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ABSTRACT
Motivated by the prevalence of online questionnaires in elec-
tronic commerce, and of multiple-choice questions in such
questionnaires, we consider the problem of eliciting truthful
answers to multiple-choice questions from a knowledgeable
respondent. Specifically, each question is a statement re-
garding an uncertain future event, and is multiple-choice –
the responder must select exactly one of the given answers.
The principal offers a payment, whose amount is a function
of the answer selected and the true outcome (which the prin-
cipal will eventually observe). This problem significantly
generalizes recent work on truthful elicitation of distribu-
tion properties, which itself generalized a long line of work
in elicitation of complete distributions. We provide neces-
sary and sufficient conditions for the existence of payments
that induce truthful answers, and give a characterization of
those payments. We also study in greater details the com-
mon case of questions with ordinal answers, and illustrate
our results with several examples of practical interest.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics

General Terms
Economics, Theory

Keywords
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1. INTRODUCTION
Assume a principal asks an expert to respond to a ques-

tionnaire about a random future event. The questionnaire
is composed of multiple-choice questions: for each question,
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the expert must choose one true answer among a collection
of possible answers. For example, the principal might ask
“What horse is the most likely to win the race?”, or “What
pair of stocks is the most correlated?”, with, as possible an-
swers, a list of horses or pairs of stocks. Assuming the ex-
pert knows the information of interest, the principal must
incentivize an honest behavior, by rewarding the expert in
a nontrivial way, as a function of both the selected answers
and the observed outcome of the event.

Naturally, one can always infer answers for any question-
naire from the full probability distribution of the event. It
is well-known that one can elicit the full distribution by re-
warding the expert with a proper or strictly proper scoring
rule. (For a survey of the literature, see for example Winkler
et al. [11].) However, as the number of outcomes grows, it
becomes increasingly difficult to ask for the probability of
each outcome. For example, assuming a stock takes as few
as 100 different values, and considering only 10 stocks, get-
ting the full distribution—to infer, for example, the most
correlated pair—requires an estimate of 10100 different pa-
rameters. Additionally, any approximation in the elicited
distribution could lead to wrong inferences. Besides, the
expert may simply not know or not be able to provide the
full distribution. Consequently, in practice, asking for the
full distribution becomes rapidly non-feasible and it is often
more convenient to ask directly for the exact information of
interest.

And indeed, researchers have addressed the problem of ac-
quiring more specific information. Savage [9] shows how to
elicit the mean of a random variable, Cervera and Munoz [3]
devise a particular scoring rule that elicits the median. In
a recent research, Lambert et al. [7] investigate the numeri-
cal parameters—or properties—of distributions that can be
elicited directly ; that is, for which one can incentivize an
expert to provide the true value of the parameters, with-
out requesting any further information. The authors con-
sider the class of properties that are both continuous and
nowhere locally constant. They show that many parame-
ters that measure a feature of the distribution belong to the
class, for example, the probability of a binary event, the
mean, variance or the entropy.

Moving from full distributions to distribution properties
enhances greatly our ability to elicit information. However,
upon reflection, even this may be too restrictive a setting.
Consider for example the question “Which of the following
investments is the most profitable, on expectation: A, B or
C?”, or “Is horse X at least twice as likely to win the race
as any other contestant?”. These aren’t naturally viewed



as properties. And indeed, categorical information is not
accounted for in the work of Lambert et al.

In other circumstances, we might be interested in ranges
of parameter values. For example, instead of asking “What
is the exact probability of precipitation tomorrow?”, it might
be enough to ask “Is the probability of precipitation tomor-
row: not likely (less than 25%), likely (between 25% and
75%), very likely (greater than 75%) ?”. This is useful when
specific values of the parameters are not needed—for in-
stance, one may not want to fund a project that has more
than 50% chances of failure, no matter what the exact like-
lihood is—or simply because it is sometimes convenient and
natural to offer a limited choice of answers.

Finally, one might want to retrieve estimates of discrete
parameters, asking “What is the median and the mode of
(discrete) variable X?”. Not only these parameters are not
continuous—and so are excluded from the class considered
by Lambert et al.—but they cannot even be modeled as
distribution properties. Indeed properties associate a single
value to any given distribution, whereas there exist several
possible modes or medians for some distributions. We will
see later that the ability to allow multiple parameter values
for one single distribution is critical to elicit certain infor-
mation.

All these are examples of multiple-choice questions, which
are the topic of this paper. At this point we call for a new
set of techniques, as the methods used to elicit full distribu-
tions [11], and distribution properties [7], are simply inappli-
cable. Interestingly, the results regarding the elicitation of
distribution properties are mostly negative, while in our ex-
tended model, we will show that a variety of multiple-choice
questions of practical interest can be elicited.

The paper is organized as follows. We introduce the model
and notation in Sections 2 and 3. In Section 4, we pro-
vide necessary and sufficient conditions for questionnaires
to admit truthful payoffs, and give the general form of those
payoffs. In Section 5, we investigate the common case of
ordinal answers, and give simpler and more precise charac-
terizations. Often the ability to answer some questionnaire
makes it possible to answer another one; this is useful to
elicit certain kind of partial information and is discussed in
Section 6. Finally we illustrate our results through a series
of practical examples in Section 7.

2. MODEL
We consider some random future event with a finite set of

possible outcomes Ω. We denote by ∆(Ω) the set of distribu-
tions over Ω, and we assume that the outcome of the event
is drawn according to some probability function P ∈ ∆(Ω).
Before the event occurs, a principal asks an expert to fill
out a questionnaire about the event, and, after observing its
outcome, rewards the expert as a function of his responses
and the realized outcome. We assume the expert is able to
answer the questionnaire (but need not know the full dis-
tribution). A questionnaire is composed of multiple-choice
questions (MCQ), such as “Which horse is most likely to
win the race? (a) Horse A, (b) Horse B, (c) Horse C”, or
“Is the mean sales volume of software X for the month of
July: (a) less than 1K copies, (b) between 1K and 3K, (c)
greater than 3K copies”. A question is formally defined by
a question function.

Definition 1. A question function, or MCQ function, with

a set of possible answers A and a set of outcomes Ω is a
function Υ : A 7→ {P1, . . . ,Pm}, m ≥ 1, with Pi ⊂ ∆(Ω)
for all i and such that ∪iPi = ∆(Ω) and, for all a 6= b,
Υ(a) 6⊆ Υ(b).

A questionnaire Q is formally defined as a set of question
functions Q = {Υ1, . . . ,Υk}. Question functions describe
multiple-choice questions. The domain A of a question func-
tion Υ stipulates the set of admissible answers for the ques-
tion. It can be any finite set. The image of Υ (given by the
sets Pi) determines the true answers for given distributions
of the event: if the true distribution is included in Υ(a),
then a is correct, but is not otherwise. In their most gen-
eral form, multiple-choice questions are lists of true/false
statements regarding the distribution of outcomes. With
A = {a1, . . . , am}, the question function Υ corresponds to
the following MCQ: “Choose one true statement among the
following, regarding the distribution P of the future event
under consideration: answer (a1): P ∈ Υ(a1), . . . , answer
(am): P ∈ Υ(am)”. The formalism of question functions
will prove to be extremely useful to obtain general results
on questionnaires. However, most questions of interest can
be formulated in a simple and intuitive way.

