200 or less—and for that same reason many lenders should share the loan—and again, on average, a borrower
requests $6200 and the loan is divided among 85 lenders. On the contrary, strategies for bidding interest rates need not be
complex, and as we will see in the next sections, there are indeed simple equilibrium strategies that can generate relatively
large revenue for the lenders, when compared to the Vickrey auction.

If lenders choose not to strategize over budgets to increase their average profits, they might still want to do so to manage
their risk. Individuals are risk neutral for small amounts but become risk-averse as the stakes increase. To the extent that
rates are an indicator of loan quality, it may be advisable to lend different amounts when the interest rate is high, say 25%,
compared to when the interest rate is low, say 5%. Our model remains compatible with this behavior, because most of the
risk incurred can be assessed at the moment of deciding whether to participate in the auction, via the information available
from the borrower. So even if lenders may want to vary the amount they bid across auctions, they may want to bid a fixed
amount within auctions. The data supports this, demonstrating that large differences in rates are unlikely to appear within
the same auction—the average difference between the highest rate bid over the 14-day period and the loan rate at the end
of the period in Prosper is less than 3 percentage points.

Formal model. We now present a formal model for an auction in the Prosper marketplace. There is a single borrower who
wants to borrow an amount of money D, hereafter referred to as the demand, and specifies a reserve interest rate R. Both R
and D are publicly known before the auction starts. Multiple lenders, denoted by L1, ..., L,, compete to finance the loan.
Each lender L; specifies her budget a;, which is the amount she’s willing to lend, and her bid b;, which is the interest rate
she seeks from her loan. The demand D and the budgets a; are integers, i.e., they are expressed in cents (or the smallest
unit of currency). Each lender is limited to a single bid. We assume that the budgets a; are exogenously fixed and common

9 The system selects the auctions to participate in and the budget to bid as a function of criteria specified by the lender; these criteria concern borrower
characteristics such as credit score and income level. The system tries to sustain the highest possible bids without losing to the competition.
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knowledge. We also restrict attention to the case where no lender is indispensable for the borrower’s loan to be funded in
full, so that no lender can “clinch” part of the loan before any bidding takes place!°: for any j, Z,-#j a; > D.

A mechanism for this setting computes an allocation and “price” for each lender, given the lenders’ budgets ay, ..., a,, and
bids b1, ..., bs. The allocation for lender L;, 0 < x; < a;, is the amount borrowed from lender L;, and the price!! p; is the
effective interest rate!? at which the lender will be paid back by the borrower. As in the actual Prosper auction, we require
that the total allocation exactly funds the loan, that is, > ; x; = D. To ensure voluntary participation, we will require that
pi = bi. We say that lender L; is a winner if she receives a positive allocation x; > 0.

We suppose that every lender L; has a private true interest rate rj, which is the interest rate equivalent to her best
outside option. That rate r; makes lender L; the indifferent between getting her best outside option or investing her money
in a Prosper loan with rate r;.

Lenders are rational, which means they act to maximize their utility given their true interest rates. The utility of lender
L; is defined as'®

u; =Xi(pi — ). (1)

Almost all the mechanisms we consider in this paper will use the following allocation rule.

Definition 1 (ALLocATION A(b), LAST WINNER AND FIRST LOSER). Given a bid profile b = (b1, ..., bp), order lenders so that
b1 < by <--- < bp. Let k=min{j | Z{:] ai > D,j=1,...,n}. Then the allocation A(b) is defined as x; =a; for i <k,
Xx=D — Zif;ll a;, and x; =0 for i > k. We refer to Lj as the last winner and Ly as the first loser.

Note that there is at most one lender—the last winner—who might not exhaust her budget.

Throughout the paper we will use k as index for the last winner and k + 1 as index for the first loser. Note also that the
ordering and index of lenders can change from one bid profile to another.

When multiple lenders bid the same interest rates, a fixed, preannounced tie-breaking rule is necessary. To maximize
clarity of presentation, we use a tie-breaking rule which has oracle access to lenders’ true interest rates. (Ties between
lenders with the same true interest rate are broken arbitrarily.) While oracle access might appear to be a very strong
assumption, all of the results in our paper hold, up to a modification by €, for any fixed preannounced tie-breaking rule.'*

For completeness, we recall the definition of a Nash equilibrium.

Definition 2 (Nash equilibrium). A bid profile b= (b1, ..., by) is a Nash equilibrium if no lender can increase her utility by
unilaterally changing her bid, that is, keeping the bids of other lenders fixed.

Given a set of bids from lenders, how should one select the winners and decide their respective interest rates? While
most mechanisms investigated in this paper have the same allocation rule, they differ in their payments.

10 see Ausubel (2004). If a lender can clinch part of the loan, he can set the interest rate to be the maximum possible rate allowed by the borrower. In
practice, competition among a large number of lenders prevent such situations: Prosper counts over 140 bidding lenders per auction on average, only 85
of whom end up sharing the loan.

11 Note the distinction between the payment and the price: The payment is the product of the allocation and the price.

12 The effective interest rate is the ratio of the payment to the allocation.

13 This linear form of utility is a consequence of the simple loan in our model. In the more general situation, the term of a Prosper loan is n = 12, 36 or
60 months, with monthly repayments. If the monthly lender rate is r and the servicing fee rate is f, the monthly repayment of the borrower is

 (Hmx
T+ G+

where x is the amount lent. Assuming the borrower neither repays early nor defaults, the utility of the loan for a lender is the discounted stream of cash
flow

n k-1
N k=1, i-1
U_,;(Ha)k[” f<(1+f+r) x=Y A+ f+D) n)}

i=1
_ X
T1-QA+f+nn

ﬁ((l +5) - +f+r)‘”)]

where § is the lender’s discount rate. Of course the utility remains linear in x but loses its linearity in r. It can be seen that it is, however, well approximated
by its first order Taylor expansion which gives the form of utility (1). Alternatively, one can interpret the bids and variables p; and r; in our model as an
overall rate of return on the loan: Assuming that lenders are risk neutral for small amounts, whether lenders bid on the rate of return or the interest rate
does not impact the analysis.

14 Two alternative treatments are to discretize the bidding space to multiples of € (as is actually the case in Prosper, where € = 0.05), or to consider
€-Nash equilibria. With the first, every Nash equilibrium with price p (using oracle access) translates to a Nash equilibrium with price p or p — €,
depending on the particular tie-breaking rule used; with the second, a Nash equilibrium at price p translates to either a Nash or an e-Nash equilibrium at
the same price. See Immorlica et al. (2005), Karlin et al. (2005) for more discussion on tie-breaking rules.
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VCG mechanism. The VCG mechanism is incentive-compatible, i.e., it is a dominant strategy for every lender to report her
true interest rate r;.

Definition 3 (Set A and bid profile r). Define a bid profile r = (r1, ..., 1) (i.e., everyone bids truthfully). The VCG allocation is
computed according to A(r) (as in Definition 1). We denote by A the set of VCG winners.

The VCG payments are computed as follows. Let A(j) be the set of winners in VCG after removing lender L; from the
group of lenders, and let x;(j) be the allocation of each L; € A(j). Observe that A C A(j) U{L;}. The net payment to lender
L; in the VCG mechanism is

Z bix;(j) — Z bixi +bjx;.

LieA(j) LieA

Note that the VCG mechanism is not a uniform-price mechanism. Indeed, the (effective) prices associated with the VCG
payments given above are not necessarily the same for all winning lenders.

First price auction. Another natural mechanism is the “first price” auction: The allocation is according to A(b), and each
winner is paid his offered interest rate b;. In fact, the social lending Web site Zopa has recently introduced Listings, where
lenders can bid on individual borrowers’ loans as in Prosper, which uses a first price auction. The first price auction is
clearly not incentive-compatible; it also need not have a Nash equilibrium. In fact, unlike other settings where the first
price mechanism admits an e€-Nash equilibrium (such as single-item auctions or path auctions, see Immorlica et al., 2005),
in our setting it need not even have an e-Nash equilibrium, as the following example shows. Note that the choice of
tie-breaking rule is not the reason the first price mechanism does not have an €-Nash equilibrium; it is easy to see that this
example does not have an €-Nash equilibrium for any tie-breaking rule.

Example 1. Let D = 15 and suppose there are three lenders Ly, Ly, L3, with budgets a; =a; = a3z = 10, and interest rate
ry =r, =0.1, r3 = 0.5. Assume ties are broken according to L1 > L > L3. For any given € > 0, consider the bid b; made
by L. If by = 0.1, then L, will bid b, = 0.5 to obtain 5 units of allocation with a total utility of 5-(0.5—0.1) = 2. If b; = 0.5,
then L, will bid b =0.5 — €, to obtain 10 units of allocation with a total utility of 4 — 10¢. If 0.1 < by < 0.5, then L, will
set either by = 0.5 to obtain 5 units of allocation or by = by — € to obtain 10 units of allocation, whichever utility is larger.
Given the interest by set by Ly, lender L will set either by = 0.5 or by = by, whichever utility is larger. Thus, the strategies
of L1 and L, form a loop and there is no €-Nash equilibrium.

We will consider the following one-shot model of the Prosper auction:

The Prosper mechanism. Given a bid profile b, the mechanism used by Prosper, denoted by PROSPER, is the following.

e Allocation: PROSPER computes the allocation according to .A(b) (recall Definition 1).

e Pricing: If x;, = ay, i.e., the last winner exhausts her budget, the price to each winner is the bid of the first loser, i.e.
pi =by4q fori=1,..., k. We will refer to this interest rate as the price throughout. If x; < ay, i.e., the last winner does
not exhaust her budget, the price to all winners is the bid of the last winner, i.e. p; =by fori=1,... k.

