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ABSTRACT
We investigate asymptotically optimal keyword auctions,
that is, auctions which maximize revenue as the number of
bidders grows. We do so under two alternative behavioral
assumptions. The first explicitly models the repeated nature
of keyword auctions. It introduces a novel assumption on
individual bidding, namely that bidders never overbid their
value, and bid their actual value if shut out for long enough.
Under these conditions we present a broad class of repeated
auctions that are asymptotically optimal among all sequen-
tial auctions (a superset of repeated auctions). Those auc-
tions have varying payment schemes but share the ranking
method. The Google auction belongs to this class, but not
the Yahoo auction, and indeed we show that the latter is not
asymptotically optimal. (Nonetheless, with some additional
distributional assumptions, the Yahoo auction can be shown
to belong to a broad category of auctions that are asymp-
totically optimal among all auction mechanisms that do not
rely on ad relevance.) We then look at the one-shot keyword
auction, which can be taken to model repeated auctions in
which relatively myopic bidders converge on the equilibrium
of the full-information stage game. In this case we show that
the Google auction remains asymptotically optimal and the
Yahoo auction suboptimal. The distributional assumptions
under which our theorems hold are quite general. We do
however show that the Google auction is not asymptotically
revenue-maximizing for general distributions.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and behavioral sci-
ences—economics
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1. INTRODUCTION
The Internet advertising segment is growing steadily. In

the first half of 2006, revenues from Internet advertising
reached nearly $8B, a 37% increase over the same period
in 2005. In the next few years, the Internet is expected
to account for 20% of global advertising spending1. The
share of sponsored search is by far the most lucrative, and
accounts for 40% of total Internet advertising, more than
twice as much as any other advertising technique2.

Auctions have become the main mechanism used by search
engines to allocate sponsored links. In sponsored search auc-
tions, advertising firms specify target keywords and bids.
The search engine runs an auction every time an user en-
ters a new query, and assigns bidders to auctions depending
on the keyword preferences, and possibly some other con-
straints, such as budget limits or location. The result is a
listing of relevant ads displayed in a “sponsored links” sec-
tion, alongside the main search results. Advertising space
is allocated to merchants according to a criterion that de-
pends on their bids and/or ad relevance. Merchants are only
charged when their ad is clicked, not whenever their ad is
selected for display.

Despite its apparent similarity to the second-price auc-
tion, the Google auction is quite complex; in particular, it
is neither truthful nor revenue-maximizing. Yet Google is
doing just fine, generating 40% more revenue that its direct
competitor Yahoo3. Recently, Google announced that its
third quarter profit almost doubled, while Yahoo said that
selection of winning bidders would now be based on both
bids and an ad quality score, similarly to Google Adwords
auction mechanism. Is this an accident? We claim not.

Given the high stakes, the relative paucity of results on
optimal keyword auctions is striking. One reason is un-
doubtedly the complex dependence of the auctions on both
the bid amounts and click-through rates – that is, clicks per
impression – which makes for complex auctions and even
more complex analysis. For example, in [1] Aggarwal et al.
design a truthful one-shot auction in dominant strategies,
and prove that this is the only truthful (and optimal) auc-
tion in dominant strategies for a given weighted-bid ranking
mechanism, but the auction is quite complex and not intu-
itive. For example, for the ranking method used by Google,
the price would be a linear combination of bids of other
merchants that depend on the expected click frequency in

1Source: The Economist, November 25, 2006
2Source: Business Wire, September 25, 2006
3Source: The New York Times, July 19, 2006
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various slots. Optimal truthful one-shot auctions for more
general ranking mechanisms have been characterized [5], but
both payment schemes and winner selection rules remain
quite complex.

Another source of difficulty is the fact that sponsored
search auctions are repeated, usually with very high fre-
quency, and most advertising firms use bidding proxies that
make use of available information on past performance to
decide on the next bid. For example, Edelman and Ostro-
vski [2] produce evidence of strategic behaviors with empir-
ical data of the Yahoo auction during the period 2002-2003,
after its change to second-bid pricing. While the current
auction model is more stable than the previous, first-price
mechanism, the amount of strategizing by the bidders re-
mains significant. It is well known that analysis of repeated
auctions is substantially more involved than that of one-shot
auctions.

So how have researchers handled these challenges? To
begin with, in spite of what was said in the previous para-
graph, research to date has concentrated almost exclusively
on one-shot auctions. One justification for this is demon-
stration that certain more sophisticated but plausible bid-
ding strategies eventually converge to the equilibrium of the
full-information stage game (this, for example, is claimed in
[3]). This means that rather than adopt a Myerson-style
analysis ([7]) of the full repeated game, one makes certain
assumptions about bidders’ behaviors. Perhaps less “clean”
theoretically, this move is arguably more informative about
the real world. The question is of course whether the be-
havioral assumptions are plausible.

We include analysis of the one-shot model and its implied
behavioral restriction in the paper, but put more emphasis
on an alternative assumption regarding bidders’ behaviors,
one that refers to the individual bidder rather than the set
as a whole (as does the assumption about convergence to
equilibrium). Specifically, we explore the assumption that
merchants never overbid their value, and start bidding their
actual value if they remain excluded for long enough. We
find this a plausible restriction on the behavior of somewhat
risk-averse bidders, more defensible than the convergence to
equilibrium assumption.

This modeling assumption is one modest contribution of
this paper. A more substantial modeling contribution is
the focus on asymptotic optimality. One aspect of internet
auctions that has not been exploited in research so far is
the relatively high number of bidders. And so we ask how
revenue can be optimized, as the number of bidders grows
unboundedly. We call this asymptotic optimality.