For instance, consider our above horse race MCQ. We
can take as set of outcomes the possible winners {A,B,C};
with a distribution P , P (X) is the probability that horse X
wins the race. We can use a set of answers A = {a, b, c}.
Our MCQ is fully described by the question function Υ,
where Υ(a) is the set of distributions under which horse A
is more likely to win than horse B or C; formally Υ(a) =
{P ∈ ∆({A,B,C}) | P (A) ≥ P (B), P (A) ≥ P (C)}, with a
similar form for Υ(b) and Υ(c).

To be a valid question function, Υ must satisfy two con-
ditions. The first condition, ∪aΥ(a) = ∆(Ω), states that
the multiple-choice question must contain at least one cor-
rect answer in all cases (i.e., for all possible distributions
of outcomes). The second condition, Υ(a) 6⊆ Υ(b) for all
a 6= b means that we exclude redundant answers. Indeed
if Υ(a) ⊆ Υ(b), then b is true whenever a is true, and an
expert could simply respond b whenever answer a or b is
correct.

In exchange for his service, the principal provides a mon-
etary reward to the expert. Let us first consider the case
of single multiple-choice questions (as argued below, this is
without loss of generality). The payoff to the expert can
depend on his own responses and on the true outcome of
the event, that the principal subsequently observes. Such
payoffs are defined by a payoff function.

Definition 2. A payoff function for a question function Υ
with domain A is a function Π : A× Ω 7→ R.

For an MCQ with set of answers A, a payoff function Π
specifies an amount Π(a, ω) that an expert would get when
answering a while the true outcome is ω.

Not all rewarding schemes lead to truth telling. To in-
centivize a risk-neutral expert to answer correctly, the prin-
cipal should use (strictly) proper payoffs, by analogy with
the (strictly) proper scoring rules used in the forecasting lit-
erature. With proper payoffs, the expert gets a maximum
expected reward by responding correctly, so that experts
never benefit from lying. If payoffs are strictly proper, the
maximum expected reward is only obtained by providing
a correct answer, any other response yields lower expected
payoffs, so that experts always benefit from telling the truth.



Definition 3. A payoff function Π is proper for an MCQ
Υ if, for all possible answers a,

Υ(a) ⊆ arg max
P∈∆(Ω)

E
ω∼P

[Π(a, ω)] .

If, in addition, for all answers a,

Υ(a) ⊇ arg max
P∈∆(Ω)

E
ω∼P

[Π(a, ω)] ,

the payoff Π is strictly proper.

Risk-neutrality is always implicitly assumed with the no-
tion of (strict) properness, as it is with proper scoring rules
in the forecasting literature. However, our results easily ex-
tend to general utility maximizers. Consider a utility for
money u : R 7→ R, increasing and bijective. Let Π be a
(strictly) proper payoff. Then the payoff u−1 ◦ Π yields the
same expected utility as the expected value of Π. So, the
optimal strategies of a risk-neutral expert with payoff Π are
the same as for an expert with utility u and payoffs u−1 ◦Π.
And conversely, for any payoff Π̃, the optimal strategies of
an expert with utility u are the same as for a risk-neutral
expert with payoff u ◦ Π̃. This means that the type of infor-
mation we can elicit does not depend on the utility function.
Additionally, when the utility function is known, the truth-
inducing payoffs can be obtained by a simple transformation
of the proper and strictly proper payoffs. If unkown, one can
use lottery-based methods (see Savage [9] and Smith [10]).

In general, questionnaires may contain any number of
questions. When such a questionnaire consists of questions
that admit a (strictly) proper payoff, we can construct a
(strictly) proper payoff of the full questionnaire by summa-
tion of the payoffs for each question. It is easily shown that
this global payoff exhibits a monotone property: the amount
of money awarded to an expert who switches from an incor-
rect to a correct answer (for any question) is nondecreasing
(increasing with strict properness). However the individual
questions need not admit such truthful payoffs for the ques-
tionnaire as a whole to admit a truthful payoff.

This seems to suggest that one should also consider (strict)
properness for sets of questions. But this is in fact not
needed. Indeed, we observe that the truthful elicitation of
answers for a full questionnaire reduces to that of a single
multiple-choice question, as we can easily encode any finite
number of questions into one single MCQ.

Lemma 2.1. Any questionnaire Q = {Υ1, . . . ,Υk} is
equivalent to some MCQ Υ.

By equivalence we mean the existence of a bijection between
the possible responses of the full questionnaire and the an-
swers of the MCQ, so that answering the former is exactly
the same as answering the latter. The number of answers
of an equivalent MCQ can be very large, generally exponen-
tial in the number of questions of the original questionnaire.
However this is inconsequent here, since we focus on the
strategic analysis – in practice, it is of course preferable to
present questionnaires in their original format, and not in
their equivalent reduced form. In the sequel of this paper,
and without loss of generality, we restrict ourselves to the
study of individual multiple-choice questions.

Note that the questions of our questionnaires are single-
response: we ask the expert to pick exactly one answer
among a set of alternatives. Indeed, our purpose is to get
only one valid answer, not the complete set – even if for

some questions, several answers may be correct. Single-
response is often desirable; for example, if one is interested
in a 90% confidence interval for a random variable, asking
for only one instance of those intervals is often sufficient,
and much easier in practice than asking for all of them. Our
restriction is without loss of generality, as we will see in
the next section that any question/questionnaire for which
one is interested in the complete set of answers is equiva-
lent to a single-response MCQ. However, we will also argue
that those multiple-response questionnaires never admit a
strictly proper payoff.

Naturally, all multiple-choice questions admit a proper
payoff, for example a constant payoff rule is proper. How-
ever those payoffs do not always punish false experts. In
general, it is preferable to achieve strict properness, leading
to the notion of direct implementability.

Definition 4. A multiple-choice question Υ is directly im-
plementable with strictly proper payoffs, or simply directly
implementable, when there exists a strictly proper payoff for
Υ.

Note that with direct implementability, the expert pro-
vides truthfully exactly the information of interest. Some-
times, one may ask for more information to infer the infor-
mation of interest—which may not admit a truth-inducing
payoff. For example one may ask for the full distribution,
or for answers of more detailed questions. The latter case is
discussed in Section 6.

3. NOTATION
We denote by RΩ the set of random variables over Ω. Any

density function over Ω is a random variable, and to simplify
notation we identify a probability function with its density
and write P ({ω}) = P (ω). Hence ∆(Ω) also denotes the
set of densities over Ω. We consider RΩ as a vector space,
with the inner product 〈X,Y 〉 =

P
ω∈Ω X(ω)Y (ω) and the

distance d(X,Y ) = ‖X − Y ‖ =
p
〈X − Y,X − Y 〉. For a

subset S of a vector space E , we note SpanS the linear span
of S, which is the smallest subspace that contains S. We
recall that the dimension of a subset of a vector space is
the dimension of its linear span. An hyperplane of ∆(Ω)
is defined as the intersection of ∆(Ω) and an hyperplane of
RΩ. A real-valued function f on a subset S of a vector space
is linear when f(αx + βy) = αf(x) + βf(y) for any scalars
α, β and vectors x, y of S.

Given a set of answers A, we identify a payoff function
Π(a, ω) with a collection of vectors {Π(a), a ∈ A} of RΩ,
where we denote by Π(a) the function Π(a, ·). For a dis-
tribution P , we write Π(a, P ) the value Eω∼P [Π(a, ω)] =
〈Π(a), P 〉.

4. CHARACTERIZATION RESULTS
In this section we consider a set Ω of n outcomes and a

multiple-choice question Υ with a set of m answers A =
{a1, . . . , am}.

