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S.1. ESTIMATION AND CLOSED PREFERENCE SETS

THIS SECTION illustrates that having a closed set of preferences is critical for estimation,
while it is not needed for identification.

Throughout, the set of alternatives is X ≡ [0�1], and the set of preferences P is the set
of all locally strict and transitive preferences on X . The argument extends to other sets
of alternatives, but using the unit interval makes it particularly simple. Here, X meets
Assumption 1 but P violates Assumption 2 because it is not closed, as we show below.

Denote by �I the preference that corresponds to complete indifference, defined by
x�I y for all x� y ∈X . Note that �I is transitive but not locally strict. We measure the dis-
tance between preference relations by the Hausdorff distance between the corresponding
subsets of X ×X:

ρ
(���′) = max

{
sup
x�y

inf
x′�′y′

∥∥(x� y)− (
x′� y ′)∥∥� sup

x′�′y′
inf
x�y

∥∥(
x′� y ′) − (x� y)

∥∥}
�

where ‖ · ‖ is the Euclidean norm. Because X is compact, the Hausdorff metric is com-
patible with the topology of closed convergence.

Consider a subject who has a preference in P , denoted �∗, and makes choices accord-
ingly without error: if x �∗ y , the subject always chooses x over y . Using the formalism
of Section 2, decisions without error mean that the subject’s choice function over binary
choice problems rationalizes �∗.

PROPOSITION S.1: Suppose {�n} is an exhaustive set of experiments, and let �∞ be the
collection of all the binary choice problems used in this set of experiments.

(1) If a preference � ∈P rationalizes the observed choices on every binary choice problem
in �∞, then � = �∗.

(2) There exists, for every n, a preference �n ∈ P that rationalizes the observed choices on
�n, and such that ρ(�n��I) converges to zero as n goes to infinity.

In particular, P is not closed. Neither is the set of all locally strict preferences.
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The first part of Proposition S.1 asserts that, if the experimenter could observe the
behavior of the subject over all experiments of an exhaustive set, she would be able to
infer exactly the subject’s true preference. Thus, a countably infinite set of data points
that samples well enough the set of alternatives is sufficient to uniquely pin down the
subject’s true preference. This identification result owes to the fact that the subject’s true
preference is assumed to be locally strict. It is implied by Lemma 1.

The second part of Proposition S.1 contrasts with the interpretation of the first part
of the proposition. On any experiment in an exhaustive set, the experimenter can find a
preference in P that perfectly rationalizes the observed behavior, and yet remains unin-
formative about the true preference of the subject—no matter how many data points have
been collected—in the sense that the estimated preference converges to the same pref-
erence relation independently of the subject’s true preference. The proof of the second
part of the proposition relies on constructing sequences of rationalizations that behave
increasingly erratically as experiments grow in size. This result stresses the importance of
the assumption that the class of preferences considered be closed.

PROOF OF PROPOSITION S.1: The first part of the proposition is a special case of
Lemma 1 by setting �B = �. To prove the second part, let Zn be the set of alternatives
used in experiment �n. Let us write Zn as {z1� � � � � zmn} for some mn, with zi < zj if i < j.

Denote by vn : Zn → [−1/2�+1/2] a utility representation of �∗ restricted to Zn. Such
utility representation is guaranteed to exist because �∗ is transitive and Zn is finite. We
define a utility function un : X → [−1�+1] that extends vn as follows. First, if z1 �= 0,
let un(0) = 0, if zmn �= 1, let un(1) = 0, and for all z ∈ Zn, let un(z) = vn(z). Second, for
i = 1� � � � �mn − 1, let

un

(
2
3
zi + 1

3
zi+1

)
= +1

un

(
1
3
zi + 2

3
zi+1

)
= −1�

Third, we complete the definition of un on X by linear interpolation between the points
just defined.

Let �n be the preference relation that un produces on the full set of alternatives. Of
course, �n is transitive. It is also locally strict because un is never constant on any open
interval. Thus, �n belongs to P . Since it agrees with �∗ on the alternatives used in exper-
iment �n, it rationalizes the observed choices on �n. Finally, �n converges to �I as n goes
to infinity. Indeed, recall that the convergence of preferences in the closed convergence
topology can be defined by the two properties detailed in Section 3. The first property
holds because, no matter the choice of x� y ∈ [0�1], for every ε > 0 one can always find
n large enough and xn� yn ∈ [0�1] with |xn − x| < ε, |yn − y| < ε so that un(xn) ≥ un(yn),
which means xn �n yn. The second property is immediately satisfied. Q.E.D.