The technical results in this paper all refer to asymptotic
optimality, and are partitioned according to the two alter-
native modeling assumptions.

In the context of the new individual conditions on bid-
ding strategies, we present a broad class of repeated auc-
tions that maximize revenue among all sequential auctions
as the number of bidders grows, and, at the limit, perform
as well as an omniscient seller. Those auctions have vary-
ing payment schemes but share the ranking method. The
Google auction belongs to this class, but so do many oth-
ers. The Yahoo auction does not belong to the class, and
indeed we show that it is not asymptotically optimal, as
any other auction that allocates slots to the merchants with
highest bids. We do however show that the Yahoo auction
belongs to a broad category of auctions that are asymp-

totically revenue-maximizing among all sequential auctions
with the same ranking method and whose payments do not
rely on ad relevance, and, when ad quality and value are in-
dependent parameters, we extend this result to all ranking
methods that do not use ad relevance.

In the context of the equilibrium assumption, we show
that the Google auction remains asymptotically optimal in
a strong sense, while the Yahoo auction is suboptimal.

Our theorems hold under certain traditional assumptions
on the distributions of bidder parameters that are quite gen-
eral, and, arguably, hold in most real-world situations of
interest. Nonetheless we show that the Google auction is
not asymptotically revenue-maximizing for general distribu-
tions.

Our paper is organized as follows. In section 2 we review
the existing literature on sponsored search. In section 3 we
introduce our model and various auction mechanisms. In
section 4 we state our optimality and suboptimality results
under individual conditions on bidders’dynamics, while in
section 5 we treat the case of the equilibrium assumption.
Finally in section 6 we show that the Google auction is not
necessarily revenue-maximizing for general distributions on
bidder parameters.

2. RELATED WORK
Most of the literature on sponsored search focuses on the

one-shot auction. Lahaie [6] discusses the equilibria, effi-
ciency and revenue properties of the first-price and second-
price versions of keyword auctions, considered as one-shot
auction games with either complete or incomplete informa-
tion. Varian [8] focuses on the second-price static game auc-
tion model of complete information and analyses “symmet-
ric” equilibria, a subset of Nash equilibria.

Aggarwal et al. [1] introduce a truthful one-shot auction
when advertisers are allocated in decreasing order of their
weighted bids, and show its uniqueness for a given ranking
method. They demonstrate the existence of an equilibrium
for the second-price version of the game of complete infor-
mation that achieves the same revenue. Iyengar et al. [5]
also consider truthful auctions in the static game, with more
general ranking methods, and identify the optimal truthful
mechanisms.

In [4], Feng et al. propose simulations to estimate the
seller’s revenue under different auction mechanisms and dif-
ferent model parameters. However they use a static setting
and do not attempt to model bidding strategies, but rather
focus their analysis on the effect of distributional parame-
ters.

Edelman et al. [3] are among the first to examine bidding
dynamics. They consider the second-price version of key-
word auctions, both in a static and dynamic setting. They
show that for certain bidding strategies, bids may converge
to a “locally envy-free” equilibrium of the one-short game,
for which the revenue is the same as for the VCG auction.

3. MODEL
We assume that n bidders compete for a fixed number

of slots s > 1, with n > s (without loss of generality as
we are interested in asymptotic properties). The slots are
numbered from top to bottom, slot 1 appears at the top
of the page, followed by slot 2, etc. Our model is similar
to that introduced in [1, 6]. Each bidder i has a value vi,
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and a relevance parameter xi, indicator of the quality, or
relevance, of the advertisement. Both value and relevance
may vary depending on the search keyword that is being as-
sociated with the advertisement. In this paper we consider
one particular auction corresponding to one keyword. The
relevance determines the number of clicks per ad impres-
sion, called click-through rate, which is the probability for
an advertisement to receive a click when displayed. Click-
through rates depend on the position of the slot, an adver-
tisement that appears near the top is visited more frequently
than when it is dragged to the bottom. Similarly to [1, 6],
we assume that click-through rates depend on the slot, and
are modulated by relevance: given the position parameters
θ1 ≥ · · · ≥ θs > 0, the click through rate of merchant i in
position j is ci,j = θjxi. [4] shows that actual data fits our
model particularly well. By convention, we assume θi = 0
for i > s.

We take a probabilistic approach and make certain as-
sumptions on the distribution of values and relevance. For
each bidder i, the relevance xi and value vi are random
variables, and the pairs (xi, vi) are identically and indepen-
dently distributed with joint density f(x, v). We note X and
V the relevance and click-through rate of an arbitrary bid-
der. We use the short notation f(v) to denote the marginal

density associated with value v. We note f|v(x) = f(x,v)
f(v)

the

conditional density of relevance x given the value v, and we
denote by F|v(x) the corresponding cumulative distribution.

We assume f has compact support S ⊂ R2
+, and that the

product xv when (x, v) ∈ S is maximized at only one point
in S, (XM , VM ). We also note X̄ and V̄ the maximum value
taken respectively by x and v in S. Finally we impose that S
contains no singularities, that is, there is no isolated point4.
These topological assumptions allow us to be rigorous, and
are verified in most situations of interest. They include as a
special case the conditions required in [6, 4]. For example, f
might be defined on any rectangular domain and be positive
on that domain. The case of general distributions will be dis-
cussed in section 6. As opposed to the traditional literature
on one-shot auctions, we make minimal assumptions about
the knowledge of the main actors. In particular, the density
function and the click-through rate model with parameters
θi’s may, or not, be known.