4.1 Directly implementable questionnaires
Our primary objective is to identify the questions that

are directly implementable, for which it is possible to elicit
truthful answers by setting appropriate payoffs. We start
with the main conditions that such an MCQ must satisfy:



the set of distributions associated with a correct answer must
be a “thick” (of non-empty interior), closed convex polyhe-
dron, and the intersections between the sets of distributions
of two different answers must be “thin” (of empty interior,
included in an hyperplane).

Proposition 4.1. If Υ is directly implementable, then

• For all a ∈ A, Υ(a) is a nondegenerate closed convex
polyhedron of the simplex ∆(Ω).

• For all a, b ∈ A, a 6= b, if Υ(a) ∩ Υ(b) is not empty
then it is a degenerate closed convex polyhedron.

We recall that a closed convex polyhedron of ∆(Ω) is any
subset S of distributions such that S is the convex envelope
of a finite collection of probability functions. A convex poly-
hedron is said to be degenerate when its dimension is strictly
less than n (i.e., the polyhedron is “flat”).

Each MCQ Υ corresponds graphically to some configura-
tion in the simplex of distributions, that is formed by the
shapes of the sets Υ(a) for all answers a. Informally, our re-
sult implies that if an MCQ is directly implementable, then
it has a convex configuration, in the sense that each cell Υ(a)
should be convex. Moreover there should always exist cases
for which several answers are simultaneously correct, but
those cases should be extremely rare, while those situations
for which only one answer is correct should occur quite often.
The number of simultaneously correct answers depends on
the question, and there are directly implementable questions
for which all answers are valid in some rare circumstances.

Our proposition provides conditions that can easily be ap-
plied to rule out most MCQ of practical interest that are not
directly implementable. We illustrate its use in the following
few paragraphs.

Convexity condition. This is the most commonly vio-
lated condition. For example, consider the case of two ran-
dom variables X and Y taking values in a set X contain-
ing at least two elements. Let’s define the following MCQ
Υ1: “Which of the following is true: (a) Var(X) ≥ Var(Y ),
or (b) Var(Y ) ≥ Var(X)”. This question is not directly
implementable as it does not satisfy the convexity condi-
tion. Indeed take the case of X = {0, 1}, and let P and Q
be distributions such that X and Y are independent under
both P and Q, with P (X = 0) = 1, Q(X = 0) = 0, and
P (Y = 0) = Q(Y = 0) = 1/3. Let R = (P + Q)/2. Then
VarP (X) = VarQ(X) = 0 ≤ 2/9 = VarP (Y ) = VarQ(Y ).
Yet, VarR(X) = 1/4 ≥ VarR(Y ) = 2/9. This means that
Υ1(a) is not convex. The reasoning trivially extends to ar-
bitrary sets X .

Closeness condition. Besides being convex, the cells
should also be closed. For example, let A be a binary event
of Ω. The MCQ Υ2: “The probability p of A satisfies (a)
p < 0.1, (b) 0.1 ≤ p ≤ 0.9 , or (c) p > 0.9” is not directly
implementable, as Υ2(a) and Υ2(c) are not closed.

Nondegeneracy condition. We illustrate the non-
degeneracy condition with a similar question Υ3: “The prob-
ability of A is (a) less than 1/2, (b) equal to 1/2, or (c)
greater than 1/2”. This MCQ is not directly implementable
as the set Υ3(b) is “flat”, its dimension is less than n. In fact,
it can be shown that for any valid MCQ, whenever an an-
swer is degenerate, some other fails the closeness condition.
However, degeneracy is sometimes easier to detect.

Thin intersection condition. Even if the answers
correspond to nondegenerate closed convex polyhedra,

a multiple-choice question is not always directly imple-
mentable. For example, consider the case of three random
variables X, Y and Z taking values in X , and let’s define the
MCQ Υ4: “Which of the following statements is true about
the mean of X,Y and Z: (a) E[X] ≥ E[Y ], (b) E[Y ] ≥ E[Z],
(c) E[Z] ≥ E[X]”. This is indeed a valid question as no an-
swer implies another, since no two answers concern the same
random variables, and there is always a valid answer. (Oth-
erwise, by contradiction, E[X] > E[Y ] > E[Z] > E[X] under
some probability.) Each set Υ4(α) is a convex polyhedron
for any answer α. However, from Proposition 4.1 the ques-
tion is not directly implementable because Υ4(α) ∩ Υ4(β)
is of dimension n for any two answers α 6= β. Indeed, for
any probability function P , either EP [X] ≥ EP [Y ] ≥ EP [Z],
or EP [X] ≥ EP [Z] ≥ EP [Y ], or EP [Y ] ≥ EP [X] ≥ EP [Z],
or EP [Y ] ≥ EP [Z] ≥ EP [X], or EP [Z] ≥ EP [X] ≥ EP [Y ],
or EP [Z] ≥ EP [Y ] ≥ EP [X]. By symmetry, for any of the
6 conditions, the set of probabilities satisfying it has the
same dimension, and since those sets cover the entire simplex
∆(Ω), they are nondegenerate. As each of Υ4(α) ∩ Υ4(β)
for α 6= β equals one of these sets, they are of dimension n.

An interesting consequence of Proposition 4.1 is the im-
possibility to use another type of questionnaires for which,
instead of only one correct answer, the expert is asked to
provide all the correct answers, when there are more than
one. A payoff is then called strictly proper when the ex-
pected payoff is maximized when and only when the ex-
pert identify the full collection of correct answers for each
question. As we did for single-response questions, multiple-
response questions can be modeled as functions Φ : ∆(Ω) 7→
2A. Here A is the set of possible answers and Φ(P ) gives the
full set of correct answers when the outcomes are distributed
according to P . The multiple-response MCQ is equivalent
to a (single-response) MCQ Υ with a set of possible answers
Φ(∆(Ω)) and defined by Υ(a) = Φ−1(a). As this MCQ cor-
responds to a partition in the space of probability functions,
two answers may never occur simultaneously. Since there
are only a finite number of answers, the closeness condition
is violated (the elements of a finite partition of a closed, non-
degenerate convex polyhedron cannot be all closed). Hence
no multiple-response MCQ/questionnaire admits a strictly
proper payoff.

If the conditions enunciated in Proposition 4.1 allow to
detect non-implementability in most cases, they are not suf-
ficient. For example, take Ω = {1, 2, 3} and consider the
following MCQ: “Which statement is true: (a) Outcome 1
occurs at most half the time, (b) Outcome 1 occurs at least
half the time and outcome 2 is more likely than or equally
likely to outcome 3, and (c) Outcome 1 occurs at least
half the time and outcome 2 is less likely than or equally
likely to outcome 3”. The question satisfies all the condi-
tions of Proposition 4.1, yet is not directly implementable.
Let’s use the vector notation (P ({1}), P ({2}), P ({3})) to
represent a distribution P . Let P0 = (1, 0, 0), P1 =
( 1

2
, 1

2
, 0), P2 = ( 1

2
, 0, 1

2
), P3 = ( 1

2
, 1

4
, 1

4
). Let Π be a pay-

off function. Since a and b are valid answers under P1,
Π(a, P1) = Π(b, P1). And similarly, Π(a, P2) = Π(c, P2),
Π(a, P3) = Π(b, P3) = Π(c, P3), Π(b, P0) = Π(c, P0). By
linearity, 2Π(a, P3) = Π(a, P1) + Π(a, P2), so 2Π(c, P3) =
Π(b, P1) + Π(c, P2) implying Π(b, P1) = Π(c, P1). Also,
since the vectors P0, P1, P2 are independent, Π(b) is entirely
specified by Π(b, P0),Π(b, P1),Π(b, P3), and Π(c) is entirely
specified by Π(c, P0),Π(c, P1),Π(c, P3). However, we have



shown that Π(b, P0) = Π(c, P0), Π(b, P3) = Π(c, P3), and
Π(b, P1) = Π(c, P1). Hence Π(a) = Π(b) and Π cannot be
strictly proper.