S.2. CONVERGENCE RATES IN COMMODITY-SPACE ENVIRONMENTS

In this section, we compute explicit convergence rates for the statistical preference
model in the commodity-space environment of Section 5.1.

In this environment, the set of alternatives X is the positive orthant Rd
++. We use the

Euclidean norm (and metric) on X and the L∞ product norm on the product space X ×
X . For a subset S of X or X ×X , let Sε denote the set of all points within distance ε of S.
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To enable the computation of convergence rates, we require that P be identified on a
compact set. Given a subset of alternatives from X , we say that the class P is identified
on the subset if, whenever two preferences coincide on this subset, they must be identical
on X . We also ask that P have finite VC dimension. These requirements are satisfied
by a number of common models; for example, the class of preferences with a constant
elasticity of substitution (CES) utility representation, or, when {1� � � � � d} is interpreted
as a state space, and the set of alternatives X is interpreted as a space of monetary acts,
preferences with a CARA subjective expected utility representation.S.1 Throughout, we
fix a compact set K ⊂ X with nonempty interior (without loss of generality), and we let
θ > 0 be small enough so that Kθ ∈ X . We refer to θ as a “fudge parameter.” In effect,
Kθ is a slightly enlarged version of K.

Similar to Section 4.1, we focus on error probability functions that are polynomially
bounded. However, since we do not impose that the preferences in P have a utility rep-
resentation, we use the Euclidean distance between alternatives instead of the difference
of utilities. Specifically, we assume that there exists C > 0 and k> 0 such that, if x ∈Kθ is
strictly preferred to y ∈ Kθ according to preference �, then the error probability function
q satisfies

q(�;x� y)≥ 1
2

+C‖x− y‖k� (S.1)

Observe that, as in Section 4.1, equation (S.1) only bites as the distance between x and y
vanishes. The reason is that Kθ is bounded and C can be set to be arbitrarily small.

The metric we use on preferences is a “fudged metric” based on the Hausdorff dis-
tance.S.2 It is defined as follows:

ρ
(���′) = max

{
sup

{
ρ
(
(x� y)��′ ∩ (K ×K)θ

) : x �|K y
}
�

sup
{
ρ
(
(x� y)�� ∩ (K ×K)θ

) : x�′|K y
}}
�

where �|K is the restriction of � to K and, for A ⊆X ×X ,

ρ
(
(x� y)�A

) = inf
{∥∥(x� y)− (

x′� y ′)∥∥ : (x′� y ′) ∈ A
}
�

Note that the distance between two preferences weakly increases with the fudge param-
eter, and as θ becomes small, the fudged metric becomes equal to the usual Hausdorff
metric restricted to K ×K. The reasons for adding a fudge to the Hausdorff distance are
technical and unsubstantive.

The above conditions enable us to derive explicit convergence rates as a corollary to
Theorem 3.

COROLLARY S.1: Suppose the statistical preference model for commodity spaces (X�P�
λ�q) meets the following conditions:

(1) P has a finite VC-dimension and is identified on K;
(2) each preference in P is transitive and strictly monotone with respect to �;
(3) λ is the uniform distribution over on Kθ;

S.1See Basu and Echenique (2020) for a discussion of other uses of the VC dimension for choice under
uncertainty. The results in Basu and Echenique (2020) provide convergence rates for learning preferences in
a revealed preference model, different from the one under consideration here.

S.2We do not need to show that the fudged metric is a compatible metric, because Theorem 3 applies to any
metric, not just metrics compatible with the topology on preferences.
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(4) q satisfies equation (S.1).
Then the Kemeny-minimizing estimator is consistent and, as η→ 0 and δ→ 0,

N(η�δ) =O

(
1

η4d+2k ln
1
δ

)
�

PROOF: The proof proceeds similar to the proof of Corollary 3 on expected utility pref-
erences: we compute an asymptotic lower bound on the value of r(η) defined in Sec-
tion 3.2, and then we apply Theorem 3.

For x ∈ Rd
++ and ε > 0, we let Bε(x) be the open ball of radius ε and center x. We also

let

B+
ε (x) = {

z ∈ Bε(x) : z � x
}
�

B−
ε (x) = {

z ∈ Bε(x) : x� z
}
�

The proof makes use of the following lemma.