PROSPER is not truthful for the same reason that the first price auction is not: For example, suppose there are two
lenders L1 and Ly, with ay =D+ 1, r; =1 and a =D + 1, r, = 2. Then L¢’s utility is greater when bidding b; = 2 than
when bidding (truthfully) by =1 (note that ties are broken by L > L,). However, as we will see shortly, PROSPER always
has a Nash equilibrium, unlike the first price auction.

3. Equilibrium analysis

In this section, we will analyze the Nash equilibria of PROSPER. We are interested in the borrower’s total payment,
and PROSPER is a uniform-price mechanism. We therefore focus on characterizing the set of prices that can arise at an
equilibrium. We will refer to the equilibrium with the smallest price as the cheapest Nash equilibrium, and to that with the
largest price as the worst Nash equilibrium.

We start by showing that Prosper always admits a Nash equilibrium. We then provide a complete characterization of all
equilibria in Section 3.1 where losers bid their true interest rate. Restricting ourselves to this subset of bid profiles renders
possible an analysis that is otherwise intractable, and it does so without sacrificing too much of the realism of bidding
behaviors, as we argue below. Finally we show in Section 3.2 that our characterization can be sharpened even further when,
in addition, we assume that winners bid at least their true rate.

Our first result is that PROSPER always admits a Nash equilibrium, in contrast to the first price auction.
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ALG-GREEDY

1. Define a bid profileb=r=(r1,...,m).
2. Repeat the following until convergence:
e If there is L; € A such that L; can increase utility by increasing her bid unilaterally
in the profile b, increase b; to the utility-maximizing point and update b.
3. Output the bid profile b.

Proposition 1. ALG-GREEDY returns a Nash equilibrium of PROSPER.

Proof. Denote by b the profile generated by ALG-GREEDY. Note that any lender L; € A who increases her bid in Step 2
becomes the last winner in the current bid profile. Let L, denote the last winner in b. Observe that all lenders in A are
winners and Ly € A, since ALG-GREEDY starts with the profile of true rates, and only lenders in A can increase their bids
to become the last winner.

First, no lender can obtain more utility by increasing her bid in b—by definition, no winner in A wants to increase her
bid; if winners not in A increase their bid higher than by, their allocation falls to zero. On the other hand, all losers bid
their true interest (since we start with the profile b =r) and all winners other than Lj exhaust their budget, so they do not
have an incentive to decrease their bid. For Ly, by the rule of ALG-GREEDY, Ly is the last lender in A who moves her bid
up to the point where her utility is maximized. Hence, she cannot obtain more utility by decreasing her bid, and so b is a
Nash equilibrium. O

3.1. Characterizing equilibria

We now move on to characterizing the equilibria of PROSPER, which will help us analyze the borrower’s payment in
the cheapest and worst equilibria. In this subsection, we consider a subset of bid profiles: We assume that losers always bid
their true interest rate. This assumption, crucial for tractability,” is not unrealistic.

One can first argue that losers should bid at least their true interest rate. A loser who bids less is exposed to the risk
of obtaining a negative utility if the other lenders were to unexpectedly deviate from the equilibrium—for example if for
some reason a winning lender were forced to exit the market (although very unlikely, Prosper occasionally withdraw bids).
Bidding at least her true interest is, however, a safe strategy robust to any equilibrium deviation. That losers bid at least
their true rate seems fairly reasonable.

One can argue further in favor of bidding exactly her true rate. Bidding above the true rate can potentially impact the
lender’s change of obtaining positive utility if some lenders were to deviate from the equilibrium, such as a winning lender
forced to exit the market. A more compelling argument is perhaps that a loser who bid exactly her true rate minimizes her
“envy” towards the winning bidders, in the sense that it potentially reduces the utility of the winning bidders, and does
so at no cost since the losing bidder always gets zero utility. Such behavioral biases are not accounted for in the utility
function, and we will not attempt to rationalize them in this paper. They are plausible nevertheless, and such ideas have
been used in other auction settings to characterize bidding behavior (see, for example, Othman and Sandholm, 2010).

Under this assumption, we characterize the set of all prices and equilibrium bid profiles. Note that winners can, and
indeed do, bid less than their true value in certain equilibria (see Examples 2 and 3 below). We begin by introducing some
notation that will be used through the remainder of this paper.

Definition 4 (Index o, o + 1 and B). Given bid profile r, we use « to denote the index of the last VCG winner and o + 1 to
denote the index of the first VCG loser.

Assume lenders are indexed in a non-decreasing order of their true interest rates. For each Lj € A, let Lg; be the last
VCG winner when the set of lenders is restricted to {L1,...,Lj_1,Ljt1,..., Ly}, ie, it is the smallest index k such that

K
> is1,ixjai = D. Define f =maxyca Bj.

Here § is the index of the last lender whose bid affects the VCG payment of some VCG winner. (Alternately, it is the
largest index of lenders who enter the VCG solution if any VCG winner is removed from the market.) For example, suppose
that D = 11, with 5 lenders L1, ..., L5, with respective budgets a; =6, a; =5, a3 =4, a4 = 3, as = 12, and interest rates
ry<---<rs. Then A ={Lq,L2}, =2, v+ 1=3 and 8 =4. Now if instead a3 =2, then g =5.

To characterize the equilibria, we need the following series of lemmas, whose proof is relegated to Appendix C.

Lemma 1. In any Nash equilibrium b with price p, any lender L; with r; < p is a winner.

15 We show in Appendix A that computing the cheapest and worst Nash equilibria is, without any restriction on bid profiles a priori, NP-hard. Perhaps
surprisingly, this hardness result arises entirely because losers can bid strictly higher than their true values.
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We point out that the reductions used to prove Theorems 9 and 10 illustrate that the above lemma need not hold for
arbitrary equilibria of PROSPER: While no lender with r; > p can be a winner in a Nash equilibrium with price p, the
converse is not true: Not every lender with r; < p need be a winner in an arbitrary equilibrium. That is, the assumption
about losers bidding the true values is crucial this lemma.

Lemma 2. The price p in any Nash equilibrium b of PROSPER satisfies rq 1 < p < rg. Furthermore, p =r; for some L with rg4q1 <
ri <r
ixTB

The lemma above is crucial and characterizes the set of possible prices that can arise in an equilibrium. The next lemma
follows easily from the previous ones.

Lemma 3. For any Nash equilibrium with price p, there exists a Nash equilibrium with the same price and where all lenders in A are
winners.

It is tempting to think that we may assume without loss of generality that every winner other than the last winner bids
her true rate, since the actual bid value of such a winner affects neither the set of winners nor the price. However, as the
example below shows, this is not true: While increasing the bid to the true rate indeed does not change the allocation or
the price, the resulting profile is no longer an equilibrium.

Example 2. Suppose D = 11. There are four lenders with a; =5, r1 =0.5; ap =10, r, =1; a3 =5, r3 =2 and a4 = 10,
r4 = 7.1. For example, bid profile b= (2,0, 2,7.1) is a Nash equilibrium with allocation x; =1 and x; = 10. Actually, it
can be seen that it is a cheapest Nash equilibrium as well. Note that if L, was to bid at least her true value 1, L1 has no
incentive to increase her bid any more, and thus L, will have to increase her bid to 7.1 to maximize her utility.

Note that in the above example, there is no equilibrium at price 2 with every winner bidding at least her true rate.
While winners’ bids in a Nash equilibrium can, in general, be quite complicated, the following simple equivalence holds.

Lemma 4. Suppose that b = (b1, ..., by, k41, ..., ) is a Nash equilibrium where L1, ..., Ly are winners and Ly, is the last winner.
Then the profile b’ = (0, ..., 0, by, Tky1, - .., ) (i€, every winner except the last winner bids 0) constitutes a Nash equilibrium with
the same allocation and price.

The lemmas above give us the following algorithm to compute Nash equilibria. The algorithm essentially checks all
possible pairs of last winners and prices, for every lender in A and every price rj, ro41 <1j <rg—note that the price in each
b(k,rj) €S is exactly r;.

ALG-PROSPER

1. Let S=4.
2. For each Lye A andrje{rg|Le: ror1 <r¢ <1}
e define a bid profile b(k,rj) where
- bj=0 for each Lj withr <rj, i#k;
- bk = Tj;
- bi=ri for each Lj withr; > rj, i#k;
e If Ly is the last winner inb(k,rj) and it is a Nash equilibrium, let S < SUb(k,r)).
3. Output S.

As there are n lenders in the market, 8 — o <n, ALG-PROSPER runs in polynomial time.

Theorem 1. The collection S of bidding profiles returned by ALG-PROSPER consists of Nash-equilibrium bidding profiles. Moreover,
every Nash-equilibrium bidding profile is price- and allocation-equivalent to some profile returned by ALG- PROSPER.

Proof. Consider any Nash equilibrium b = (b1, ..., bk, k41, ...,1n) Where Lq,..., L, are winners and L is the last winner.
Let p be the price of b and assume without loss of generality that by <rg4q <--- <. Note that rq 1 < p <rg. By Lemma 4,
it suffices to consider Nash equilibrium b’ = (0, ..., 0, by, 41, ..., ). Note that the lender Ly belongs to A: By Lemma 3,

all lenders of A are winners. Since those lenders are enough to fulfill the demand, the last winner must be one of them. As
b is a Nash equilibrium, p =r,; anyway (no matter whether L; exhausts her budget or not). Hence, b(k, r¢;1) is a Nash
equilibrium as well, i.e. b(k,r741) €S. O

Why do we need to check all possible pairs of last winners and prices? The example below shows that this is necessary
in general.
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Example 3. Let D = 12. There are five lenders with r1 =0, a; =10; i =1, a2=3;r3=2,a3=1; 14 =29, a4 =1 and
rs =4, as = 12, respectively. In this example, it can be seen that the cheapest Nash equilibrium is b= (0, 2.9, 0, 2.9, 5) with
a total payment of 12 -2.9 = 34.8, where Ly, L, L3 are winners with allocation 10, 1, 1, respectively. An interesting fact
of b is that L3 is even not a VCG winner. To obtain positive utility, L3 reduces her bid to 0, which drives L, to increase
her bid to 2.9. However, if winners have to bid at least their true value, L, only wants to increase her bid to r3 =2 with
an allocation of 2. In this case, the utility of L1 is 10 -2 =20 and she will increase her bid to r5 =4 to obtain a utility of
(D—ay—a3z—aq)-4=7-4=28.