Fortunately we are able to obtain an elegant description of
the directly implementable multiple-choice questions by us-
ing a well-known concept of computational geometry called
power diagram. Let C be a convex subset of a real finite-
dimensional vector space, with the Euclidian distance d.

Consider a set S = {x1, . . . , xm} of m points or sites of
C. Each point xi has an associated weight wi ∈ R. The
weight expresses the power that sites have on their neigh-
boring points, the larger the weight, the more power. More
precisely, the measure of power of a site xi on a point y is
given by the power function

pow(xi, y) = d(xi, y)2 − wi .

The power function plays the same role as a distance: the
lower the value pow(xi, y), the greater the power. The power
cell Ri of a site xi is the region of the space that contains all
the points under the influence of xi: it contains the points
y such that pow(xi, y) ≤ pow(xj , y) for all j 6= i. The com-
plete collection of regions {R1, . . . ,Rm} is called the power
diagram of the family of weighted sites {(xi, wi), 1 ≤ i ≤ m}.

Intuitively, power diagrams represent the regions of the
space that are closest to a sphere, where the “distance” be-
tween a point and sphere is specially defined and has a simple
geometric interpretation. Indeed, assume positive weights
(without loss of generality, since power diagrams are invari-
ant under a constant addition to the weights). Then each
weighted site (xi, wi) corresponds to a sphere of center xi
and radius

√
wi. Then, if

p
pow(xi, y) ≥ √wi the valuep

pow(xi, y) corresponds to the distance between y and the
point on the sphere centered on xi that is on a tangent line
to the sphere that goes through y.

Power diagrams are closely related to the more commonly
known Voronoi diagrams, and often interpreted as a gener-
alization of the latter. Given a set of Voronoi sites, Voronoi
diagrams consist of regions of the space, each region being
the set of points that are closer to a site than to any other
site. When all weights are the same, the power diagram is
identical to the Voronoi diagram. Introduced by Aurenham-
mer [1] and Imai et al. [6], power diagrams have been well
studied and are commonly used both in computer science
[4] and more recently in mathematics [8]. The reader may
refer to Aurenhammer [2] for a summary of the literature.

Strict properness means that an expert should maximize
her expected payoff when and only when answering correctly.
Given a payoff function Π, the expected payoff of a truthful
expert is given by

P 7→ max
a∈A

E
ω∼P

[Π(a, ω)]

which, since Eω∼P [Π(a, ω)] = 〈Π(a), P 〉, describes the up-
per envelope of (non-vertical) hyperplanes given by P 7→
〈Π(a), P 〉 for each answer a. The region Υ(a) of the space
of distributions that give answer a true is the piece of the
hyperplane given by P 7→ 〈Π(a), P 〉 that is on the envelope.
This means that the regions Υ(a) coincide to the projec-
tion of an envelope of (non-vertical) hyperplanes. It turns
out that those projections correspond exactly to power dia-
grams. Intuitively, this is due to the fact that, even though
the power function is quadratic, the power diagram is only
defined by differences of power functions, which are linear.

So directly implementable questions correspond to geometric
configurations that represent power diagrams in the simplex
of distributions.

Theorem 4.1. The multiple-choice question Υ is directly
implementable if and only if {Υ(a1), . . . ,Υ(am)} is a power
diagram of ∆(Ω) for some set of weighted sites.

Proof. This can be seen as a consequence of the connec-
tion established notably by Aurenhammer [1] between power
diagrams and convex polyhedra in one dimension higher.

If part. Let’s assume that {Υ(a1), . . . ,Υ(am)} is a power
diagram for the collection of weighted vectors {(Pa, wa)}a∈A
of ∆(Ω). Then for all a, b ∈ A, and all P ∈ Υ(a),

d(Pa, P )2 − wa ≤ d(Pb, P )2 − wb .

Let Q ∈ ∆(Ω). For P ∈ ∆(Ω), we define

La(P ) = d(Pa, P )2 − wa − d(Q,P )2

= ‖Pa‖2 − 2〈Pa, P 〉 − wa − ‖Q‖2 + 2〈Q,P 〉
= 〈P, Va〉+ ca

with Va = 2(Q − Pa) and ca = ‖Pa‖2 − ‖Q‖2 − wa. In
particular, since 〈P, 1〉 = 1, La(P ) = −〈P, Sa〉 with Sa =
−Va − ca.

Consider the payoff function Π(a, ω) = Sa(ω). Let a, b ∈
A. If P ∈ Υ(a) and P 6∈ Υ(b), then by definition of the
power diagram, d(Pa, P )2 − wa < d(Pb, P )2 − wb, hence
La(P ) < Lb(P ), implying Eω∼P [Π(a, ω)] > Eω∼P [Π(b, ω)].
Similarly, if P ∈ Υ(a) and P ∈ Υ(b), d(Pa, P )2 − wa =
d(Pb, P )2−wb, and Eω∼P [Π(a, ω)] = Eω∼P [Π(b, ω)]. There-
fore Π is strictly proper.

Only if part. Let Π be a strictly proper payoff, and Sa
the random variable Sa(ω) = Π(a, ω). For P ∈ ∆(Ω), let
La(P ) = −〈P, Sa〉. Take ca = 〈1, Sa〉 and Va = −Sa − ca.
LetQ = 1/|Ω|. ThenQ lies in the interior of ∆(Ω), and there
exists α > 0 small enough such that, if Pa = Q − (α/2)Va,
Pa is a well-defined probability for all a. We get

La(P ) = −〈P, Sa〉
= 〈P, Va〉+ ca

=
1

α
〈P, 2(Q− Pa)〉+ ca

=
1

α
(d(P, Pa)2 − d(P,Q)2 + αca − ‖Pa‖2 − ‖Q‖2)

=
1

α
(d(P, Pa)2 − d(P,Q)2 − wa)

with wa = ‖Q‖2 − ‖Pa‖2 − αca. By Definition 3, strict
properness imply that La(P ) ≤ Lb(P ) for all a, b ∈ A and all
P ∈ Υ(a), which means that d(P, Pa)2−wa ≤ d(P, Pb)

2−wb.
Therefore {Υ(a)}a∈A is a power diagram for the weighted
points {(Pa, wa)}a∈A.

Since Voronoi diagrams are special instances of power di-
agrams, the next corollary follows.

Corollary 4.1. If {Υ(a1), . . . ,Υ(am)} is a Voronoi di-
agram for a set of sites, then Υ is directly implementable.

4.2 Payoff functions
We now describe the general shape of the payoffs. We

show that the set of proper/strictly proper payoffs form a
cone in the space of payoff functions. More precisely, the



(strictly) proper payoffs are mixtures of a fixed, finite num-
ber of payoff functions, modulo a constant payment. The
coefficients of those“base”payoffs are constrained to be non-
negative in proper payoffs, and positive in strictly proper
payoffs. Thus, all is needed to design the truth-inducing
payoffs are those base payoffs. Base payoffs depend on the
information requested and are not subject to particular con-
straints. However, our next section investigates a special
case of questions for which the base payoffs can be easily
constructed. Together with our characterization of direct
implementability, the next theorem is the second major re-
sult of our paper.