3.1 General sponsored search auctions
We model sponsored search auctions as sequential auc-

tions, and consider a sequencial auction associated with a
specific keyword. At each period t, n bidders participate in
an auction that sells advertisement slots for the given key-
word. Winning bidders receive a slot for the length of the
period. The auction mechanism may depend on the period,
as we do not exclude the case for which the seller attempts to
learn the bidder’s value from past bidding information, and
charges the winning merchants accordingly. We call them
sequential auctions. In most cases of interest however, the
auction is the same for every period, and depends only on
the bids for the current period. We then talk about repeated
auctions, a special case of sequential auctions.

We assume that each merchant’s relevance is known by
the seller.

At each period t = 1, 2, . . . ,

1. Advertisers submit bids.

4Any ball centered on a point in S has positive mass.

2. The seller decides on the number of slots for sale, the
allocation of slots to bidders, and the payments-per-
click for the period.

3. The seller may decide to release information on bid-
ders, bids, slot attribution, ad relevance or clicks per
impression.

We note, for a period t, st ≤ s the number of slots for
sale, σt(·) the allocation function, and pt(·) the payment
function. The allocation function indicates, for an available
slot i ≤ st, the bidder σt(i) to whom the slot is attributed
for the period. Payments-per-clicked are determined by the
payment function. A bidder assigned a slot i pays pt(i)
for each click received. We assume that the auction never
charges above the bid offer. Bidders who are not assigned a
slot do not receive any click and are not charged.

We note b
(t)
i the bid of bidder i for period t. We do not at-

tempt to model specific bidding strategies, rather, we make
general assumptions on bidding behaviors. Therefore the re-
lease of certain information to bidders is transparent in our
model, and we impose no constraints on communications
between the seller and the merchants. The seller may for
example decide to release information regarding bids of com-
petitors, to provide individual data on click frequencies to
the merchants, or to give statistics on the average popular-
ity of certain slots. In practice search engines often provide
real-time information. For instance, Yahoo provides current
bids for a given keyword and the popularity of a given query,
while Google gives estimates on costs and positions for a bid.

In our setting, bids, allocations and payments for a given
period may depend on past bids, ranks and allocations as
well as value and ad relevance. Ultimately, each variable
of each period is entirely determined by the initial values
and relevance. In that sense, bids, ranks, and allocations,
are random variables entirely determined by the initial value
and relevance for each bidder. In the remaining of this pa-
per, we consider the probability space formed by bidders’
values and relevance, with a probability defined by the prod-
uct of joint density f . To simplify our notations we consider
only deterministic auctions and bidding strategies, however
the extension of our analysis to randomized mechanisms is
straightforward; it suffices to include a sequence of coin flips
in the probability space.

3.2 Common auction formats
Several auction models have been proposed. We review

the auctions with first- and second-price rules, and the VCG
auction.

We distinguish between two allocation methods:

B-ranking Bidders are ranked in order of decreasing bid

b
(t)
i .

RB-ranking Bidders are ranked in order of decreasing

relevance× bid product xib
(t)
i .

In both cases, the s bidders with highest ranks are allocated
an advertisement slot: a merchant with the i-th rank gets
the i-th slot, when i ≤ s.

We now consider payment schemes. Each may be used
in conjunction with either allocation method. The Google
auction can be modeled as a second-price scheme with RB-
ranking, while the Yahoo auction uses the same pricing
method but with B-ranking.
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First-price Each assigned bidder i is charged her actual

bid b
(t)
i .

Second-price Each assigned bidder rt(i) in position i is
charged the minimum amount she would have to bid to

retain her position, that is, b
(t)

rt(i+1) for the B-ranking,

and
xrt(i+1)b

(t)
rt(i+1)

xrt(i)
for the RB-ranking.

VCG Each bidder is charged the externality she imposes
on other bidders. For a bidder rt(i) in position i,
payment-per-click is

pt(i) =
1

θi

sX
j=i

(θj − θj+1)b
(t)

rt(j+1)

for the B-ranking, and

pt(i) =
1

θixrt(i)

sX
j=i

(θj − θj+1)xrt(j+1)b
(t)

rt(j+1)

for the RB-ranking.

The VCG auction is truthful. However, as several authors
have remarked, despite the apparent similarity between the
second-price rule and the single item second-price auction,
the second-price rule is not a truthful mechanism.

3.3 RB(ρ)-ranking, bounded pricing, and reg-
ular auctions

B-ranking and RB-ranking methods are two special cases
of a broad class we call RB(ρ)-ranking. RB(ρ)-ranking ranks

the bidders in order of decreasing product xρ
i (b

(t)
i )1−ρ, in

which ρ is a weight parameter, 0 ≤ ρ < 1. An auction that
uses a ranking method allocates slots in ranking order, with
first slot attributed to the first bidder. By varying the weight
ρ, one gives more or less importance to bid or relevance.
Setting weight ρ = 0 yields the B-ranking, whereas ρ = 1

2
,

yields the RB-ranking. When an auction uses a ranking
mechanism, we note rt(·) the ranking function, which is a
permutation of {1, . . . , n}, and indicates that bidder rt(i)
gets rank i for the period t. Naturally, for a slot i ≤ s,
σt(i) = rt(i).

Most payment schemes used in conjunction with a rank-
ing function only make use of the relevance parameter and
bids of the top k bidders for the current period, for some
fixed k. We call such mechanisms bounded pricing schemes.
Formally, the payments-per-click are defined by a function,
qi, for each slot i for sale. At period t, the bidder in slot

i is charged pt(i) = qi(b
(t)

rt(1)
, . . . , b

(t)

rt(k), xrt(1), . . . , xrt(k)) for

each click received. We require that each function qi be
continuous and that, for all b, x, qi(b, . . . , b, x, . . . , x) = b.
The first-price, second-price, and truthful pricing rules are
instances of bounded pricing schemes.