This example shows an interesting form of equilibrium where a lender with high interest rates (L3) submits a very
low bid which forces another lender (L) to hold up an interest rate that would not, otherwise, be utility-maximizing
for her. Restricting winners to bid at least their true value removes such equilibria and allows us to provide a sharper
characterization, as we will see in the following subsection.

The characterization in Theorem 1 easily gives the cheapest and worst Nash equilibria as the smallest and highest prices
in S. In fact, the worst Nash equilibrium always has price rg.

Theorem 2. Let L; € A be the lender where Lg is a VCG winner by the lenders in {Lq,...,Lj_1,Ljy1,..., Ly}. Then the bid profile
b= (b1,...,bp), whereb; =0ifri <rgandi# j,bj=rg and b; =r; ifr; > rg and i # j, is a worst Nash equilibrium with price rg.

Proof. We first prove that b is a Nash equilibrium with price rg. Let L, be the last winner and p be the price of b,
respectively. By the definition of 8 and selection of Lj, we know that p > rg. If p > rg, by the construction of b, all lenders
in AU {Lg} are winners. Since Lg ¢ A, we know that L, € A and L, does not exhaust her budget, which implies that
by = p > rg, which is impossible. Hence p =rg.

It is easy to see that no winner in b can obtain more utility by increasing her bid (this is because, for any winner L;, if
moving her bid to a value higher than p =rg, she will not get any allocation). Additionally, all winners with either bid 0
or true interest p =rg and all losers do not have an incentive to decrease their bid. The only lender we need to consider
is Lj. If j #k, L; exhausts her budget in b, and thus has no incentive to reduce her bid. If j =k, as L;j = L, does not exhaust
her budget, then when reducing her bid, the price will be decreased as well. Hence, L; is not willing to reduce her bid.
Therefore, b is a Nash equilibrium.

From Lemma 2, we know that the price in any Nash equilibrium lies between ry41 and rg. Therefore this must be the
worst Nash equilibrium. O

3.2. Winners bid at least their private rates

We have, until now, placed no restrictions on the winners’ bids. For example, it is possible that a winner wants to bid
strictly less than her true interest rate to increase her allocation and utility in an equilibrium. For instance, in Example 2,
L, can obtain a utility of 10 by bidding 0. However, such a bidding strategy also carries the risk of negative utility: Suppose
a new lender L5 with budget as =5 and bid bs = 0.5 enters the market. Then L, remains a winner but receives price 0.5,
which is less than her true interest rate r, = 1, leading to a loss.

In this subsection we continue to assume that losers bid truthfully, and in addition we assume that winners bid no less
than their true interest rates, for example to avoid the potential loss incurred by playing such strategies. This restricts the
set of bid profiles to explore even further, and allows us to sharpen our equilibria characterization.

Starting with the profile r of true interest rates, let V; be the subset of values to which each lender L; € A is willing
to increase her bid to be the last winner, given the bids of other lenders (note that V; € {r441,...,73} when lenders are
indexed in a non-decreasing order of interest rates). We will show that if any of these lenders deviates to bid one of these
values, the set of values to which other lenders want to move up does not change much at all—it either shrinks or stays the
same, but no new value is added to it. This will allow us to show that the set of prices in equilibria is a subset of [ J;.cA Vi.
Our first lemma is analogous to Lemma 4.

Lemma 5. Suppose thatb = (b1, ..., bk, k41, - . ., I'n) is a Nash equilibrium where L1, ..., Ly are winners and Ly is the last winner.
o If L does not exhaust her budget, then the profile b’ = (r1, ..., x_1, bk, Tks1, . - ., Tn) (i.e,, every lender except Ly bids her true
interest) is a Nash equilibrium with the same allocation and price.
o If Ly exhausts her budget, then b’ = (r1, ..., T, Tkt1, - .., n) (i.e., every lender bids her true interest) is a Nash equilibrium with

the same allocation and price.

Now consider a bid profile b= (b1, ..., by). For each lender L;, define a set of values V;(b) where b € V;(b) if (i) bj > b;,
(i) when bidding b, L; is the last winner and does not exhaust her budget, and (iii) b} is the bid that maximizes her utility
(ie. uj(b}) > uj(b) for any b, and in particular, u;(b}) > u;(by)). If V;i(b) # ¥, we say that L; is weakly willing to increase her
bid. Intuitively, if L; is weakly willing to increase her bid, then either she can obtain more utility by increasing her bid or
the utility of other lenders can be increased without hurting her own utility. We can then establish the following result.
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Lemma 6. Given a bid profiler = {ry, ..., rp}, let T ={L; | Vi(r) # @}. Foreach L; € T, let bj € V;(r) be an arbitrary value in V;(r).
Define a profile

b(j,bj)=(r1,....,1j—1,bj,rjy1, ..., )
and let

T(j,bj) ={Li | Vi(b(j. b)) # 2}
be the set of lenders who are weakly willing to increase their bids in b(j, bj). Then forany Lj € T,

(@) T(j,bj) <T.
(b) Li ¢ T(j,bj) forany L; e T, i # j, withb; <b;.
(c) Vi(b(j,bj)) = Vi(r) forany Li € T(j,bj), i # j.

Fact (a) tells us that the set of lenders who are weakly willing to increase their bid does not expand if some winner
increases her bid. Fact (b) says if a lender Lj e T with larger b; increases her bid, then all other lenders L; € T with smaller
b; will not increase their bids any more. Fact (c) says that if L; is still weakly willing to increase her bid after another lender
Lj e T increases her bid, the set of values to which L; is weakly willing to move will not change. The following corollary
follows immediately.

Corollary 1. Any sequence of moves starting with r = {r1, ..., r,}, where a move consists of a lender L; € T (b) increasing her bid to
any b € V;(b) where b is the current bid profile, converges to a Nash equilibrium.

Let V ={vq,vy,...,Vm} = UL,»eT Vi(r) where values are ordered by vq < vy < --- < vy;. Note that m < n. For each
vjeV,let f(j) be the index of the lender where v; € Vy; (r). (If there are multiple such lenders, pick one arbitrarily.)
That is, v; is a value to which lender Ly;, is weakly willing to move. Lemmas 5 and 6 can now be employed to derive the
cheapest and the worst Nash equilibrium.

Theorem 3. The following results hold:

o The cheapest Nash equilibrium is either r or given by the smallest index ¢, 1 < £ < m, where b(f(£), v¢) is a Nash equilibrium.
e The worst Nash equilibrium is either b(f (m), vi) or r (if V. = @).

Proof. For the simplicity of the proof, we denote b(f(j), vj) by b(j).

Let b* = (b},...,b}) be a cheapest Nash equilibrium with last winner Ly. If Ly exhausts her budget in b*, by Lemma 5,
we know that r is a cheapest Nash equilibrium as well. If L, does not exhaust her budget, again by Lemma 5, it is safe
to assume that all other lenders bid their true interest in b*. As the utility of L, is maximized by bidding b}, we know
that Ly € T and by € Vi (r) C V (otherwise, r is a Nash equilibrium). Hence, any profile b(j), where v; < by, is not a Nash
equilibrium. Consider the profile b(j), where v; = b;. By Lemma 6, we know that b(j) is a Nash equilibrium, which is the
cheapest Nash equilibrium as well. Similarly, we can prove that b(f(m), vi;) is a worst Nash equilibrium. O

4. Comparing Prosper and VCG

We now compare the total payment of VCG with that of PROSPER, in a setting where losers bid at least their true
interest rate and with no restrictions on winners’ bids. For any given instance, let CNE (PROSPER) and WNE (PROSPER)
denote the total payment of the cheapest and worst Nash equilibrium of PROSPER, respectively. Let VCG denote the total
payment of VCG.

Theorem 4. The following inequalities hold

1
ok CNE(PROSPER) < VCG < 0 (log D) - CNE(PROSPER).

Proof. Consider any cheapest Nash equilibrium b* = (b7, ..., b;) of PROSPER. Let x* be the vector of allocations and p* be
the price to all winners in b*. Assume without loss of generality that lenders are ordered by r; <--- <1y

By Lemma 2, we know CNE(PROSPER) < D -rg. On the other hand, by the definition of 8, rg will be counted in the
total payment of some VCG winner in A (recall that A is the set of winners by VCG), which implies that rg < VCG. Hence,
CNE(PROSPER) < D -rg < D - VCG. It remains to prove the second inequality of the claim.

Let x; be the allocation of each L; by VCG. As D is the total demand, we know x; < D. For each L; € A\ {Ly}, define an
ordered multi-set S; with |S;| =x; by

total of ay —xy total of agy1 total of ag 42

—_——~—
Si={Tar - sTa Tatts o Tat1s Tat2s s Tag2s -}
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That is, S; contains ay — X, many ry’s, Ay+1 Many ry4+1’s, dg+2 Many rq42’s, and so on, until the size of S; is x;. Define an
ordered multi-set S, with |Sy| =Xy by

total of ag .41 total of ag 42

S = {ronrl’---,Toz+lara+27~~-7ra+2,---}-

That is, Sy contains ay4+1 Many rq+1’s, dy+2 Many re42's, and so on, until the size of Sy is x,. By the rule of VCG, we know
that the payment to each winner L; € A is the sum of elements in S;.