Theorem 4.2. If the multiple-choice question Υ is di-
rectly implementable, then there exists a set of payoff func-
tions B = {Π1, . . . ,Π`} for some ` ≥ 1, called a base of Υ,
such that Π is proper (resp. strictly proper) if and only if,
for all a ∈ A, ω ∈ Ω,

Π(a, ω) = Π0(ω) + λ1Π1(a, ω) + · · ·+ λ`Π`(a, ω)

for any function Π0 : Ω 7→ R and any reals λ1, . . . , λ` ≥ 0
(resp. any λ1, . . . , λ` > 0).

Proof sketch. Let P be the space of payoff functions,
i.e., the set of functions Π : A × Ω 7→ R, considered as a
finite dimensional inner product space, the inner product
being defined by 〈Π1,Π2〉 =

P
a∈A,ω∈Ω Π1(a, ω)×Π2(a, ω).

Assume Υ is directly implementable. A payoff Π if proper
when reporting truthfully maximizes the expected payoff,
which is equivalent to :

〈Π(a)−Π(b), P 〉 ≥ 0 ∀a, b ∈ A, ∀P ∈ Υ(a) . (1)

By Proposition 4.1, for all a ∈ A the set Υ(a) is a bounded
convex polyhedron of RΩ, and so is the convex hull of a finite
set of vertices [5]. Let Va be the set of vertices of Υ(a). Since
Va is included in Υ(a), Equation 1 implies that

〈Π(a)−Π(b), P 〉 ≥ 0 ∀a, b ∈ A, ∀P ∈ Va . (2)

However, since all vectors of the convex polyhedron Υ(a) are
nonnegative mixtures of the extreme vertices Va, by linearity
of the inner product, Equation 2 implies Equation 1, and so
the two sets of inequalities are equivalent.

Equation 2 defines a finite homogeneous system of linear
inequalities on the space of payoff functions. Its set of so-
lutions has the form S = K + C (see Eremin [5]). Here C is
a cone formed by a finite set of directrices {Π1, . . . ,Π`} of
the edges of the cone of solutions. That is, C is the set of
vectors λ1Π1 + · · · + λ`Π` of P with λ1, . . . , λ` ≥ 0. K is
the kernel of the system of inequalities, the solution of the
system of equalities

〈Π(a)−Π(b), P 〉 = 0 ∀a, b ∈ A, ∀P ∈ Va
in the space P. We note that any Π such that Π(a) = Π(b)
for all a, b ∈ A is solution. To show that these are the
only solutions, let a, b ∈ A. By Proposition 4.1, Υ(a) has
dimension n, thus the linear span of its vertices Va is the
full space RΩ. If Π is solution of the system, then for all
P ∈ Va, 〈Π(a)− Π(b), P 〉 = 0, and by linearity the equality
remains true for all P in the linear span of Va. This implies
Π(a) = Π(b). Hence K = {Π ∈ P | Π(a, ω) = Π(b, ω) ∀a 6=
b}.

Therefore, Π is proper if and only if Π ∈ S, or equivalently,
if and only if Π = Π0 +

P`
i=1 λiΠi, with λ1, . . . , λ` ≥ 0 and

Π0 a payoff that does not depend on the answer.

This proves the result for proper payoffs. Intuitively, when
considering strict properness, some of the inequalities be-
come strict. The solutions now take the form of the topo-
logic interior of C, modulo constant payments. The interior
of the cone C is described by the positive mixtures of the
directrices, which converts into positiveness of the scalars
λ1, . . . , λ`. The complete proof involves some nontrivial al-
gebraic manipulations and is omitted for brevity.

5. ORDINAL ANSWERS
Sometimes, the answers of a multiple-choice question are

not related in any particular way. This is true, for example,
when asking an expert to choose among a list of portfolios for
the one with the highest payoff. Such MCQ are categorical.
But it is not uncommon to find questions whose answers
can be compared to one another. For example, consider the
MCQ “The payoff for portfolio X is expected to be: (a) less
than $1K, (b) between $1K and $5K, (c) between $5K and
$10K, (d) greater than $10K”. Here the answers are related:
for answer (b) the profit is larger than for answer (a), but
smaller that for answer (c), and even smaller than for answer
(d).

In this section we deal with the special—but common—
case of multiple-choice questions with ordinal answers, that
is, with a set of answers that can be ordered in a mean-
ingful way. Ordinal answers are typical with questions on
discrete parameters, such as mode and median, or questions
on ranges of continuous parameters, such as mean and vari-
ance. (We detail some of those cases in Section 7.) Let Ω
be the set of outcomes and let Υ be an MCQ with a set
of answers A. Further let’s assume that ≺ is a strict total
order over A, so that we can write A = {a1, . . . , am}, with
ai ≺ aj if i < j.

For such a question, we might require more than strict
properness. In our above portfolio example, suppose for in-
stance that the true mean payoff is $4K. Then an expert who
responds (c) is of better use that an expert who responds (d),
even if both are wrong, as his answer is closer to the truth.
It is therefore natural to give that expert higher rewards.
Such rewarding schemes are called accuracy-rewarding (see
Lambert et al. [7]).

In the remaining of this section we denote by Υ−1(P ) the
set of all the correct answers when the true distribution of
outcomes is P . For a set of answers S, we write a ≺ S (resp.
S ≺ a) when a ≺ b (resp. b ≺ a) for all b ∈ S.

Definition 5. A payoff Π is accuracy-rewarding with re-
spect to the strict total order ≺ if it is strictly proper
and when, for all P ∈ ∆(Ω), all a, b ∈ A, if either a ≺
b ≺ Υ−1(P ) or Υ−1(P ) ≺ b ≺ a, then Eω∼P [Π(a, ω)] <
Eω∼P [Π(b, ω)].

Two main reasons motivate the study of MCQ with ordi-
nal answers. First, the principal might want to use payoffs
that are accuracy-rewarding, and our primary objective will
be to determine the questions that admit such payoffs, and
to provide a simple description of those payoffs. Second, we
will show that whenever an accuracy-rewarding payoff exists
for an MCQ, it is possible to express more precisely than in
Theorem 4.2 the general form of the (strictly) proper payoffs.
This will prove to be useful in practice (see Section 7). Our
next result characterizes the questions that admit accuracy-
rewarding payoffs.



Theorem 5.1. The multiple-choice question Υ is directly
implementable with accuracy-rewarding payoffs if and only
if Υ(ai)∩Υ(ai+1) is an hyperplane of ∆(Ω), for all 1 ≤ i ≤
n− 1.

Proof. If part. The construction of an accuracy-
rewarding payoff is done in Theorems 5.2 and 5.3.

Only if part. Let Π be an accuracy-rewarding payoff.
Step 1. We first show that for all i and j > i + 1, if

P ∈ Υ(ai) and P ∈ Υ(aj) then P ∈ Υ(ai+1). Sup-
pose by contradiction that there exists i and P ∈ Υ(ai),
P 6∈ Υ(ai+1), and P ∈ Υ(aj) for some j > i+1. By Proposi-
tion 4.1, Υ(ai) is a convex polyhedron of nonempty interior.
Since P ∈ Υ(ai), there exists a sequence of vectors {Pk}k≥1

of Int(Υ(ai)) that converges towards P . As, for all a, Π(a, ·)
is linear, it is continuous and limk→+∞Π(a, Pk)→ Π(a, P ).
Let δk = Π(ai, Pk)−Π(ai+1, Pk). Since Pk and P belong to
Υ(ai), but not to Υ(ai+1), δk > 0, and δk converges toward
δ = Π(ai, P ) − Π(ai+1, P ) > 0. Therefore inf{δk}k≥1 > 0.
Let ε = inf{δk/2}k≥1. By continuity, there exists K such
that

|Π(ai, P )−Π(ai, PK)| ≤ ε/2 ,
and

|Π(aj , P )−Π(aj , PK)| ≤ ε/2 ,
so that, since ai and aj are both valid answers under P ,
Π(ai, P ) = Π(aj , P ) and

|Π(ai, PK)−Π(aj , PK)| ≤ ε .