We call Regular auctions the auctions that use a bounded
pricing method in conjunction with RB(ρ)-ranking. Most
of the results of this paper apply to regular auctions, which
include essentially all of the sponsored search auction models
encountered in practice or in the literature, and in particular
the Yahoo and Google auction models.

3.4 Seller’s revenue and bidder’s utility
The seller’s revenue, or profit, for a certain period t is the

sum of the payments for each slot during the period:

Πt =

stX
i=1

θixσt(i)pt(i)

We define the seller’s revenue R as the expected per-
period revenue, considering the probability space associated
with merchants’ values and relevance introduced at the be-
ginning of this section. To ensure well-defined quantities,
we consider the limit inf, which is the worst-case revenue (in
certain situations the per-period revenue may not converge
when the number of periods grows).

R = lim inf
T→+∞

E

"
1

T

TX
t=1

Πt

#
If there is convergence, R is simply the limit of the expected
per-period profit.

The bidder utility model is less important under our new
behavioral assumptions, and we only use it in the equilib-
rium condition (section 5). For simplicity, we assume for
the rest of the paper that bidders’ utility functions are quasi-
linear with limit average reward. Bidders who do not receive
any slot at any given period have a null utility for the period,
while the utility of a bidder i who gets slot j and pays pi

be click is ui = θjxi(vi − pi). However, most results hold
without specific assumptions on the utility functions.

An omniscient seller knows the values for each bidder.
In such circumstances, she can extract the full surplus by
charging the winning bidders their actual value, and allo-
cating the slots in decreasing order of expected payments,
proportional to xivi.

4. INDIVIDUAL CONDITIONS ON BID-
DING STRATEGIES

In this section we assume that bidders’ behaviors meet
the following conditions:

Assumption 1. We assume that bidders do not bid above
their true value. We also assume that there exists a fixed
number of periods T0, such that any bidder left unassigned
for the last T0 consecutive periods bids her true value at the
next auction.

We find these assumptions quite reasonable in a competi-
tive environment. In practice, merchants are often asked to
bid the “maximum price they are willing to pay”. Bidding
at most one’s actual value avoids putting oneself at risk.
Moreover, in the Google and Yahoo auctions, overbidding
is a weakly dominated strategy (for the one-shot auction
game).

While our assumptions prevent overbidding, they allow
merchants to bid under their true value. In general, the
lower the bid, the lower the chances to win a slot. If a
bidder underbids repeatedly and consequently keeps losing
the auction, raising her bid will increase her chances to win a
slot at the next round. If she keeps being excluded for many
consecutive periods, that process will eventually lead her to
bid her true value, maximizing her chances to get assigned
with a nonnegative utility. Naturally, if she succeeds, she
may decide in the following periods to re-adjust her bid at

58



a lower price, in order to increase her utility, at the risk of
losing the auction. Besides, in many auctions (e.g. Google
or Yahoo) the price charged to a winning bidder increases
with the bids of certain others (who may be excluded), and
bidding one’s true value may as a side effect raise the cost
of a competitor, even if one is still left unassigned. Finally,
regarding the Google and Yahoo auctions, our assumptions
include as a special case those of [8], where the first excluded
bidder is assumed to bid her true value.

For certain rank-based allocation methods, such as RB(ρ)-
ranking, the conditions we impose on bidders’ behaviors al-
lows to bound the gap between the true value of a bidder
and her bid. More precisely, for the RB(ρ)-ranking method,

the “declared rank” xρ
i (b

(t)
i )1−ρ of a high-ranked bidder is

close to her “true rank” xρ
i v1−ρ

i , which is also relatively high
compared to that of other bidders.

Lemma 1. In an auction using RB(ρ)-ranking, for any
k > 0, there exists m > 0 and a critical period Tc, both inde-
pendent of the number of bidders, such that for t > Tc, every

bidder with a rank j ≤ k has a ranking value xρ
i (b

(t)
i )1−ρ and

product value xρ
i v1−ρ

i as high as the least of the top m product

values xρ
i v1−ρ

i ’s among all bidders.

Proof. Let Tc = m = sT0 + k, and consider a period
t > Tc. Let A be the set of the m bidders with the highest
product values xρ

i v1−ρ
i . In the previous T0 periods, at most

s bidders are allocated at each period, so that at most sT0

members of A have been assigned, and by assumption at
least k bidders of A bid their true value at t. Among these
bidders, let i0 be the bidder who has the lowest product
value xρ

i v1−ρ
i . Any bidder ranked k or better by the auction

must have a ranking value xρ
i (b

(t)
i )1−ρ at least as high as

the ranking value of i0, which is xρ
i0

v1−ρ
i0

. As bidders do not
overbid their true value, any bidder must have a product
value xρ

i v1−ρ
i at least as high as her ranking value. So any

bidder ranked at most k by the auction must have a ranking
value and a product value as high as that of i0, and so as
high as the least product value of bidders in A .

If those merchants are ordered according to RB(ρ)-
ranking on relevance and value – instead of relevance and
bid –, the ranking value, that is, the product xρ

i v1−ρ
i of the

top merchants will, on average, tend to a maximum. The
result is intuitive and merely due to the fact that the dis-
tribution of value/relevance is bounded, hence so is the dis-
tribution of the xρ

i v1−ρ
i ’s. This is captured by the following

lemma, whose elementary proof is left to the reader.

Lemma 2. Let m > 0 be a fixed number, and K be a
bidder with the m-th highest value of the products xρ

i v1−ρ
i .