For each S;, denote its o-th element by fi(0), 0 =1,...,%;, and let ¢; = argmaxy—_1,.. x (i —0 + 1) fi(o). That is, ¢;
is the index that gives the maximum payment (not utility!) obtainable if L; increases her interest unilaterally. Let A; =
(xi — @i + 1) fi(¢i). Hence, the total payment of VCG satisfies

veG= Y Z fi(o)
LieAo=1

= (1 i) + % 2fili =D 4+ Xl -xif,-(l))

LieA
gLigA((] + % N xll) . Hllaxx-(Xi -0 —I—l)fi(0)>

=) 0(logx)) - Ai

LieA
< 0(logD) Y A
LieA

On the other hand, consider the price p* to all winners in b*. We divide the lenders in A into two groups:

Av={Lie A| p* < fi(¢i)}

and

Ay={Lie A|p* > fi¢n)}.

For each L; € Aq, we claim that the total payment (not utility!) that L; obtains in b* is at least A;. Otherwise, assume

that there is L; € Ay such that the total payment that L; obtains in b* is smaller than ;. Note that the utility of L; in

b* is uj(b*) = xjf -(pF—r1j) = xjfp* — xjfr]-, where xj.p* is the total payment that L; obtains. By the assumption, we know

xjp* < Aj. As b} >r; for any loser L;, when L; increases her bid to fj(¢;) in b*, the total payment she obtains is at least
Aj. On the other hand, when the bid of L; increases, the allocation of Lj, x;f, is not increasing. Since

utility = total payment — allocation x true interest

we know that the utility of L; increases, a contradiction to the fact that b* is a Nash equilibrium. It follows that

CNE(PROSPER) > Z total payment to L; > Z Ai.
LieAq LieAq
For lenders in A;, observe that

CNE(PROSPER) = D - p*

>p* ) x

LieAy
>p* Y Ki—¢i+ 1)
LieAy
> Y =i+ D fil¢0)
LieA;
= Z Aj.
L,‘EAZ

Therefore,

CNE(PROSPER)>1 ZA > ! VCG
- 2 = 'Z 0(logD)

which completes the proof of the theorem. O
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The inequalities in the above theorem are tight. Consider the following two examples:

e Llet D =10m + 1, where m is an arbitrary positive integer. There are six lenders with budget ap =5m+ 1, a; =m,
ap =a3 =a4=3m, as = 11m and interest ro =r; =1 =r3 =r4 =0 and r5 = 1. It is easy to see that VCG =1, where
the only lender that obtains positive utility is Ly who gets a payment of r5 = 1. Note that a; +ay + a3 + a4 = 10m and
there is no way to partition {Lq, Ly, L3, L4} into two groups such that the sum of budgets of each partition is 5m. Using
the argument from the proof of Theorem 9 presented in Appendix A, we obtain that the cheapest Nash equilibrium has
a price 1 to each winner, which implies that the total payment is D. Hence, CNE(PROSPER) = D - VCG.

e Let D =n. There are n+ 1 lenders Lo, Lq,..., L, with budget ap=n and a;j =1 fori=1,...,n. Let ro =0 and r; =
it fori=1,...,n. In VCG,.LO wins and .tl.1e vtotal payment is Y ;- ria; = Z?:l.n—?ﬁ = O(nlogn). It can be seen
that the profile (rg,r1,...,1s) is a Nash equilibrium. Therefore, the total payment is D -r; =n and VCG = O (logD) -
CNE(PROSPER).

For this general setting, i.e., where losers can bid higher than their true value, the worst-case ratio between the worst
Nash equilibrium of PROSPER and VCG can be arbitrarily large as the reduction in the proof of Theorem 10 shows. If losers
bid their interest rate truthfully, we have the following result, similar to Theorem 4 (again, the bounds are tight).

Theorem 5.

1
5 -WNE(PROSPER) < VCG < O(log D) - WNE(PROSPER).

5. Bayesian analysis

The analysis of the preceding sections concentrates on the complete information setting. The actual Prosper auction is
dynamic, so that the lenders learn about each other through the course of the bidding process. The complete information
setting corresponds to the case in which all bidders come to fully learn each other’s private interest rates. For completeness,
in this section we look at the other extreme alternative: that bidders learn nothing about each other. This setting is captured
by a sealed-bid auction format analyzed under incomplete information. Computing the outcomes of the Prosper auction in
closed form is not tractable (see Hu, 2009, chapter 4); however the incomplete information setting does allow us to derive
the auction that is optimal for the borrower, and draw comparisons between this optimal auction and the Prosper auction.

As before, the auction is initiated by one borrower for a particular loan, who demands D units of currency with a reserve
rate R. There are n lenders L1, ..., L,. Each lender L; has a true budget a;, which is the maximum amount she is willing
to put in this particular loan, and a true private interest rate r;, which is the rate that makes this loan utility-equivalent
to her best outside option. Let A be the largest amount lenders can bid. For every lender i, the pair (a;, r;) is identically
and independently distributed according to F, with a density f and with full support on [0, A] x [0, R]. (Note that this
distribution applies to one particular listing, since f will depend in general on the borrower’s characteristics.) We denote
by F(-la) and f(-|a) respectively the conditional distribution and density of rates for the lenders with budget a. We restrict
ourselves to distributions such that the function

F(rla)
fala

is non-decreasing in r for all budget amounts a, and is non-increasing in a for every rate r. The first condition is the
reverse-auction analog to the monotone hazard rate assumption used in the derivation of optimal auctions (Myerson, 1981;
Krishna, 2010); the second condition, discussed at the end of this section, ensures that lenders report their budgets truth-
fully.

As before, each lender i is allowed to make only one bid, b; = (a;, 7;), which now includes both an amount d; and interest
rate 7;. Here we no longer make the assumption that the true budgets a; are common knowledge. Recall that the assumption
was motivated by the fact that, if lenders do not change the amount bid through the course of the auction, they will have
learned each other’s “budget” after the first round of bids. Since there is now only one round, it is natural to assume that
the amounts bid remain private information, and so the model we consider now allows lenders to choose these amounts
strategically.

An auction mechanism is thus defined by an allocation function x(-) and price function p(-). Both take as input a
bid profile: Given a bid profile b = (b, ..., by), xj(b) > 0 is the portion of the loan allocated to lender L;, and p;(b) the
corresponding loan rate. We restrict attention to the class of auctions C that satisfy the following conditions, which are both
required by Prosper and natural in the social lending context:

d(a,r)y=r+

(2)

1. The allocation to a lender must not exceed the amount bid.

2. The interest rate set for a lender cannot be less than the rate bid, and cannot be greater than the borrower’s reserve
rate R.

3. The total amount allocated must be either O (i.e., the loan is not funded at all) or D (i.e., the loan is funded in full).
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The auction mechanism generates the following utility for the borrower:

v(b) =Y xi(b)[R — pi(b)],

and the following utility for each lender L;:
uj(b) =x;(b)[pi(b) —r;].

A (pure) strategy for L; is a function o; that maps her type to her bid: oj(aj, ;) = (a;, f;), subject to the constraint
that the amount bid does not exceed the budget: a; < a;. A strategy profile (o1, ..., 0y) is an equilibrium if each lender L;
maximizes her (ex-interim) expected utility when she bids o;(a;, r;): for every alternative bid (a;, 7;),

E [ui(o1(@i,r1), ..., on(@n, m))]
(aj,rj)
J#i
2 @ Er [Uj(al (alv r1)7 R o | (ai—1 s ri—l)v (ais f'i)v Oit1 (aH—] ) ri+])7 ceey Un(ans rﬂ))]~
t
The auction is incentive-compatible when it is an equilibrium that each lender bid her full budget and true interest rate.

It can be seen that the Prosper auction is not incentive-compatible. This is because, even though the auction uses a
uniform price, the bid of a lender can impact her price. Moreover, both components of the bids can influence the price and
so lenders may strategize on both the rate they report, and the budget. Lenders can strategize on the interest rate because if
the bid is partially winning, the bid sets the price. If participation is low, a lender with a large budget can find it profitable
to bid a rate that is greater than her true rate, which decreases her likelihood of winning but increases her chances to be
the last partial winner and set a high final loan rate. Lenders can also strategize over their declared budgets because the
final rate awarded by the Prosper auction is generally decreasing with the size of the winner’s allocations. A lender who
gets allocated many units of loan deprives other lenders from winning any part of the loan. These additional losers drive
the final loan rate down, because Prosper has to look further down to find the last partial winner or first loser. Therefore a
lender might benefit by bidding a smaller budget, reducing her allocation but increasing the final rate for her net benefit.
This suggests that the Prosper auction loses efficiency (and revenue for the borrower) by “demand reduction”, in the same
way as do the standard multi-unit uniform-price auctions (Ausubel and Cramton, 2002). But what causes demand reduction
is somewhat different. In Ausubel and Cramton (2002), demand reduction is due to bidders submitting several bids, in the
hope that the high bids lose and set the rate/price for the low (winning) bids, whereas here demand reduction in the
reverse auction is due to bidders submitting a single high bid with low budget.