Hence, Π(aj , PK) > Π(ai, PK)− ε = Π(ai+1, PK) + δK − ε >
Π(ai+1, PK). However, PK is in the interior of Υ(ai), which
means according to Proposition 4.1 that ai is the only valid
answer under PK . But, since ai < ai+1 < aj , and Π is accu-
racy rewarding, we should have Π(ai+1, PK) > Π(aj , PK).

Step 2. Now let 1 ≤ j ≤ m − 1. Let Aj = Υ(a1) ∪ · · · ∪
Υ(aj), and Bj = Υ(aj+1)∪· · ·∪Υ(am). By Proposition 4.1,
Aj and Bj are polyhedra of dimension n and nonempty inte-
rior in ∆(Ω), with Aj∪Bj = ∆(Ω). Let i ≤ j < j+1 ≤ k. If
P ∈ Υ(ai) and P ∈ Υ(ak), by a recursive application of our
claim above, we find that P ∈ Υ(ai),Υ(ai+1), . . . ,Υ(ak).
In particular, P ∈ Υ(aj) ∩ Υ(aj+1). Therefore Aj ∩ Bj =
Υ(aj) ∩ Υ(aj+1). By Proposition 4.1, the dimension of
Υ(aj)∩Υ(aj+1) is at most n− 1, so that there is an hyper-
plane H that contains Aj ∩ Bj . Suppose that there exists
a vector P of H that does not belong to Aj ∩ Bj . Since
Aj ∪ Bj = ∆(Ω), P ∈ Aj or P ∈ Bj , for example P ∈ Aj .
Then there exists a vector Q in the interior of Bj with
Q 6∈ H. Note that the segment ]P,Q] contains only vectors of
Aj or Bj . Since both sets are closed, the segment intersects
Aj ∩Bj , which is impossible since the ]P,Q] does not inter-
sectH. This means thatH = Aj∩Bj = Υ(aj)∩Υ(aj+1).

When the question Υ admits an accuracy-rewarding pay-
off (with respect to a strict total order), we can get a more
precise description of the (strictly) proper payoffs. So let’s
assume that Υ is directly implementable with an accuracy-
rewarding payoff function. Let ni be a normal to the hy-
perplane Υ(ai) ∩ Υ(ai+1) that is positively oriented, that
is, such that 〈ni, P 〉 = 0 for all P ∈ Υ(ai) ∩ Υ(ai+1), and
〈ni, P 〉 ≥ 0 for all P ∈ Υ(ai+1). For 1 ≤ i < m, let’s define
the payoffs

Π̂i(aj , ω) =

(
0 if j ≤ i ,
ni(ω) if j > i .

We prove the following:

Theorem 5.2. The set of payoffs {Π̂1, . . . , Π̂m−1} is a
base of Υ.

Proof. Step 1. Let’s define, for all i, Π(ai) = Π0 +P
1≤j<i λjnj , with λ1, . . . , λm−1 ≥ 0.

Since ni is oriented positively, 〈ni, P 〉 ≥ 0 for all P ∈
Υ(ai+1), . . . ,Υ(am) with a strict inequality if P 6∈ Υ(ai),
and 〈ni, P 〉 ≤ 0 for all P ∈ Υ(a1), . . . ,Υ(ai) with a strict
inequality if P 6∈ Υ(ai+1).

Let P ∈ Υ(ai). If j < i,

〈Π(ai), P 〉 − 〈Π(aj), P 〉 =
X
j≤k<i

λk〈nk, P 〉 ≥ 0 ,

and, if j > i,

〈Π(ai), P 〉 − 〈Π(aj), P 〉 = −
X
i≤k<j

λk〈nk, P 〉 ≥ 0 ,

the inequalities being strict when P 6∈ Υ(aj) and the scalars
λ1, . . . , λm−1 > 0. Therefore the payoff is incentive compat-
ible, and strictly proper if the scalars λk are strictly positive.

Step 2. Now assume Π is a proper payoff. Then, for all
P ∈ Υ(ai) ∩Υ(ai+1), 1 ≤ i < m, 〈Π(ai), P 〉 = 〈Π(ai+1), P 〉,
and so 〈Π(ai+1) − Π(ai), P 〉 = 0. Since by Theorem 5.1
Υ(ai) ∩Υ(ai+1) is an hyperplane of ∆(Ω), its linear span is
an hyperplane Hi of RΩ. Therefore, Π(ai+1)−Π(ai) = λini,
where ni is a normal to Hi oriented positively, i.e., such that
for all P ∈ Hi, 〈ni, P 〉 = 0, and 〈ni, P 〉 ≥ 0 if P ∈ Υ(ai+1).

Let P ∈ Υ(ai+1), P 6∈ Υ(ai), then 〈Π(ai+1), P 〉 ≥
〈Π(ai), P 〉, and so λi〈ni, P 〉 ≥ 0. Since P 6∈ Hi and ni
is positively oriented, 〈ni, P 〉 > 0, which implies λi ≥
0 (λi > 0 with strict properness). Therefore Π(ai) =
Π(a1)+

P
1≤j<i (Π(aj+1)−Π(aj)) = Π0+

P
1≤j<i λjnj with

Π0 = Π(a1), which concludes the proof.

Naturally we also wish to obtain accuracy-rewarding pay-
offs. This is easily done, as they are exactly the strictly
proper payoffs as stated in our next theorem, easily proved
using the derivation in Step 1 of our above proof.

Theorem 5.3. If the payoff Π is strictly proper, then it
is accuracy-rewarding.

Proof. Assume Π is strictly proper. Then, by Theo-
rem 5.2,

Π(ai) = Π0 +
X

1≤k<i

λknk ,

with λ1, . . . , λm−1 > 0. Let P ∈ ∆(Ω). Since the normals
are positively oriented, 〈ni, P 〉 > 0 if ai ≺ Υ−1(P ), and
〈ni, P 〉 < 0 if Υ−1(P ) ≺ ai.

Similarly to the derivation of the proof of Theorem 5.2, if
aj ≺ ai ≺ Υ−1(P ), then

E
ω∼P

[Π(ai, ω)]− E
ω∼P

[Π(aj , ω)] =
X
j≤k<i

λk〈nk, P 〉 > 0 .

Similarly, if Υ−1(P ) ≺ ai ≺ aj , then

E
ω∼P

[Π(ai, ω)]− E
ω∼P

[Π(aj , ω)] = −
X
i≤k<j

λk〈nk, P 〉 > 0 .

Therefore Π is accuracy-rewarding.



One interesting application of our results concerns the elic-
itation of distribution properties. Introduced by Lambert et
al. [7], distribution properties represent numerical param-
eters of the distribution of outcomes. They are defined as
functions that associate a real value to each distribution.
The authors impose two important restrictions on distri-
bution properties: they must be continuous and nowhere
locally constant. The authors characterize the properties
that can be elicited truthfully with appropriate payoffs, such
properties are said to be directly elicitable. As questionnaires
with multiple-choice questions only allow a finite number of
possible responses, they cannot be used to elicit distribu-
tion properties. However, they can be used to elicit ranges
of property values, and thus give approximate values of dis-
tribution properties.