Then,

lim
n→+∞

E[xρ
Kv1−ρ

K ] = max
(x,v)∈S

xρv1−ρ

and, for any ε > 0, and any δ > 0,

P

„˛̨̨̨
xρ

Kv1−ρ
K − max

(x,v)∈S
xρv1−ρ

˛̨̨̨
≤ δ

«
≥ 1− ε

for a number of bidders n large enough.

For the RB-ranking, it means that those merchants with
a very high product xρ

i v1−ρ
i will have an ad relevance and

per-click value close to XM and VM respectively. It also

implies that the revenue of an omniscient seller, who knows
the true value of each bidder, converges to XMVM

P
θi as

the number of bidders grows.

4.1 RB-ranking optimality
We now show that regular auctions that use RB-ranking

maximize revenue asymptotically. The intuition is as fol-
lows: when many advertising firms bid for the same key-
word, any given firm competing for a slot must bid near its
own value, since many other firms with similar characteris-
tics will be excluded at each auction, and are ready to bid as
high as needed to get some advertising space with positive
utility. Bidders with similar ranks will have similar value,
and if the payment-per-click of a bidder is not too different
from the bids of her neighbors in the ranking order, it will
be close to her own value for a click. By using RB-ranking,
the seller will select the winners among the bidders with the
highest “relevance× bid”. It that case, it is the same as the
highest “relevance× value”, which are proportional to the
expected payments. As ranking values tend to be maximized
when the competition is fierce, using RB-ranking allows for
maximization of expected payments.

We will use the following elementary lemma that we state
without proof:

Lemma 3. Let up,t be a random variable, and Tc >
0. Suppose E[up,t] converges to (resp. is asymptotically
bounded above/below by) U uniformly5 for all t > Tc,

then E[ 1
T

PT
t=1 up,t] converges to (resp. is asymptotically

bounded above/below by) U .

Theorem 1. All regular auctions with RB-ranking are
asymptotically revenue-maximizing. Furthermore, the rev-
enue RRB

n of such an auction gets arbitrarily close to the
revenue ROmn

n of an omniscient seller, as the number of
bidders n grows:

lim
n→+∞

RRB
n = lim

n→+∞
ROmn

n

Proof. Consider a period t. Using the notation of sec-
tion 3, for a regular auction with bounded pricing, the rev-
enue at period t is:

Πt =

sX
i=1

θixrt(i)pt(i)

with pt(i) = qi(b
(t)

rt(1)
, . . . , b

(t)

rt(k), xrt(1), . . . , xrt(k)) for some

k.
We first show that the expected payment of each winning

bidder is arbitrarily close to the highest payment: for any
ε > 0, |E[xrt(i)pt(rt(i))−XMVM ]| ≤ ε, for n large enough.

As qi is continuous at (VM , . . . , VM , XM , . . . , XM ), where
it takes the value VM , there exists δ > 0, that we can
choose smaller than ε, so that if |b1 − VM | ≤ δ, . . . , |bk −
VM | ≤ δ, |x1 − XM | ≤ δ, . . . , |xk − XM | ≤ δ, then
|qi(b1, . . . , bk, x1, . . . , xk)− VM | ≤ ε.

Let A be the event {|b(t)

rt(j)
− VM | ≤ δ, 1 ≤ j ≤ k} ∪

{|xrt(j) −XM | ≤ δ, 1 ≤ j ≤ k}.
As the maximum of xv, (x, v) ∈ S is reached at a unique

point (XM , VM ), there exists δ > 0 such that if |xv−XMVM |
is small enough, say, smaller than δ′, then |x − XM | ≤ δ

5We say that a sequence ap,q converges to L uniformly in q if
for all ε > 0, there exists p0 such that if p > p0, |aq,p−L| < ε
for all q.
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and |v − VM | ≤ δ. From lemma 1, there exists m such
that if K is a bidder with the m-th highest value of the

xivi’s, then XMVM ≥ xrt(i)b
(t)

rt(i)
≥ xKvK , for the top k

ranks i. Then, by lemma 2, for a certain critical number
of bidders N , if n > N , for t after some critical period,

P (|xrt(i)b
(t)

rt(i)
−XMVM | ≤ δ′) ≥ P (|xKvK−XMVM | ≤ δ′) ≥

1− ε. However, if |xrt(i)b
(t)

rt(i)
−XMVM | ≤ δ′, then |xrt(i) −

XM | ≤ δ and |b(t)

rt(i)
− VM | ≤ δ, hence P (|xrt(i) − XM | ≤

δ) ≥ 1− ε and P (|b(t)

rt(i)
− VM | ≤ δ) ≥ 1− ε. Therefore, with

simple arithmetic manipulation, P (A) ≥ 1− 2kε for n large
enough.

We now split the expectation term in two parts6,

E[xrt(i)pt(i)−XMVM ] = E[(xrt(i)pt(i)−XMVM )1A]

+ E[(xrt(i)pt(i)−XMVM )1Ā]

For n large enough and all t large enough,

|E[(xrt(i)pt(i)−XMVM )1Ā]| ≤ (1− P (A))XM (VM + V̄ )

≤ 2k(VM + V̄ )ε

while for the second term,

|E[(xrt(i)pt(i)−XMVM )1A]|
≤ |E[(pt(i)− VM )1Axrt(i)]|+ VM |E[(xrt(i) −XM )1A]|
≤ εE[1Axrt(i)] + VMXMP (|xrt(i) −XM | > δ) + VMδ

≤ (XM + VMXM + VM )ε

We conclude that for all period after some critical period,
for any ε > 0, if the number of bidders is large enough,
|E[xrt(i)pt(i)−XMVM ]| ≤ ε, and so |E[Πt]−XMVM

P
i θi| ≤

(
P

θi)sε. By lemma 3, RRB
n → XMVM

P
i θi = limnROmn

n

as n grows to infinity.