LEMMA S.1: Let 0 <η< θ, and �A and �B be preferences in P . Suppose that there exist
x0� y0 ∈ X with x0 �A y0 and such that for all x� y ∈ Rd

++ with ‖(x0� y0) − (x� y)‖ < η, we
have y �B x. Then, for all (x� y) ∈ B+

η/2(x0) × B−
η/2(y0), we have (i) x �A y and y �B x, (ii)

(x� y) ∈ (K ×K)θ, and (iii) ‖x− y‖ ≥ η/2.

PROOF: Let (x� y) ∈ B+
η/2(x0)×B−

η/2(y0). We have x�A x0 �A y0 �A y , by monotonicity
of the preference �A. Hence, by transitivity, x �A y . And since ‖(x0� y0)− (x� y)‖<η, we
have y �B x. Because η/2 < θ, x ∈ Kθ and y ∈Kθ, therefore (x� y) ∈ (K×K)θ =Kθ ×Kθ.
Finally, let us show that ‖x− y‖ ≥ η/2. We have∥∥(x0� y0)− (y�x)

∥∥ ≤ ∥∥(x0� y0)− (x� y)
∥∥ + ∥∥(x� y)− (y�x)

∥∥�
and by choice of (x� y), ∥∥(x0� y0)− (x� y)

∥∥ ≥ η

2
�

If (y�x) ∈ (K ×K)θ, then using that y �B x, we get∥∥(x0� y0)− (y�x)
∥∥ ≥ η�

If (y�x) �∈ (K ×K)θ, then since (x0� y0) ∈ K ×K,∥∥(x0� y0)− (y�x)
∥∥ ≥ θ ≥ η�

In both cases, we get

η≤ η

2
+ ∥∥(x� y)− (y�x)

∥∥
and hence, ‖x− y‖ = ‖(x� y)− (y�x)‖ ≥ η/2. Q.E.D.

We now return to the main proof. Let us fix the subject’s preference �∗, and let � be
any preference of P with ρ(�∗��) ≥ η, with 0 < η < θ. As in the proofs of our main
results, we continue to use q(x� y) as a short notation for q(�∗;x� y), and for a binary
relation R, we let 1R(x� y)= 1 if and only if (x� y) ∈R.
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We established in the proof of Theorem 2 that

μ
(�∗) −μ(�)=

∫
X×X

1�∗\�(x� y)
[
q(x� y)− q(y�x)

]
dλ(x� y)�

There are two cases to consider.
First, suppose that there exist x0� y0 ∈ K with x0 �∗ y0 such that, if x� y ∈ Rd

++ and
‖(x0� y0) − (x� y)‖ < η, then (x� y) /∈ � ∩ (K × K)θ—which implies that y � x by com-
pleteness. We always have q(x� y) − q(y�x) ≥ 0 if x �∗ y , and by Lemma S.1, B+

η/2(x0)×
B−

η/2(y0) ⊂X ×X , so

μ
(�∗) −μ(�)≥

∫
B+
η/2(x0)×B−

η/2(y0)

1�∗\�(x� y)
[
q(x� y)− q(y�x)

]
dλ(x� y)�

By Lemma S.1, if (x� y) ∈ B+
η/2(x0) × B−

η/2(y0), x �∗ y while y � x, and since �∗ is locally
strict, the set {(x� y) : x ∼∗ y} has λ-probability zero, so

μ
(�∗) −μ(�) ≥

∫
B+
η/2(x0)×B−

η/2(y0)

[
q(x� y)− q(y�x)

]
dλ(x� y)

≥ inf
{
q(x� y)− q(y�x) : (x� y) ∈ B+

η/2(x0)×B−
η/2(y0)

}
× λ

(
B+

η/2(x0)×B−
η/2(y0)

)
�

Recall that Bη/2(x0) and Bη/2(y0) are d-dimensional balls of radius η/2, and so each of
B+

η/2(x0) and B−
η/2(y0) has a Lebesgue measure equal to the volume of a d-dimensional

ball of radius η/2 divided by 2d , which is equal to

πd/2

4d · �
(
d

2
+ 1

)ηd�

where � is the Gamma function. Since λ is the uniform probability measure on (K×K)θ,
λ(B+

η/2(x0)×B−
η/2(y0)) is directly proportional to η2d .