It is well known that revenue equivalence continues to hold for multi-unit auctions (Krishna, 2010). Revenue equivalence
states that the utilities for the borrowers and lenders in an incentive-compatible auction depend solely on how the auction
allocates the loan. By the Revelation Principle, every equilibrium of an auction is outcome-equivalent to the equilibrium
of some incentive-compatible auction. Consequently all auctions which, at equilibrium, give the same allocations to the
same lenders yield the same expected utility for the borrower and for each lender, irrespective of payments. In particular,
to compare Prosper and another auction, we only need to compare their respective allocations. This will be useful later
to understand why the Prosper auction does not minimize the borrower’s payments in general. In the current framework
revenue equivalence takes the following form:

Lemma 7. At equilibrium, an incentive-compatible auction with allocation function x(-) and price function p(-) yields an (ex-ante)
expected utility for the borrower equal to

R

(a-E ) Z(Xi((al’r1)5'“s(anvrn))(R_ri)_/xi((alar])v"'v(aispi)v°"v(aﬂsrn))dpi) (3)
leTx i=1 Ti

and an (ex-interim) expected utility of each lender L; equal to

R
E /xi((al,h),...,(ai,pi),...,(an,rn))dpi- (4)
(aj,rj)

A

Proof. Let Uj(a;j,r;) be the expected utility of lender L; at equilibrium conditional on her true budget a; and rate r;. Let
Xi(@;, ;) (resp. M;(a;,7;)) be the expected allocation (resp. total interest payments) to L; when she bids amount a; and
rate 7;. Incentive compatibility implies

Ui(aj, 1) = max M;(a;, ;) — Xi(aj, T)ri
ri€[0,R]
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and by the Envelope Theorem (e.g., Milgrom and Segal, 2002), X; is non-decreasing in its second argument and for every g;
we can write

R
Ui(ai,ri)=Ui(ai,R)—i—/Xi(ai,,Oi)d,Oi
ri
R
Z/Xi(ai,/oi)dpi
ri
R
= E /Xi((ahﬁ),--.,(ai, Pi)s - s (an, ) dpj
(aj.rj)
JAL T
where we first observe that a lender whose true rate is R can only receive rate R and makes a zero utility, and then use
Fubini’s theorem to interchange the integral signs. O

We now introduce an auction that is optimal from the borrower’s viewpoint in that it maximizes her expected utility. Let
us call the value @(a;, r;) the virtual interest rate of lender L;, where @ is defined by (2); these rates play a role analogous
to the virtual valuations in Myerson (1981). Consider the following allocation rule x°P'(b):

o If the total amount bid }_;d; is less than the borrower’s demand D, allocate zero to every lender.
o Otherwise, give temporary allocations to lenders in order of increasing value of ®(a;, ;) up to exhaustion of the borrow-

er’'s demand (with ties broken arbitrarily). Then verify that the allocation-weighted average of declared virtual interest
rates is less the borrower’s maximal rate R:

T . &
D E & (1, a;)x; <R,
i=1

where x; is the temporary allocation to lender L;. If the inequality is satisfied, then keep these allocations, otherwise
allocate zero to every lender.

Define the price function p°?'(b) as

~ R t, A . t
PPy — ri + X?pl(b) Ji (@i, p1), b dpi if ™ (b) > O,
1

0 if X)P*(b) = 0.

It is easily verified that the auction belongs to the class C defined earlier in this section. It is also incentive-compatible:
Suppose L; bets an arbitrary amount @;, then bidding her true interest rate r; instead of 7;, lender L; gains utility

(ri _fi)x?pt(rivbfi)+/X?pt((aivl)i)yb—i)dpi =/[X?pt((ai»ri),bfi) — %" ((@i. pi). bi)] dpi
>0

since, by our distributional assumption, allocations are non-increasing in the bid interest rate. Also, if L; bids interest rate r;,
then bidding her true budget a; instead of a; < a;, she gains utility

R
t t/ A
[[X?p (@i, pi).b_i) — x*((@;, pi). b—i) ] dp; >0
ri
since, by our distributional assumption, allocations are non-decreasing in amount bid.

In our simple setting the derivation of an optimal auction is fairly standard. The proposition below adapts the construc-
tion of Krishna (2010); the proof is relegated to Appendix C.'®

Proposition 1. The incentive-compatible auction defined by x°Pt(-) and p°Pt(-) yields a utility that is maximal for the borrower, among
all equilibrium outcomes of all auctions of class C.

16 For a design of optimal auctions and reverse auctions with multidimensional types under general assumptions, see Laffont et al. (1987), Maskin and
Riley (2000), Vohra and Malakhov (2005), Goldberg et al. (2006), or Iyengar and Kumar (2008).
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All auctions that allocate the same amount to the same lenders yield the same payments for the borrower. So why is
the Prosper auction not optimal?

First, the Prosper auction funds the borrower’s loan as long as the total amount bid covers the loan. In contrast, in order
to minimize the borrower’s payments, it is sometimes best to reject all bids and not fund the loan if too many lenders have
high interest rates, i.e., interest rates that are close to the borrower’s maximum rate. The argument is similar to the case of
single-item optimal auctions. Recall that by revenue equivalence (Lemma 7) the interest payments made to a lender L; in
an incentive-compatible auction equals the interest payments due to her true rate rj, plus an information rent

R

/Xi((a],r]), sy (ai7 pi)s cee (an»rn)) dpl

T

which is what it costs the borrower to incite L; to reveal her private rate. By rejecting all bids when the lender rates are
above a certain threshold, the borrower loses the chance of having her loan funded at a rate less than her reserve rate R,
to gain the reduction in interest payments obtained by decreasing the information rent of the lenders.

The other distinctive feature of the optimal auction is the selection of lenders to whom it allocates the loan. While it
is efficient to allocate the loan to the lenders with the lowest interest rate, the optimal allocation chooses lenders with
the lowest virtual interest rate. It turns out that the true interest rate and the virtual interest rate can differ if there exist
correlations between rates and budgets. For example, if lenders who have a high true interest rate also tend to have a large
participation in the auctions, virtual rates can be strictly decreasing in the budget. In such situations, it is possible that the
optimal auction selects lenders with large budgets but also high rates, instead of lenders with lower rates but low budget.
While it is may appear surprising not to select the lenders with the lowest rates, it is merely a consequence of the idea
behind Bayesian optimal auction design. Recall that the optimal auction sets a bidder’s allocation as a function of how her
true value (here, her true interest rate) compares with the distribution of values for this bidder. This is because, to ensure
incentive compatibility, the price set for the bidder can only depend on the competing bids, it cannot depend on the bidder’s
self-reported value. Assuming every lender L; reports truthfully her budget a;, the distribution of true rates for each of these
lenders is not F, but F;(-) = F(-|a;). Therefore whether a lender should receive a positive allocation depends on how her
interest rate compares to the rate of her population F;: A lender L; with a given true rate has a greater chance to receive
a positive allocation if lenders of the same kind (with the same budget) tend to have larger rates, i.e., if her distribution
F; is biased towards large rates. Of course to ensure that lenders report budgets truthfully and do not shade their bid,
the distribution of rates associated with a large budget should not put them at disadvantage over the distribution of rates
associated with small budget. This explains our requirement that the virtual interest rate be non-increasing in budgets.

Example 4. Suppose that the distribution of interest rates among the lenders with budget a follows a truncated normal
distribution with mean pq =3 +a/2 and variance o2 = 4. Then, the virtual interest rate for a lender with true rate r and
budget a is

N e—(t—1a)/20?) 4t

e—(r—Ma)/(ZUz)

;
o(r,a)=r+ :r+/e(r_t)(r“_z“”)/(z“z)dt. (5)

0

Let the borrower’s demand be D = 2, with reserve interest rate R = 10. There are three lenders, L1, L,, and L3, with r; =3,
a1 =1; =4, a,=1; r3 =5, ag = 6. The virtual interest rates for lenders Ly, Ly, and L3 are respectively 4.34, 6.38, and
6.09. This means that an optimal auction will select lenders L1 and L3 and allocate to each of them one monetary unit.
However, in the VCG auction, or in the Prosper auction in which lenders play identical bidding strategies increasing with
respect to their true interest rates, the auction allocates one monetary unit to lenders L1 and L, instead.

6. Dynamic Prosper mechanism

The actual mechanism used by Prosper is dynamic. In this section we extend our static auction model described in
Section 2 to account for this dynamism, assuming that here also, the budgets are fixed once and for all and known to all
bidders, and that a bidder can only submit new bids after being outbid.

We consider the following model of the dynamic auction. For simplicity we discretize the time, t =0,1,...,T. At t =0,
the borrower publicly announces the demand D and the reserve interest rate R. Each lender L; submits an initial bid at
t=1, b;”; at subsequent times, lenders may decide to either lower their bid, or to maintain their most recent offer. We
only allow bids that are multiples of the minimum increment € > 0 (equivalently, if a lender wants to reduce her bid, she
must reduce it by at least €). The budget a; of each lender L; is fixed and common knowledge. At every time t, the one-shot
auction PROSPER is used to determine the allocation and price for the bid profile (bgt), ...,b,(,[)) (as before, we assume
a fixed, preannounced tie-breaking rule). We assume without loss of generality that the bid profile must not be equal in
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two consecutive rounds, i.e. (bgt), .. .,b,(,t)) #* (bgtﬂ), ey b,(.,“r”).]7 The winners at time t are announced publicly, as well as

the price offered to winners and the bids of losers. The final outcome of the auction is the outcome of the last one-shot
auction PROSPER at time T, and the price at that time is called final price. We refer to this dynamic process as PROSPER
DYNAMICS. In this section, we index the lenders so that r{ <rp <--- <.

We first provide simple bounds on the final price under a very general and plausible assumption on bidding behavior:
Consider a lender L; whose utility is zero in the current round—if decreasing her bid will strictly increase her utility,
assuming other lenders’ bids remain unchanged, she will do so. This is a natural assumption, since if the other bids remain
unchanged or decrease, L; cannot get a positive utility anyway. Naturally lenders do not wish to end up with a negative
utility, so similar to Section 3 we also assume that they never bid less than their true interest. Note that VCG winners are
always among the winning lenders of PROSPER DYNAMICS, however there may be more winners. We bound the final
price as stated below.