In particular :

Corollary 1. The Google auction is asymptotically
revenue-maximizing.

4.2 B-ranking suboptimality
In a very competitive environment, the gap between value-

per-click and declared bids is considerably reduced. The
seller may charge each bidder nearly the highest possible
amount she would be willing to pay, and extract most of the
utility surplus of the winners. However, the seller’s revenue
strongly depends on the popularity of the displayed ads.
Bidders with high values, or high bids, may not be the most
relevant.

Naturally there may exist a relationship between ad pop-
ularity and bids, as the value and relevance for a given mer-
chant is in general correlated. If relevance increases with
value, on average, B-ranking will indirectly favor advertis-
ers with high relevance. Nevertheless, it will not select the
most relevant bidders, and indeed we can bound the average
relevance of the top-ranked bidders. The bound has a statis-
tical meaning, it is the average maximum relevance among
a fixed-size random sample of merchants that would all have
maximum value.

6We use 1A as the indicator function, it equals 1 when the
event A is realized.

Lemma 4. For an auction that allocates slots based on a
B-ranking scheme, for any slot i ≤ s,

lim sup
n→+∞

E[xσt(i)] ≤ m

Z
x

xF|V̄ (x)m−1f|V̄ (x)dx

for some number m > 0, uniformly for all time beyond some
critical period. The bound is tight.

In order to maximize revenue, the seller must be able to
select the bidders with high values, but also with popular
ads. B-ranking does not seem a good candidate, as it does
not succeed in separating the bidders with highest relevance.
In fact, we show that no auction with B-ranking can achieve
an asymptotically maximal revenue.

Theorem 2. Auctions that use B-ranking to allocate
slots to advertisers never maximize revenue when the num-
ber of bidders is large. If RB

n is the revenue of an auction
using B-ranking auction, and ROpt

n the revenue of an asymp-
totically optimal auction, then, when the number of bidders
n is above some critical number N ,

RB
n

ROpt
n

< C

with C < 1, and for any set of bidding strategies that verify
assumption 1. C depends on the distribution of values and
can be arbitrarily low for certain distributions.

Proof. For a sequential repeated auction as defined in
section 3, the revenue at period t is:

Πt =

stX
i=1

θixσt(i)pt(i)

≤ V̄

sX
i=1

θixσt(i)

By lemma 4, if t > Tc for some fixed period Tc, and some
fixed m > 0,

lim sup
n→+∞

E[Πt] ≤ V̄

»
m

Z
x

xF|V̄ (x)m−1f|V̄ (x)dx

–X
i

θi

Note that the in-bracket part of the bound corresponds
to the expected maximum of m variables independently dis-
tributed according to the marginal density f|V̄ . If x lies in

the support of the marginal distribution, (x, V̄ ) is in the
support of the joint distribution, and so xV̄ is bounded
above by XMVM , and may reach that upper value at one
point at most according to the distributional assumptions
made in section 3. This bound can be set arbitrarily low for
well-chosen conditional distributions associated with strong
positive skew, such as negatively correlated value and rele-
vance.

Hence lim supn→+∞ E[Πt] < XMVM

P
θi for t >

Tc, uniformly in t. Applying lemma 3, we obtain
lim supn→+∞RR

n < XMVM

P
θi = limn→+∞ROpt

n , which
concludes the proof.

In particular, we have the following:

Corollary 2. The Yahoo auction is not asymptotically
revenue maximizing, and, if the number of bidders is large
enough, its revenue is strictly lower than that of the Google
auction.
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Note that, even though RB-ranking is sometimes referred
to as “rank by revenue”, the above result does not hold in
general. This is obvious from our general assumptions on
bidding strategies, but even in the more restrictive Nash
equilibrium assumptions, Lahaie ([6]) shows that, with a
fixed number of bidders, there are many cases for which the
Yahoo auction revenue dominates that of Google.

The bound given in lemma 4 is tight, however it will only
occur when the winners coordinate their bids in a certain
way, function of their respective relevance. In many prac-
tical situations, however, merchants would not cooperate.
They also may not have access to click frequencies or in-
dicators of ad quality. If the seller decides of slot attribu-
tions and payments-per-click solely from bidding informa-
tion, then relevance is not a useful parameter to consider
for the bidders. Rather, it is plausible to assume that mer-
chants will make bids by accounting for their own value,
and possibly past allocations and bids if available. In other
circumstances bidders may not get sufficiently accurate es-
timates on their own ad quality, and may prefer to restrain
the impact of those uncertain quantities on their bidding
strategy.

In those cases, the only parameter that influences the rele-
vance of winning bidders is the possible correlation between
value and relevance. Consequently it becomes possible to
characterize the relevance of the top bidders in a precise
way.

Lemma 5. For an auction using B-ranking, and whose
payments depend solely on bids, assuming bids are not de-
termined by relevance,

lim
n→∞

E[xσt(i)] = E[X|V = V̄ ]

for any fixed rank i.

We now can quantify the average ad relevance of the
winning bidders in an auction with B-ranking. B-ranking
promotes bidders with high values, and participating in an
auction that attracts many advertisers forces them to make
competitive offers close to their own value. Consequently,
for a regular auction, payments are maximized, and their
revenue is the best possible among that of all auctions that
use B-ranking. We prove our claim in the theorem below,
after calculating the revenue of a regular auction with B-
ranking.

Lemma 6. Assuming bids are not determined by rele-
vance, the asymptotic revenue of a regular auction with B-
ranking and whose payment scheme does not rely on ad rel-
evance is

V̄ E[X|V = V̄ ]

sX
i=1

θi

Theorem 3. All regular auctions with B-ranking are
asymptotically revenue-maximizing among auctions that al-
locate according to B-ranking and whose payments are de-
termined by bids only.