Formally, let Γ : ∆(Ω) 7→ R be a distribution property
that is continuous and nowhere locally constant, with a
range of admissible values (α, α). To divide the set of ad-
missible values into subintervals, let α1, . . . , αk+1 be any se-
quence of reals satisfying α = α1 < α2 < · · · < αk+1 = α.
Let Ii = [αi, αi+1]. We consider the MCQ Υp:“Which inter-
val among I1, . . . , Ik contains the true value of the distribu-
tion property Γ?”. Here the set of possible answers is the
set of intervals {Ii, 1 ≤ i ≤ k}, and an interval I is a valid
answer for an event with distribution P when Γ(P ) ∈ I.

The boundaries, sizes, and number of subintervals can be
chosen freely and depend on the purpose of the question.
It is often convenient to choose a non-uniform division, and
have a larger number of small subintervals in the regions of
property values of particular interest. We recall, by Theo-
rem 2 of Lambert et al., that if Γ is directly elicitable then
Γ−1(x) is an hyperplane in the simplex of distributions for
all admissible values x. The following result gives the ap-
propriate payoffs to be used with Υp.

Theorem 5.4. If Γ is directly elicitable, then Υp is di-
rectly implementable, and Π is a proper (resp. strictly
proper) payoff if and only if

Π(Ii, ω) = Π0(ω) +
X
j<i

λjnj(ω)

for any Π0 : Ω 7→ R and any λ1, . . . , λk−1 ≥ 0 (resp. any
λ1, . . . , λk−1 > 0), where for all j, nj is a positively oriented
normal to the hyperplane Γ−1(αj). 1

Proof. This is a direct application of Theorems 5.1 and
5.2. We observe that, if Γ is directly elicitable then, by
Lemma 3 and Theorem 2 of Lambert et al.[7], Γ−1(αi+1) =
Υ(Ii) ∩Υ(Ii+1) is an hyperplane of ∆(Ω).

6. IMPLIED QUESTIONNAIRES
When a multiple-choice question is not directly imple-

mentable, no payoff yields a truthful answer. Fortunately
it is sometimes possible to answer correctly an MCQ from
the solution of another one. This creates a particular re-
lation between multiple-choice questions (and more broadly
between questionnaires) that we call implication. Intuitively,
an MCQ implies another when one can provide a valid an-
swer to the latter if one can answer correctly the former.
Recall that the notion of implication and the results of this
section naturally generalize to questionnaires with multiple
MCQ by Lemma 2.1.

1Such that 〈P, nj〉 ≥ 0 for all P with Γ(P ) > αj .

Definition 6. An MCQ Φ implies an MCQ Υ if, for all
possible answer b of Φ, there exists an answer a of Υ such
that Φ(b) ⊆ Υ(a).

If a multiple-choice question Φ implies a question Υ, we
write Φ Z=⇒ Υ. It is easily shown that implication defines a
partial order relation on question functions.

The concept of implication becomes useful when an MCQ
that does not admit a strictly proper payoff is implied by
an MCQ that admits one. In such circumstances, one can
simply use the directly implementable question to infer the
answer of the non-directly implementable one. In the two
theorems that follow, we show that those situations do ex-
ist, and we give a characterization of the multiple-choice
questions that can be implied by a directly implementable
question.

Theorem 6.1. If an MCQ Υ is such that, for all possible
answers a of Υ, Υ(a) is a closed polyhedron, then there exists
a directly implementable MCQ that implies Υ.

Proof. Let {H1, . . . ,H`} the set of hyperplanes that de-
fine the facets of the polyhedra Υ(a), a ∈ A. Let ni be
a normal to Hi. The hyperplanes divide ∆(Ω) into cells
{C1, . . . , CM}. Each cell Cj is a convex polyhedron that can
be defined by the inequalities

sji 〈ni, P 〉 ≥ 0 ,

for i = 1, . . . , `, where for all i, either sji = 1 or sji = −1. Let
Φ be the MCQ with a set of answers {1, . . . ,M}, defined by
Φ(k) = Ck. We observe that Φ(k) is included in one of the
polyhedra whose facets define the hyperplanes H1, . . . ,H`
and so Φ implies Υ.

We construct a strictly proper payoff Π as follows:

Π(k) =
X
i

ski ni ,

for all k. Let k 6= k′, and P ∈ Ck. Then,

〈Π(k), P 〉 − 〈Π(k′), P 〉 = 2
X

i/sk
i 6=s

k′
i

ski 〈ni, P 〉 ≥ 0 ,

which implies properness. Furthermore, if P 6∈ Ck′ , then

there exists i0 with sk
′
i0 〈ni0 , P 〉 < 0. Then,

〈Π(k), P 〉 − 〈Π(k′), P 〉 = ski0〈ni0 , P 〉 − s
k′
i0 〈ni0 , P 〉

+ 2
X

i 6=i0/sk
i 6=s

k′
i

ski 〈ni, P 〉 ,

≥ ski0〈ni0 , P 〉 − s
k′
i0 〈ni0 , P 〉 ,

≥ −sk
′
i0 〈ni0 , P 〉 ,

> 0 ,

which gives strict properness.

Theorem 6.2. There exists a directly implementable
MCQ that implies Υ if and only if Υ is implied by some
MCQ Φ that is such that for all possible answers b, Φ(b) is
a closed polyhedron.

Proof. If part. If an MCQ Φ implies Υ, and is such
that, for all answers b, Φ(b) is a closed polyhedron, then by
Theorem 6.1, there exists a directly implementable MCQ
that implies Φ, and so that implies Υ by transitivity.



Only if part. If there exists a directly implementable
MCQ Φ that implies Υ, then by Proposition 4.1, Φ(b) is
a closed polyhedron for all possible answers b of Φ.

It is interesting to observe that not every question can be
implied by a directly implementable one. In fact, those sit-
uations are quite rare: any multiple-choice question whose
geometric configuration, in the simplex of distributions, is
such that the intersection between the cells of two answers
forms a curvy hypersurface can never be implied by a di-
rectly implementable question. For example, the MCQ “Is
it true that the variance of X is no less than the variance of
Y ? (a) Yes or (b) No?” for given random variables X and
Y is not implied by any directly implementable MCQ, since
the intersection between the cells of the two answers is given
by the equation VarP (X) = VarP (Y ), quadratic in P .

7. EXAMPLES
In this section we apply our results to concrete examples

of simple multiple-choice questions. Many of our questions
concern the values taken by one or more random variables,
represented as X (single random variable) or a vector X
(multiple random variables). In such cases, it is generally
assumed that one does not observe the true outcome but
only the values taken by the random variables, so that we
can assume without loss of generality that each outcome cor-
responds exactly to one value of X (or X), and for simplicity
we write payoffs as Π(a,X) (or Π(a,X)).

7.1 Finding the median/quantiles
Let X be a random variable with a finite range of values
X , that contains at least 2 elements. We consider an MCQ
to elicit a median of X: “What is a median of X?”, taking
as possible answers the possible medians, that is, the full
range of X. Formally, the question function Υ is defined by
Υ(x) = {P ∈ ∆(Ω) | P (X ≤ x) ≥ 1/2, P (X ≥ x) ≥ 1/2},
for all x ∈ X .