Theorem 6. The final price of PROSPER DYNAMICS is betweenry andrg.

Proof. We start by showing that the final price p is no less than ry. Assume by contradiction that p < r,. Then, as lenders
never bid below their own interest rate, all winning lenders have an interest rate less than r,, hence belong to the set
{L1,...,Ly—1}. However, since Zf‘:_ll a; < D, the borrower’s demand is not fulfilled by the winners of the auction, which is
impossible as the total budget of lenders exceeds the demand. Hence p > ry.

We now show that p < rg. Assume by contraction that p > rg. Then, all lenders with a true interest no greater than
rg win the auction. Since the total budget of those lenders is greater than D, at least one lender has a budget that is
not exhausted. The Prosper mechanism allows exactly one winner to have a non-exhausted budget, let L; be this lender.
Then Lq,...,Lj_1,Ljt1,...,Lg are all winners and exhaust their entire budget. Note that L; € A since the budget of those
lenders is at least D. We remarked in Section 3 that g is the largest index of a VCG winner when the set of lenders
is {L1,...,Li—1,Liy1,..., Ly} for any L;. Therefore the total budget of the winners who completely exhaust their budget,
Li,...,Lj—1,Ljy1,...,Lg, is at least D. This contradicts the fact that L; is allocated a positive amount. Hence p <rg. O

Note that the lower bound is slightly different from Lemma 2 for the equilibria of PROSPER, where the price is bounded
below by ry41.

We now consider lenders with two special types of bidding behaviors: myopic greedy behavior and conservative behavior.
We will show that, for both cases, the final price is more constrained, to be either the lowest or highest possible value in
the range of possible prices.

Myopic greedy lenders try to maximize their utility in the next round, under the assumption that the price of the current
round remains unchanged. Such lenders choose to either keep the same bid for the next round when they cannot increase
their utility, or decrease their bid just below the current price when this would allow them to get more allocation. Formally,
a sequence of bids corresponds to a myopic greedy behavior when, for all L;, bgl) =R; and for all t > 1, if xi(t) < af[) and

p® —e >ry, then b:t“) = p® —¢; otherwise b?”” = bl@. We show that, when all lenders follow myopic greedy strategies,

the price converges to the lowest possible rate.

Theorem 7. If all lenders are myopic greedy, then the winners are A (i.e. the set of VCG winners) and the final price is r,+1 when all
winners exhaust their budget and r,, otherwise.

Proof. Let p be the final price. By the above lemma, we know that p >r,.

All lenders in A are winners of PROSPER DYNAMICS. If there is L; ¢ A such that xfT) > 0, then p >ry4+1 and there is
L;j € A who does not exhaust her budget. This is, however, impossible as myopic greedy behavior would lead L; to decrease
her bid whenever receiving a partial allocation. Therefore the set of winners in PROSPER DYNAMICS with myopic greedy
lenders is A.

For the same reason, no VCG winner whose budget is not exhausted should have a final bid higher than r,. Hence, if
the total budget of VCG winners exceeds D, the final price is ry. If all VCG winners exhaust their budget, i.e. ZLieA ai=D,
then for any price above ry1, lender Ly4+q can bid just below the price and get a positive allocation, therefore the final
bid of lender Ly+1 iS re+1. Since no lender bid below their own interest rate, ry11 is the lowest losing bid and is the final
price. O

Interestingly, when all lenders are myopic greedy, the final outcome is exactly the same as that in PROSPER when all
lenders bid their true interest rate (of course, this need not be an equilibrium bid profile in PROSPER).

Conservative lenders attempt to maximize their final utility at the last round under worst-case assumptions about other
lenders’ true interest rates. The worst-case scenario for a lender L; occurs when every other winner has a true interest less

17" Since bids are decreasing and bounded below by zero, they must converge in a finite number of rounds for any given € > 0, no matter what strategy
lenders decide to follow; we assume that T is large enough so as to allow convergence in all cases.
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than L;’s interest rate. When this is the case, a lender should never decrease her bid when she has a positive utility in the
current round, otherwise she can decrease it by the minimum increment € (as long as it is above her true interest rate).

Formally, a sequence of bids corresponds to a conservative bidding behavior when, for all L;, b;l) =R, and for all t > 1,

bEtH) = blft) if xlm >0 or bl@ =rj; and blftﬂ) = blm — ¢ otherwise. When all lenders follow conservative bidding strategies,
the final price is the maximum possible price.

Theorem 8. If all lenders are conservative, then the final price is no less than rg — €.

Proof. Let Lj € A be the lender in A whose VCG payment is affected by Lg. We remark that L; must be a winner, since
all VCG winners belong to the set of winners in the dynamic process. If the final price p <rg — €, then there is a previous
round where L; bids rg — €. We show that, when that is the case, L always get a positive allocation, so that L; is not
willing to lower her bid, which contradicts to p <rg — €. Indeed, when L; bids rg — €, lenders who bid less than or equal to
L; belong to Sj={L1,...,Lg_1}\{L;}. Since B is the index of the largest VCG winner when considering the set of lenders
{L1,...,Lj—1,Lj41, ..., Ly}, the total budget of the lenders of S; is less than D. This implies that L; must receive a positive
allocation for that round. O

A natural question to ask is how the borrower’s payment in PROSPER DYNAMICS compares with that in VCG (the
VCG mechanism also has a dynamic implementation for this setting, see Ausubel, 2004). However, it is easy to construct
examples that show that neither mechanism dominates the other, in the sense that the total payment to the lenders in
PROSPER DYNAMICS can be larger than that in VCG mechanism and vice versa, depending on the behavior of lenders.

e Let D =15 and R = 10. There are three lenders Ly, Ly, L3 with respective budgets a; = 14, a, = 2, a3 = 20 and
interest rates r{ =&, r; = 268, r3 = 1. The VCG allocation is then x; = 14, x, =1, x3 =0, and the VCG payment to Lq
is 26 -2+ 13 -1, while the payment to L, is 1. In PROSPER DYNAMICS, if lenders play myopic greedy strategies, the
price is 8§ and so the total payment is 15 - 28, so that the VCG payments are arbitrarily many times larger than those of
PROSPER DYNAMICS, when § tends to 0.

e Assume that the demand is any D > 0, and consider D + 1 lenders, with respective budgets a; =D, a; =---=ap =1,
ap+1 = 2D, and interest rates r; =48, 1 =28 =--- =rp =26, rp4+1 = 1. The total VCG payment is then 2§- (D — 1) +1,
while in PROSPER DYNAMICS with conservative bidders, the total payment is D - 1. As § tends to 0, the ratio between
PROSPER DYNAMICS and VCG payment tends to D. Note that the ratio cannot be greater than D as in all cases VCG
allocates at least one unit of demand at rate rg.

Developing a model for how lenders actually bid in the Prosper auction is essential to developing a more precise under-
standing of the equilibrium final price in the actual Prosper auction. We believe this is an interesting direction for further
work.

7. Conclusion

In this paper, we took the first steps towards developing a theoretical understanding of social lending markets, investi-
gating borrower payments in the mechanism used by Prosper, one of the largest social lending sites in the US, to auction
off each borrower’s loan. Our analysis allowed us to precisely characterize borrower’s payments in equilibria of the Prosper
auction, and we found that the Prosper auction does not provide the cheapest loans to the borrower in the presence of
strategic lenders trying to maximize their profit from lending, in either a full information or incomplete information setting.
Of course, while the basic premise of social lending is providing borrowers with cheap loans, Prosper’s choice of mechanism
is also likely driven by consideration of its own profits, which, given Prosper’s business model where both lenders and
borrowers are charged some fraction of their loan amounts, relies heavily on volume of trade.

The Prosper marketplace has since changed to a set rate per loan, rather than an auction process. This change is inter-
esting in itself, and relates to questions regarding when auctions are the best mechanisms for selling goods. Note here that
how auctions perform (specific auction formats, as well as auctions in general) also depends on how many and what kind
of participants it is able to attract, since participation is not the same fixed quantity across all social lending platforms,
but rather is endogenous to the market design. We note in this context that Prosper, which was the first social lending site
in the US, began losing market share to Lending Club, which uses a simple pre-set rate mechanism, and overtook Prosper
to become the market leader within 3 years of its entry into the social lending market. Arguably, this could be related to
the fact that a system that is simple attracts more participants—a mechanism that people understand and is transparent
might attract a much larger volume of participants and hence yield better outcomes (for some or all parties) than a complex
mechanism such as the Prosper auction, or even an optimal auction that only manages to attract a small number of traders.
This switch in market design effected by Prosper could lead to a wealth of interesting data for research questions regarding
participation and behavior in the two different market designs, which could in turn form the basis for a theoretical study
of the question of market design for social loans.

The online social lending market is clearly an exploding space, and one whose design has immediate financial conse-
quences for the millions of borrowers and lenders trading in these markets. The switch effected by Prosper from auctions
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to a set rate, as well as the fact that other leading sites such as Zopa and Lending Club use rather different designs indicate
both that the understanding of how to best design such markets is, at best, in a nascent phase, as well as offer the potential
for data to observe the effect of these changes and differences on participation and trader behavior. We believe that the
problem of market design for social lending, based on an understanding of the current social lending marketplace and the
behavior of its participants, and addressing the benefits to all parties involved in the trade, is an important and exciting
direction for future research.

Appendix A. NP-hardness of computing cheapest and worst equilibria of PROSPER

Theorem 9. The computation of (the total payment of) a cheapest Nash equilibrium of PROSPER is NP-hard. Furthermore, for any
polynomial time computable function f (n), it does not admit any approximation algorithm within a ratio of f (n), unless P = NP.