In addition, by Lemma S.1, ‖x− y‖ ≥ η/2, so by equation (S.1),

q(x� y)− q(y�x)≥ C‖x− y‖k

≥ Cηk

2k
�

and

inf
{
q(x� y)− q(y�x) : (x� y) ∈ B+

η/2(x0)×B−
η/2(y0)

} ≥ Cηk

2k
�

Second, suppose that there exist x0� y0 ∈ K with x0 � y0 such that, if x� y ∈ Rd
++ with

‖(x0� y0) − (x� y)‖ < η, then (x� y) /∈ �∗ ∩ (K × K)θ. By a symmetric argument, we get
that

μ
(�∗) −μ(�) ≥ inf

{
q(y�x)− q(x� y) : (x� y) ∈ B+

η/2(x0)×B−
η/2(y0)

}
× λ

(
B+

η/2(x0)×B−
η/2(y0)

)
�
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with

inf
{
q(y�x)− q(x� y) : (x� y) ∈ B+

η/2(x0)×B−
η/2(y0)

} ≥ Cηk

2k
�

In both cases, as η → 0,

μ
(�∗) −μ(�)=

(
η2d+k

)
�

where the big Omega notation refers to the asymptotic lower bound, and hence,

r(η) = 
(
η2d+k

)
�

Corollary S.1 then follows from Theorem 3. Note that λ does not have full support on
X , and we have not required that P be closed, so Assumptions 2 and 3 may be violated.
Although the statement of Theorem 3 asks that Assumptions 2 and 3 be satisfied to ensure
consistency of the Kemeny-minimizing estimator, this condition is not needed to obtain
the asymptotic upper bound of the theorem: when r(η) > 0 for η close enough to zero,
as in this case, N(η�δ) is guaranteed to be finite, so the estimator is consistent and the
bound obtains. Q.E.D.

S.3. SUBJECTIVE EXPECTED UTILITY PREFERENCES

Subjective expected utility preferences are yet another case where we can ground the
analysis in a family of utility representations. Specifically, we consider environments of
choice under uncertainty, and study preferences that have a subjective expected utility
representation.

Let � = {π1� � � � �πd} be a set of d prizes (or outcomes) and S = {ω1� � � � �ωs} be a set of
s states. The set of alternatives X is the set of Anscombe–Aumann acts; that is, the set of
all mappings that send each state to a lottery over prizes.

As in Section 4.1, a lottery is represented by an element of the (d−1)-dimensional sim-
plex �d−1. It will be convenient to represent an act f as an s-by-d matrix {fij}i�j interpreted
as follows: f sends state ωi to lottery (fi1� � � � � fid) ∈ �d−1. Throughout this section, all the
finite-dimensional spaces are endowed with the Euclidean norm denoted ‖ · ‖.

A subjective expected utility preference or SEU preference for short is a preference � on
X that complies with subjective expected utility theory: there exists a vector of subjective
state probabilities (p1� � � � �ps) and a vector of utilities (u1� � � � � ud) such that f � g if
and only if the subjective expected utility of f , which equals p · (fu), is not less than the
subjective expected utility of g, p · (gu). Let P be the set of SEU preferences that are
nonconstant, which means that for every � ∈P , there exists f�g ∈ X for which f � g; or,
equivalently, the corresponding vector of utilities u satisfies ui �= uj for some i, j.

By an analogous argument to that in Section 4.1, it can be shown that each nonconstant
SEU preference is locally strict, and that P is closed. Therefore, the SEU environment
satisfies Assumptions 1 and 2.

Now, analogously to the expected-utility environment, we provide explicit convergence
rates, under some mild conditions on the error probability function.

Each nonconstant SEU preference is captured by a (s+d)-dimensional parameter con-
sisting of the state probabilities and utilities. We normalize nonconstant vectors of utilities
u by requiring that u ∈Ud−1 with

Ud−1 =
{
u ∈ Rd :

d∑
j=1

uj = 0 and ‖u‖ = 1

}
�
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Each preference in P is then associated with a unique pair (p�u) ∈ �s−1 × Ud−1, inter-
preted as “parameters” of the prefererence, with �s−1 × Ud−1 the finite-dimensional pa-
rameter space. We measure the distance ρ(���′) between nonconstant SEU preferences
� and �′ as the Euclidean distance between their respective parameters; one can follow
the steps of Section 6.3 and show that ρ is a compatible metric.