Proof. The revenue at period t of such an auction
is bounded above by V̄ (

P
θixrt(i)). Applying lemma 5,

E[xrt(i)] converges to E[X|V = V̄ ] as the number of bidders
grows, uniformly when t > Tc, for some fixed Tc. Therefore,
for t > Tc, the per-period revenue is asymptotically bounded

above by V̄ E[X|V = V̄ ]
P

θi, uniformly in t, which, ac-
cording to lemma 6, is the asymptotic revenue of a regular
auction with B-ranking. By lemma 3, the revenue of the
auction under consideration is bounded above by the same
quantity, which concludes the proof.

In general, regular auctions with B-ranking are not op-
timal among auction mechanisms with different allocation
methods, even when they do not take relevance into account.
When relevance and value are statistically related, alloca-
tion methods based on bids are, indirectly, also based on
relevance. For example if bidders with very high value are
associated with poor relevance it may be more profitable to
allocate slots to bidders with lower value. Nonetheless, when
relevance and value are unrelated, our result of asymptotic
optimality of regular auctions with B-ranking generalizes
over all auctions that do not rely on the bidders’ relevance.

Theorem 4. If value and relevance are independent for
each bidder, then all regular auctions with B-ranking are
asymptotically revenue-maximizing among auctions whose
allocation method and payments are solely determined by
bids.

Proof. Consider any such auction. Assuming that bids
are only function of initial values, past bids, ranks, and
payments-per-click, as allocations and payments are deter-
mined by bids, and since value is independent of quality,
bids are random variables independent of quality. Each σt(i)
being determined by bids, is also independent of quality.
Hence,

E[xσt(i)] =
X

j

E[xj1σt(i)=j ]

=
X

j

E[X]E[1σt(i)=j ] = E[X]

Since the expected profit of period t is bounded above by
V̄ (
P

θiE[xrt(i)]) = V̄ E[X](
P

θi), so by lemma 3, its rev-
enue is no higher than V̄ E[X](

P
θi), the asymptotic revenue

of a regular auction with B-ranking.

In particular, for the Yahoo auction:

Corollary 3. The Yahoo auction is asymptotically op-
timal among all auctions that use the same ranking method
and with payments that are not function of ad quality. When
there is no relationship between value and ad quality, the Ya-
hoo auction is asymptotically optimal among all auctions for
which payments and winner selection are determined by bids
only.

Our analysis shows that, when bidding strategies are not
based on ad relevance, the ratio between the revenue of a
B-ranking regular auction, such as the Yahoo auction, and
an RB-ranking regular auction, such as the Google auction,
converges to E[X|V = V̄ ]/X̄, or E[X]/X̄ when relevance
and value are independent. This suggests that the loss of
revenue may be significant: in a very competitive environ-
ment, when relevance has an approximately symmetric dis-
tribution, a search engine that uses ranking by bids may lose
half of the revenue it would have obtained by considering
relevance-weighted bids.
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5. GLOBAL CONDITIONS ON BIDDING
STRATEGIES

Certain authors have suggested that the notion of Nash-
equilibria of the stage game may, in certain situations, be
relevant, since there exists some bidding strategies that of-
tentimes converge to such equilibria7. In this section we fo-
cus on second-price payment schemes and assume that bids
converge in time to an equilibrium of the stage game, in a
sense made precise by the following definition (see also [3]):

Definition 1. The strategies of bidders form an eventual
best-response equilibrium for a sponsored search auction with
second-price rule using a RB(ρ)-ranking if, for all bidders’
values v1, . . . , vn, there exists a fixed period Te such that for
all period t > Te, bids remain constant and no bidder has
incentive to change positions:

For all i,j, j < i,

θi(vr(i) − p(i) ≥ θj(vr(i) − p(j − 1))

and for all i,j, j > i,

θi(vr(i) − p(i) ≥ θj(vr(i) − p(j))

where r(·) and p(·) are respectively the ranking and payment
functions at any period t > Te. (By convention, p(0) is the
price that a bidder would pay if she were ranked higher than
the first bidder.)

Assumption 2. Bidders’ strategies form an eventual
best-response equilibrium.

In second-price payment schemes, winning bidders pay
the minimum price they would need to bid to retain their
position. In a competitive environment, the profits of the
winners of the first positions tend to be small. The gap
between the bids of the last winning bidder and the first
excluded bidder must be relatively short at periods of equi-
librium, otherwise one of the first assigned bidders could
increase her profit by lowering her bid in order to obtain the
last slot. Subsequently the first unassigned bidder tends to
have a relatively high ranking value:

Lemma 7. At an equilibrium period, given any ε > 0 and
δ > 0,

P (|xρ
r(s+1)b

1−ρ
r(s+1) − max

(x,v)∈S
xρv1−ρ| ≤ δ) ≥ 1− ε

when there are sufficiently many bidders, where r(·) and b
are respectively the ranking function and bid vector at equi-
librium, for t > Te.

It follows from the previous probabilistic bound that win-
ning bidders will pay nearly their own value. As we showed
in the previous section, the RB-ranking method used by
Google allows the seller to maximize revenue, while the B-
ranking method used by Yahoo is suboptimal:

Theorem 5. When bidding strategies form an eventual
best-response equilibrium,

• The Google auction is asymptotically optimal, and per-
forms as well as an omniscient seller.

• The Yahoo auction is not asymptotically optimal.

Proof. We omit the proof due to space restrictions.

7In our experiments, we found that myopic bidders who play
best-response to the last round of bids converge to an equi-
librium most of the time.