Proof. We reduce from Partition: Given an instance of Partition with a set of integers S = {x1, ..., X} where Z}L Xxi = 2N,
we ask if S can be partitioned into two subsets such that the sum of the numbers in each subset is N. Assume without loss
of generality that 1 <x; <N, fori=1,...,n

We construct an instance of our problem as follows: Let M £ f(n). For i =1,...,n, there is a lender L; with budget
a; = x;M and interest r; = 0. Further, there are two extra lenders Lo and L,y with budget ag = MN + 1, ap+1 = 3MN, and
interest ro = 0, rp41 = 1, respectively. Let D = 2MN + 1. We claim that it is NP-hard to distinguish whether the total payment
of the cheapest Nash equilibrium is smaller than or equal to ZA’/\I/’[\IJV:f or at least 2MN + 1.

Assume that there is a partition of S into S; and S, such that the sum of the numbers in each subset is N. We
construct a bid profile b as follows: Let bj =r; for i=0,n+ 1, b; =0 if x; € S; and b; = Wﬂ if x; € S,. Given b, as
ao+ ) ;. xes; 8 =2MN+1=D, the winners are Ly and those corresponding to the set S1 and all winners exhaust their

budget. Thus, the price to each winner is g7 and the utility of Lo is ao - g7 = 1. If Lo increases her bid b (to a point at
most b1 =1 to remain to be a winner), her payment is at most 1 and utility is at most 1-(D —} ;. s aj)=D—2MN =1,
which implies that Lo has no incentive to change her bid. Further, it is easy to see that the lenders corresponding to the set
S1 do not have an incentive to change their bid as well. For each lender L;, x; € S, although L; can reduce her bid to 0 to
be a winner, the price to winners becomes 0 as well, which leads to a 0 utility to L;. Therefore, no lender can unilaterally
increase her utility and b is a Nash equilibrium with a total payment of D - y = 3.

On the other hand, assume that there is no such a partition of S such that the sum of the numbers in each subset is N.
Consider any Nash equilibrium b = {bg, b1, ..., bn, bpt1}. If L1 is a winner, then the price to each winner is at least 1
and we are done. Thus, it is safe to assume that L,y is not a winner. It follows that Lo must be a winner. Let L; be the
last winner in b. If L; exhausts her budget, as D —ag = MN, the set of winners excluding Lo defines a partition of S with
sum N, a contradiction to our assumption. Hence, it suffices to consider the case where L; does not exhaust her budget. By
the rule of PROSPER, the price to each winner is b;. It can be seen that b; > 0 (otherwise, as argued above, Lo can increase
her bid to 1 to obtain a positive utility). In addition, if there is L;, x; € S, such that L; is not a winner, then L; can reduce
her bid to b; — € to be a winner with positive payment and utility, a contradiction. Thus, all lenders L1, ..., L, are winners.
As x; <N for i=1,...,n, the last winner L; has to be Lo. In this case, by the property of Nash equilibrium, b; > 1, which
implies that the total payment to winners is at least 1- D =2MN + 1.

Hence, it is NP-hard to distinguish whether the total payment of the cheapest Nash equilibrium is smaller than or equal
to ZA%\IJV:II or at least 2MN + 1. As m = MN + 1, it is NP-hard to approximate the total payment of the cheapest
Nash equilibrium within a ratio of 2(M) = 2(f(n)). O

The computation of a worst Nash equilibrium is NP-hard as well, as the following result shows.

Theorem 10. The computation of (the total payment of ) a worst Nash equilibrium of PROSPER is NP-hard. Furthermore, it does not
admit any approximation algorithm within any ratio, unless P = NP.

Proof. We reduce from Partition: Given a set of integers S = {x1,...,x,} where Y |_;x; = 2N, can S be partitioned into
two subsets such that the sum of the numbers in each subset is N? Assume without loss of generality that 1 <x; <N, for
i=1,...,n

We construct an instance of our problem as follows: For i =1, ..., n, there is a lender L; with budget a; = x; and interest
r;=0. Let D=N and R =1. We claim that it is NP-hard to distinguish whether the total payment of the worst Nash
equilibrium is either 0 or N.

Assume that there is a partition of S into S; and S such that the sum of the numbers in each subset is N. We construct
a bid profile b as follows: Let b; =r; if x; € S; and b =R =1 if x; € S». Given b, as ) ;. xes, G =N=D, the winners are
those corresponding to the set S1 and all winners exhaust their budget. Thus, the price to each winner is 1. It is easy to see
that no winner is willing to increase her bid. Additionally, if any loser L; reduces her bid to O, even if L; becomes a winner,
since the price is reduced to 0 as well, L; still obtains 0 utility. Hence, no lender can unilaterally increase her utility and b
is a Nash equilibrium with a total payment of D -1 = N.
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On the other hand, assume that there is no such a partition of S such that the sum of the numbers in each subset
is N. Consider any Nash equilibrium b = {b1, ..., b,}. Let L; be the last winner in b. If L; exhausts her budget, then the
set of winners constitutes a partition of S with sum N, a contradiction to our assumption. Hence, L; does not exhaust her
budget. By the rule of PROSPER, the price to each winner is bj. If b; > 0, we claim that all lenders L1, ..., L, are winners.
Otherwise, if L; is not a winner (which implies that b; > b;), by reducing her bid to bj — € > 0, L; becomes a winner with
price at least b; — €, a contradiction to the fact that b is a Nash equilibrium. However, if all lenders are winners, we know
that 3. i 0i = > i=jXi < D = N. Because > % = 2N, we have xj > N, a contradiction to our assumption. Hence,
b; =0, which implies that the total payment to winners is 0.

Hence, it is NP-hard to distinguish whether the total payment of the worst Nash equilibrium is 0 or N, which implies
that we do not have any approximation algorithm within any ratio, unless P =NP. O

Appendix B. Other uniform-price mechanisms

PROSPER is a uniform-price mechanism, meaning that all winning lenders receive the same price. How does it compare
to other uniform-price mechanisms? Here there are two natural candidates—pay all winners the bid of the last winner (de-
noted by BLW), and pay all winners the bid of the first loser (denoted by BFL). Both mechanisms have the same allocation
rule as PROSPER (as in Definition 1), but a slightly different pricing rule. The mechanism BLW offers a price equal to the
bid of the last winner, while BFL offers a price equal to the bid of the first loser. Note that the price of PROSPER is either
that of BLW or BFL, depending on whether or not the last winner exhausts her budget.

If all “items” were identical, meaning that every lender had a budget of one, BFL would be identical to VCG, which
produces an efficient allocation amongst lenders. As the following example shows, however, BFL is in fact very different
from VCG in terms of efficient allocation: Since the price is determined by the bid of the first loser, every winner has an
incentive to bid as low as possible to increase her allocation when the total budget of winners is greater than the demand.
Specifically, as long as the bid of the first loser is at least her true interest rate, a winner loses nothing by bidding as low
as 0 to improve her allocation.

Example 5. Let D = 11. There are four lenders with budgets a; =3, ay =4, a3 =5, a4 =10 and interest rates r{ =1, r, =2,
r3 =3, r4 = 4, respectively. The only equilibrium of BFL has Ly, Ly, L3 bidding 0 and the losing lender L4 bidding her true
value, and the allocation determined according to the given tie-breaking rule. (As otherwise, the lender not exhausting her
budget can always reduce her bid to 0 and increase her allocation, with no change in price which remains at by =4.)

Thus, which winner has leftover budget is entirely determined by the tie-breaking rule, which can be, in general, ar-
bitrary: Even when the winners of BFL are exactly the VCG winners, lenders with lower interest rates do not necessarily
receive a better allocation, leading to inefficiency. Note that this does not happen in either PROSPER or BLW, where the last
winner never bids below her true interest rate.!® Specifically, in the above example, both PROSPER and BLW have efficient
equilibria, while BFL does not.

We now investigate BLW. As the following results show, BLW is very similar to PROSPER: The set of equilibria of BLW is
a subset of that of PROSPER, and when losers are restricted to bid their true values (as in Section 3.1), the equilibria are
identical.

Similar to Lemma 4 (and its proof), we have the following result.

Lemma 8. Suppose b = (b1, ..., bk, bgy1, ..., bn) is a Nash equilibrium of BLW, where L1, ..., Ly are winners and Ly is the last
winner. Then the profile b’ = (0, ..., 0, by, I'y1, - .., n) (i.e., every winner bids 0 except Ly ) constitutes a Nash equilibrium with the
same allocation and price.

Proof. In any Nash equilibrium (b1, ..., b, bry1, ..., by) of BLW, any lender L; with rj < p = b, must be a winner. Indeed, if
not, Lj can bid p — € >r; and get positive utility. So all lenders whose private interest rate is less than p must be winners,
and r; > p for all losers L;. By assumption, losers bid greater or equal to their true value, so b; >r; > p as well.

As in Lemma 4 winners L;, i <k can replace their bid by 0 and no one has an incentive to deviate. Suppose a loser L;
decreases her bid from b; to rj < bj, no winner can profit from increasing her bid because the same increase would have
profited her in the previous profile as well. O

Theorem 11. Any bid profile that is an equilibrium of BLW s also an equilibrium in PROSPER. Moreover, if we restrict ourselves to bid
profiles where losers bid their true value, every equilibrium in PROSPER is also one in BLW, so that both sets of equilibria are identical.

18 Strictly speaking, this holds for PROSPER only when the sum of the budgets of winners exceeds demand D. If it is equal to D, the last winner exhausts
her budget anyway, and bidding lower than her true interest rate does not change anything.
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Proof. Note that both mechanisms are identical when the last winner does not exhaust her budget. Let’s consider an equi-
librium b= (b, ..., b,) of BLW where L is the last winner. By Lemma 8, we can assume without loss of generality that all
lenders other than Lj bid her true interest rate.