We restrict error probability functions in the following way: we ask that there exists
C > 0 and k> 0 such that, for all � ∈P , if f � g,

q(�; f�g) ≥ 1
2

+C
∣∣EU(f)−EU(g)

∣∣k� (S.2)

where EU(f) and EU(g) are the expected utilities of f and g, respectively.

COROLLARY S.2: For the statistical preference model (X�P�λ�q), where X ≡ (�d−1)s, P
is the set of all nonconstant SEU preferences, λ is the uniform distribution on (�d−1)s, and
q satisfies equation (S.2), the Kemeny-minimizing estimator is consistent and, as η → 0 and
δ→ 0,

N(η�δ) = O

(
1

η8s(d−1)+4k ln
1
δ

)
�

The uniform distribution is chosen for simplicity, but not required. More generally, the
above convergence rate continues to apply when λ is absolutely continuous with respect
to the Lebesgue measure and its Radon–Nikodym derivative is bounded.

PROOF OF COROLLARY S.2: The proof is very similar to the proof of Corollary 3 in
Section 4.1.

Let �d−1 be the affine span of �d−1 in Rd , and X = (�d−1)s. For x ∈ X and ε > 0, we let
Bε(x) be the open ball of radius ε and center x in X .

For a preference �∈P associated with the pair (p�u) ∈�, and the subjective expected
utility of act f is p · (fu).

LEMMA S.2: Let 0 <η< 1 and �A��B ∈P with ρ(�A��B)≥ η. There exists f �� g� ∈ X
such that, for all f ∈ Bη′(f �) and g ∈ Bη′(g�),

p · (fu) ≥ p · (gu)+ η2

80d
√
d
�

q · (gv) ≥ q · (gv)+ η2

80d
√
d
�

where (p�u) and (q� v) are the parameters associated respectively with �A and �B, and
η′ ≡ η2/(200d). In addition, Bη′(f �)×Bη′(g�)⊂ X ×X .

PROOF: Let p̃ = p/‖p‖ and q̃ = q/‖q‖. Observe that p = p̃/
∑

i p̃i and q = q̃/
∑

i q̃i.
Then

‖p− q‖ =

∥∥∥∥∥∥∥∥
p̃∑
i

p̃i

− q̃∑
i

q̃i

∥∥∥∥∥∥∥∥
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= 1∑
i

p̃i

∥∥∥∥∥∥∥∥
p̃− q̃+ q̃−

∑
i

q̃i

∑
i

p̃i

q̃

∥∥∥∥∥∥∥∥
≤ 1∑

i

p̃i

‖p̃− q̃‖ + 1∑
i

p̃i

1∑
i

q̃i

∣∣∣∣∑
i

(p̃i − q̃i)

∣∣∣∣�

where we use the triangle inequality and the fact that ‖q̃‖ = 1. Observe that
∑

i p̃i ≥ 1 and∑
i q̃i ≥ 1, so

‖p− q‖ ≤ ‖p̃− q̃‖ +
∣∣∣∣∑

i

(p̃i − q̃i)

∣∣∣∣
≤ ‖p̃− q̃‖ +

∑
i

|p̃i − q̃i|

≤ 3‖p̃− q̃‖�

Now suppose ρ(�A��B) ≥ η. Then, either ‖u − v‖2 ≥ η2/2, or ‖p − q‖2 ≥ η2/2 and
‖p̃− q̃‖2 ≥ η2/18. Therefore, we have u · v ≤ 1 −η2/2 or p̃ · q̃ ≤ 1 −η2/36, and (u · v)(p̃ ·
q̃)≤ 1 −η2/100.

Next, let

f �
i = 1

d
1 +

(
1
d

−η′
)
p̃iu� and g�

i = 1
d

1 +
(

1
d

−η′
)
q̃iv�

(Abusing notation, since we are making a row vector equal to a column vector, to fix
later.)