Proposition 7.1. This MCQ is directly implementable,
and Π is a proper (resp. strictly proper) payoff if and only
if

Π(x,X) = Π0(X) +
1

2
f(x) +

(
f(X)− f(x) if X ≤ x
0 if X > x

with any function Π0 : X 7→ R and any nondecreasing (resp.
strictly increasing) function f : X 7→ R. Moreover, if f is
strictly increasing, then Π is also accuracy-rewarding with
respect to the strict total order < on the real line.

Our result can be obtained by application of Theo-
rems 4.2, 5.1, 5.2 and 5.3.

We can easily generalize the above theorem to elicit an
α-quantile of X. An α-quantile is any x ∈ X satisfying
P (X ≤ x) ≥ α and P (X ≥ x) ≥ 1− α. The MCQ “What is
an α-quantile of X?” is directly implementable, and Π is a
proper (resp. strictly proper) payoff if and only if

Π(x,X) = Π0(X) + αf(x) +

(
f(X)− f(x) if X ≤ x
0 otherwise

with Π0 : X 7→ R and f : X 7→ R nondecreasing (resp.
strictly increasing).

7.2 Finding the mode
Under the same setting as above, we consider the question

“What is a mode for X?”, where an answer can be any value
of X. We recall that the mode of a random variable is its
more frequent value. The corresponding MCQ function is
defined by Υ(x) = {P ∈ ∆(Ω) | P (X = x) ≥ P (X =
y) ∀y ∈ X}, for all x ∈ X .

Proposition 7.2. This MCQ is directly implementable,
and Π is a proper (resp. strictly proper) payoff if and only
if

Π(x,X) = Π0(X) + λ

(
1 if X = x

0 if X 6= x

for any function Π0 : X 7→ R and any λ ≥ 0 (resp. λ > 0).

Note that, by applying Theorem 5.1, one can easily show
that the MCQ does not admit accuracy-rewarding payoffs.

7.3 Estimating the probability of a binary
event

Let A ⊂ Ω be a binary event. We divide the interval
of possible probabilities [0, 1] into intervals [αi, αi+1], with
αi < αj when i < j. Let Ii = [αi, αi+1], and m be the
total number of intervals. We consider the multiple-choice
question “What is the range of A’s probability?”, with as
set of possible answers the intervals Ii. Any interval I that
contains the true probability of A is considered valid.

Proposition 7.3. This MCQ is directly implementable,
and Π is a proper (resp. strictly proper) payoff if and only
if

Π(Ii, ω) = Π0(ω) +
X
j<i

λj

(
1− αj if ω ∈ E
−αj if ω 6∈ E

for any function Π0 : Ω 7→ R and any λ1, . . . , λm−1 ≥ 0
(resp. any λ1, . . . , λm−1 > 0).

7.4 Finding the variable of largest mean
Let X1, . . . , Xk, k > 1, taking values in a set X that con-

tains at least 2 elements. We consider the MCQ“What is the
random variable whose mean is the largest?”. Here answers
consist of the indices of the random variables, {1, . . . , k}.

Proposition 7.4. This MCQ is directly implementable,
and Π is a proper (resp. strictly proper) payoff if and only
if

Π(i,X) = Π0(X) + λXi

for any function Π0 : X k 7→ R and any λ ≥ 0 (resp. λ > 0).

7.5 Ranking the likelihoods of binary events
Let A1, . . . , Ak be k binary events (not necessarily inde-

pendent). We now consider the MCQ “Rank the events
A1, . . . , Ak from the most to the least likely”. In this case
the set of answers is the set of permutations of the indices
{1, . . . , k} of the events, each answer σ being interpreted as
an ordering of the events, where σ(i) is the index of the i-th
most likely event. An answer σ is correct when, for all i ≤ j,
P (Aσ(i)) ≥ P (Aσ(j)). Let Xi be the indicator of Ai.

2

2I.e., Xi(ω) = 1 if ω ∈ Ai and Xi(ω) = 0 if ω 6∈ Ai.



Proposition 7.5. This MCQ is directly implementable,
and the following payoff function

Π(σ,X) = λ0 +
X
i

λiXσ(i)(ω)

is strictly proper for any λ0 ∈ R, and any reals λ1 > λ2 >
· · · > λk > 0.

7.6 Eliciting confidence intervals
Given a random variable X taking values in a set X with

at least 2 elements, we consider the multiple-choice question
“What is a 90% confidence interval for X?”. The set of
answers is the set of intervals [a, b], where a ≤ b are two
possible values for X. [a, b] is a 90% confidence interval
when P (a ≤ X ≤ b) ≥ 0.9, P (a < X ≤ b) ≤ 0.9 and
P (a ≤ X < b) ≤ 0.9. Unfortunately, this MCQ does not
satisfy the thin intersection condition of Proposition 4.1, and
so is not directly implementable.

Proposition 7.6. The MCQ on general confidence inter-
vals is not directly implementable.

We now restrict ourselves to symmetric confidence inter-
vals with the MCQ “What is a 90% symmetric confidence
interval for X?”. A 90% symmetric confidence interval for
X is any interval [a, b] that contains X with at least 90%
probability, and such that the likelihood of X being at least
b, or at most a, is at least 5%.

Observing that [a, b] is a valid answer if and only if a is a
0.05-th quantile and b is a 0.95-th quantile, we easily get a
family of (strictly) proper payoff functions as a sum of the
two (strictly) proper payoffs corresponding to each quantile.

Proposition 7.7. The MCQ on symmetric confidence
intervals is directly implementable, and the payoff functions

Π([a, b], X) = Π0(X) +
5

100
f(a) +

95

100
g(b)

+

8><>:
f(X) + g(X)− f(a)− g(b) if X ≤ a
g(X)− g(b) if a < X ≤ b
0 if X > b

are proper (resp. strictly proper) for any Π0 : X 7→ R and
any nondecreasing (resp. strictly increasing) functions f :
X 7→ R and g : X 7→ R.

8. CONCLUSION AND FUTURE WORK
We studied the problem of incentivizing an expert to

truthfully answer questionnaires with multiple-choice ques-
tions. Observing that the study of complete questionnaires
reduces to that of a single multiple-choice question, we gave
simple necessary conditions for questions to be directly im-
plementable, and showed that directly implementable ques-
tions correspond to power diagrams in the simplex of dis-
tributions. We also showed that the proper (resp. strictly
proper) payoffs are nonnegative (resp. positive) mixtures
of a fixed, finite number of particular payoff functions. We
then considered the special case of questions with ordered
answers. We proposed a simple characterization of questions
directly implementable with accuracy-rewarding payoffs and
described those payoffs. Next we introduced the concept of
implication between questionnaires; we gave necessary and
sufficient conditions for a questionnaire to be implied by a

directly implementable questionnaire. Finally we illustrated
our results with several examples of practical interest. Also
note that our analysis can be applied to a prediction market
setting, our results appear in the full version of the paper.

It would be interesting, for future work, to validate ex-
perimentally our results. Such exercise is facilitated by the
growth of online survey systems that can implement complex
payoff functions, such as Amazon Mechanical Turk. 3 From
a more theoretical perspective, it would be interesting to ex-
plore other types of questionnaires that can be created with
online web services; for example, dynamic questionnaires,
where questions displayed may depend on answers of previ-
ous questions, or smooth questionnaires in which, instead of
selecting exactly one answer and rejecting all others, experts
specify a degree of correctness for each answer, interpreted
as the perceived probability for each answer being correct,
etc.
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