Suppose otherwise that b is not an equilibrium in PROSPER. This means there is a profitable deviation for some lender
L; in PROSPER. There are the following cases.

Case 1. L; is a winner, i # k. Her only possible profitable deviation is to increase her bid above by. Since b is an equilibrium
in BLW, by =41, and therefore, by increasing her bid, at least one loser becomes a winner and L; does not exhaust her
budget anymore. In that case PROSPER and BLW compute the exact same allocation and price, which means that if L;
profits from that deviation in PROSPER, she would profit from the same deviation in BLW, which contradicts the fact that
b is a Nash equilibrium in BLW.

Case 2. L; = Ly. As she does not wish to deviate in BLW, by = rg+q1. In PROSPER, L; cannot profit from decreasing her
bid, since if she is exhausting her budget, her allocation and price remain the same. If she is not exhausting her budget,
decreasing her bid can only decrease her price. In all cases, L, cannot profit by decreasing. By an identical argument as the
above case, she cannot profit by increasing her bid in PROSPER as well.

Case 3. L; is a loser. We show that if there is a profitable deviation in PROSPER, there must be one in BLW as well.
Increasing her bid does not increase her allocation (which is 0), and therefore does not increase her utility. Decreasing her
bid leads to a price that is less than her true value, which decreases utility (since losers bid at least their true interest rate).

Therefore any Nash equilibrium in BLW is also a Nash equilibrium in PROSPER. When losers bid their true value, by
Lemma 4, we can restrict ourselves to the Nash equilibria of PROSPER of the form (0,..., 0, bi, k41, ..., ), and the same
reasoning as above can be used to show the converse. O

When losers can bid any value greater equal their true interest rates (that is, they are not restricted to bidding truthfully),
the cheapest Nash equilibrium of PROSPER can be a factor of D smaller than the cheapest equilibrium of BLW; conversely,
the worst Nash equilibrium of PROSPER can be arbitrarily larger than the worst equilibrium of BLw. This follows directly
from the examples of the hardness reductions in Theorems 9 and 10.

Appendix C. Omitted proofs
C.1. Proof of Lemma 1

The claim follows directly from the assumption that all losers bid their true interest and the definition of the mechanism:
For any lender L; with r; < p, if L; is not a winner, we know L; bids her interest truthfully. This implies that the price p is
at most rj, a contradiction.

C.2. Proof of Lemma 2

(a) We start with the lower bound, p > ry41. By contradiction, suppose that p < ry1 for some Nash equilibrium. Note
that since any VCG loser has an interest rate greater than p, any VCG loser is a loser. It is easy to see that p >ry as
otherwise, by the definition of «, the total demand cannot be fulfilled. If p =ry, the last VCG winner L, obtains zero
utility, and thus is willing to increase her bid to 441 to obtain positive utility. If ry, < p < g1, by Lemma 1, all lenders
of A are winners. Hence, the last winner does not exhaust her budget and would profit from increasing her bid to ry41,
a contradiction.

(b) We now deal with the upper bound, p <rg. By contradiction, suppose that p > rg for some Nash equilibrium. Let L
be the last winner. By Lemma 1, we know that all lenders L; with an interest r; <rg < p are winners. In particular, lenders
in AU ({Lg} are winners, implying by Definition 3 that Ly € A. This contradicts to Definition 4 of B.

(c) It remains to prove that p =r; for some L; with rqq1 <r; <rg. If p#7; for any L; with ro4q <rj <1, as all losers
bid their true interest, the only possible case is that the last winner L, does not exhaust her budget and hence p = b. In
this case, however L, will always increase her bid to the point which equals the bid of the first loser, a contradiction.

C.3. Proof of Lemma 3

From Lemma 2, p > rq41. If p > rq+1, then by Lemma 1 all lenders with an interest rate less than or equal to ry4q are
winners, and so by definition of A all lenders of A are winners.

If p=rq+1, then by Lemma 1, all lenders L; € A with r; <ry4+1 = p are winners. If a VCG winner is a loser, she must
bid her true interest rate by assumption, which must then be greater than or equal to p since she loses the auction, but
also no greater than ry4q since she belongs to A. Hence all lenders of A that are losers bid exactly ry41. For any winner
Li & A, i > 1441, but since L; gets a nonnegative utility, r; <ry41, and so r; =rq+1. In other words, any winner that does
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not belong to A gets a zero utility, and so can increase her bid to her true interest rate r,1 without changing her utility.
This gives a Nash equilibrium with the same price, and by the tie-breaking rule, the winners are exactly the lenders of A.

CA4. Proof of Lemma 4

It is easy to see that both b and b’ have the same allocation and price to winners, which is at least by. By Lemma 1, we
know that for any L;, i=k+1,...,n, rj > by. As all losers and the last winner L; bid the same value in b and b/, it is easy
to see that no lender has an incentive to increase her bid in b’ to obtain more utility. In addition, by the fact that b is a
Nash equilibrium, it can be seen that lenders Ly, ..., Lg_1, Lx+1, ..., Ly cannot obtain more utility by decreasing their bid.
For Ly, even if Ly is able to reduce her bid down to 0, either the price drops to 0 as well (if L, does not exhaust her budget
in b) or her allocation does not change (if L, exhausts her budget in b). Thus, L, cannot obtain more utility by decreasing
her bid. Therefore, b’ is a Nash equilibrium with the same allocation and price as b.

C.5. Proof of Lemma 5

It is easy to see that both b and b’ have the same allocation and price to winners, which is at least by. By Lemma 1, we
know that for any Lj, i=k+1,...,n, rj > by.

If L, does not exhaust her budget, as all losers and the last winner L, bid the same value in b and b/, it is easy to see
that no lender has an incentive to increase her bid in b’ to obtain more utility. In addition, by the fact that b is a Nash
equilibrium, it can be seen that lenders Ly, ..., Ly_1, Lx41, ..., Ly cannot obtain more utility by decreasing her bid. For Ly,
if L, can obtain more utility by decreasing her bid in b’, she is willing to decrease her bid in b as well, a contradiction.
Therefore, b’ is a Nash equilibrium with the same allocation and price as b.

The case where Ly exhausts her budget is similar. Hence, the claim follows.

C.6. Proof of Lemma 6

For simplicity, in the proof, we denote b(j, b;) by b(bj) and T(j,b;j) by T(b;).

(a) Consider any L; € T(bj). Note that the only difference between r and b(b;) is that L; increases her bid from rj to b;.
Hence, the utility of all other lenders does not decrease, which implies that u;(r) < u;(b(bj)). Furthermore, by the definition
of T and T(j), L; is weakly willing to increased her bid in b(b;), which implies she is weakly willing to increase her bid in
r as well. Hence, L e T and T(b;) C T.

(b) Assume otherwise that there is L; € T with b; <b; such that L; € T(b;). Further, by the definition of V;(r) and b(b;),
Lj is the last winner in b(b;) and her budget is not exhausted. Hence, L; exhausts her budget with price b; in b(bj). In
b(b;), however, L; does not exhaust her budget with price b;. As bj > b; > r;, we have u;(b(bj)) > u;(b(b;)). Therefore, if
Li e T(bj), i.e. L; is weakly willing to increase her bid in b(b;), the utility of L; can be strictly increased in b(b;), which
contradicts the definition of b;—the point where the utility of L; is maximized.

(c) As L; € T(bj), by Fact (a), we know that L; € T. If there is b € V;(r) such that b <bj, by picking b; =b for L;, we
know that L; ¢ T(bj) by Fact (b), a contradiction. Hence, in r and b(b;), L; is weakly willing to increase her bid to the same
points. (Note that when L; bids a value higher than bj, it does not matter if L; bids r; or bj.)

C.7. Proof of Proposition 1

First observe that by the Revelation Principle, if an auction yields an optimal utility for the borrower among all incentive-
compatible auctions of class C, it also yields an optimal utility among all outcomes of all equilibria of all auctions of class C.

Let us consider an arbitrary incentive-compatible auction of class C, with allocation function x(-) and price function p(-).
We use same notation as in the proof of Lemma 7. The expected utility of the borrower is

n

> E [RXi(@i, ) — Mi(ai, )],

i (@i.ri)
and recall that by the envelope theorem
R
Mi(ai, ri) =riXi(ai, ri) + / Xi(ai, pi) dp;.
i

Interchanging the integrals yields

A R R A R
f//Xi(pi)f(ai,ri)dpidfidai=//Xi(T1)F(Ti | a;) f (a;) dr; da;.
00 00

T
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After substitution,

E [Mi(ai,r)]=

(aj,ri)

AR
riXi(a;, i) f (@, ry) dr; dai+//xi(ai»ri)F(ri | ai) f (a;) dr; da;
00

Ot —s T —

F(ri|a;
[rf + %]xi(ai, ri) f(a;, ;) dr; da;

o\..x o\x

n
= / f @ (i ap)xi((@r.r). ... (@ 1)) [ | f(@i 1) drda.
[0,A]" [0,R]" i=1
Hence the expected utility of the borrower is

E [in<a,~,r,->—M,-(ai,r,-)]=/ f Y (R— @i an)xi((@r.r). ... (@ r0) | | f (@i i) drda.

s (@iri) : .
=1 (0,4 [o.R]" -i=1 =1

An auction of class C can only make positive allocations when these allocations total the borrower’s demand D, there are

thus two cases to consider: Given (aq, 1), ..., (an, rn), either Y ; x; =0, in which case
n n
opt
Y (R=®)x=0<) (R—®)xP
i=1 i=1

by definition of x°P*(-), or >_;x; = D, in which case

n n

D R—Di <Y (R—D)I",

i=1 i=1

since x°P'(.) allocates the loan in priority to the lenders with the lowest virtual interest rate.
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