Let f ∈ Bη′(f �) and g ∈ Bη′(g�). The following sequence of inequalities obtains

p̃ · (fu) = p̃ · ((f − f �
)
u
) + p̃ · (f �u

)
≥ p̃ · (f �u

) −η′

≥ p̃ · (g�u
) +

(
1
d

−η′
)
η2

40
−η′

= p̃ · ((g0 − g)u
) + p̃ · (gu)+

(
1
d

−η′
)
η2

40
−η′

≥ p̃ · (gu)+
(

1
d

−η′
)
η2

40
− 2η′

≥ p̃ · (gu)+ η2

80d
�

To get the first inequality, observe that∣∣p̃ · ((f − f �
)
u
)∣∣ ≤ ‖p̃‖ · ∥∥f − f �

∥∥ · ‖u‖ ≤ ∥∥f − f �
∥∥ ≤ η′�
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Similarly, we have |p̃ · ((g − g�)u)| ≤ η′, which yields the third inequality. The second
inequality comes from p · (f �u)= 1/d −η′ and

p̃ · (g�u
) =

(
1
d

−η′
)
(u · v)(p · q) ≤

(
1
d

−η′
)

−
(

1
d

−η′
)
η2

40
�

The fourth inequality comes from(
1
d

−η′
)
η2

4
− 2η′ = η2

80d
+ 20η2 −η4

8000d
≥ η2

80d
�

Then

1∑
i

p̃i

p̃ · (fu) ≥ 1∑
i

p̃i

p̃ · (gu)+ 1∑
i

p̃i

η2

80d
�

p · (fu) ≥ p · (gu)+ 1∑
i

p̃i

η2

80d
≥ η2

80d
√
d

observing that
∑

i p̃i ≤
√
d.

By a symmetric argument, we also have

q · (gv) ≥ q · (gv)+ η2

80d
√
d
�

Finally, observe that η′ is chosen small enough to ensure that the balls Bη′(f �) and Bη′(g�)

of X are included in X . Q.E.D.

We now return to the main proof. Let us fix the subject’s preference �∗, and let � be
any preference of P with ρ(�∗��) ≥ η, with 0 < η < 1. As in the proofs of Theorems 2
and 3, we use q(f�g) as a short notation for q(�∗; f�g), and for a binary relation R, we
let 1R(f�g) = 1 if and only if (f�g) ∈R.

We established in the proof of Theorem 2 that

μ
(�∗) −μ(�)=

∫
X×X

1�∗\�(x� y)
[
q(x� y)− q(y�x)

]
dλ(x� y)�

Let η′ = η2/(200d). By Lemma S.2, there exists f �� g� ∈X such that Bη′(f �)×Bη′(g�) ⊂
X × X , and if (f�g) ∈ Bη′(f �) × Bη′(g�) then f �∗ g while g � f . Also, if f �∗ g, then
q(f�g)− q(g� f ) ≥ 0. Hence,

μ
(�∗) −μ(�) =

∫
�∗\�

[
q(f�g)− q(g� f )

]
dλ(f�g)

≥
∫
Bη′ (x0)×Bη′ (y0)

[
q(f�g)− q(g� f )

]
dλ(f�g)

≥ inf
{
q(f�g)− q(g� f ) : (f�g) ∈ Bη′

(
f �

) ×Bη′
(
g�

)}
× λ

(
Bη′

(
f �

)) × λ
(
Bη′

(
g�

))
�
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The Lebesgue measure of each of the s× (d− 1)-dimensional balls Bη′(f �) and Bη′(g�)

is proportional to η′s(d−1), and so is proportional to η2s(d−1). So

λ
(
Bη′(x0)

) × λ
(
Bη′(y0)

) = 
(
η4s(d−1)

)
as η→ 0, where the big Omega notation refers to the asymptotic lower bound.

Since x ∈ Bη′(x0) and y ∈ Bη′(y0) implies x�∗ y , by equation (S.2),

q(x� y)− q(y�x)≥ 2C
∣∣p · (fu)−p · (gu)∣∣k�

where (p�u) is parameter associated with �∗. By Lemma S.2, we have

p · (fu)−p · (gu) ≥ η2

80d
√
d

and hence,

inf
{
q(x� y)− q(y�x) : (x� y) ∈ Bη′(x0)×Bη′(y0)

} =
(
η2k

)
as η→ 0.

Overall, we get μ(�∗)−μ(�)=(η4(d−1)+2k), and thus r(η) =(η4(d−1)+2k). Applying
Theorem 3 and observing that the VC dimension of P is no greater than d + 1 (and so
finite) by Proposition 4.20 of Wainwright (2019), we have

N(η�δ) = O

(
1

η8s(d−1)+4k ln
1
δ

)
� Q.E.D.
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