6. GENERAL DISTRIBUTIONS
Our optimality results make use of the fact that in com-

petitive environments many advertisers will share similar
characteristics. When that is not the case, or ranking alone
is not sufficient to select bidders with the desired properties,
the auction may fail to be optimal asymptotically.

Theorem 6. There exists distributions such that the
Google auction is not asymptotically revenue-maximizing,
when we consider both global and individual assumptions on
bidders’ behaviors.

Proof sketch. We assume that value and relevance are
independent, that is, f(x, v) = g(x)h(v). For relevance, we
choose a uniform distribution on [

¯
X, X̄]. We assume that

values are chosen in [1, +∞[, according to the density with

cumulative distribution H(v) = 1 − v−1/α, for any α < 1.
We assume w.l.o.g. that bidder k is the bidder with the k-th
highest value. After some simplifications,

E[vk] = n

 
n− 1

k − 1

!Z +∞

1

(1−H(x))k−1(H(x))n−kh(x)dx

= n

 
n− 1

k − 1

!Z 1

0

(1− y)k−1−αyn−kdy

=
n!

(k − 1)!(k − α) · (k − α + 1) · · · (n− α)

by changing variables and integrating by parts. In particu-
lar,

En[vk]

En[vk+1]
≥ k

k − α

for any number of bidders.
We consider two available slots. The revenue of the truth-

ful auction with RB-ranking is (θ1−θ2)E[x2v2]+2θ2E[x3v3],
bounded below by

¯
X((θ1 − θ2)E[v2] + 2θ2E[v3]). In the

Google auction, suppose that bidders bid their actual value,
except bidder 2, who bids ε above bidder 3. These bid-
ding strategies trivially meet the requirements of assump-
tions 1 and 2, and the revenue is bounded above by X̄((θ1 +
θ2)(E[v3]+ ε)). Therefore, if ε and X̄−

¯
X are small enough,

the revenue of the truthful auction is higher than that of the
Google auction.

7. SUMMARY AND FUTURE WORK
In this paper, we made two main contributions. First we

introduced a new model of bidders’ behaviors, along with a
new criterion for asymptotic optimality in a dynamic auction
setting. Our model’s novelty lies in its generality. Second,
we obtained a collection of results under our new behavioral
assumptions. We identified a broad class of auctions that
are asymptotically revenue-maximizing, and that includes
as a special case the Google auction, but not the Yahoo
auction. Indeed, no auction that ranks bidders in bid order
maximizes revenue when the number of bidder exceeds a
certain threshold. Nevertheless, the Yahoo auction belongs
a broad class of auctions that are asymptotically optimal in
a weak sense: their revenue is at least as large as 1) that of
any auction whose payments do not rely on ad relevance and
uses bid ranking, and, if relevance and bid are unrelated, 2)
that of any auction whose ranking or payments do not rely
on ad relevance. We also showed that in the more commonly
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explored case of equilibrium of the one-shot auction, the
Google auction remains optimal, while the Yahoo auction is
suboptimal, asymptotically.

While our results suggest that the Google auction would
generate more revenue that the Yahoo auction when many
bidders are competing for a keyword, no such ranking exists
when only few bidders are present: under both sets of as-
sumptions, there are cases in which Google’s revenue exceeds
that of Yahoo and vice-versa.

There are many aspects of sponsored search auctions that
we did not explore. Space limitations do not allow a detailed
discussion of these, but in follow-up papers we will address
the following questions, to which we have partial answers:

1. Asymptotic optimality is desirable when many bidders
participate in the auction. For practical purposes, it
is important to know how many bidders are needed to
reach a near-optimal revenue. What are the conver-
gence rates to optimal revenue? How do they compare
for the different auctions?

2. In addition to selecting keywords of interests, bidders
also specify their maximum daily budget. How are the
results affected by considering budget-constraints, and
multiple keywords?

3. Our results suggest that, with many bidders, keyword
auction’s revenues are not as affected by the payment
method as by the allocation method. How do different
allocation methods – other than the two studied in this
paper – affect asymptotic optimality?
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APPENDIX
Proof of lemma 4. Let Rt = σt(i) be the bidder with

rank i ≤ s at period t, and let Bj be a bidder with the j-th
highest value.

Let ε > 0. First, note that
Q

j≤m

f(x̃j ,ṽj)

f(ṽj)
is continuous

on the compact Sm, and thus uniformly continuous by the
Heine-Cantor theorem. So there exists some δ > 0 so that
if |ṽj − V̄ | ≤ δ, j ≤ m, then |

Q
j f|ṽj

(x̃j)−
Q

j f|V̄ (x̃j)| ≤ ε
for all x̃1, . . . , x̃m.

By lemma 1, Rt is one of the bidders with the top m val-
ues, where m is a fixed number independent of the number
of bidders. So,

E[xRt ] ≤ E[max
j≤m

xBj ]

= E[max
j≤m

xBj1vBm≥V̄−δ]

+ E[max
j≤m

xBj1vBm <V̄−δ]

By lemma 2, |E[maxj≤m xBj1vBm <V̄−δ]| ≤ X̄P (vBm <

V̄ − δ) ≤ X̄ε for n large enough.
Besides, by the tower property of conditional expecta-

tions,

E[max
j≤m

xBj1vBm≥V̄−δ] =

E[E[max
j≤m

xBj1vBm≥V̄−δ|vB1 , . . . , vBm ]] =

Z
ṽ1≥···≥ṽm≥V̄−δ"Z

x̃1,...,x̃m

max
j

x̃j

Y
j

f|ṽj
(x̃j)dx̃1 . . . dx̃m

#
dQ(ṽ1, . . . , ṽm)

= E1 + E2

where Q is the probability measure associated with the top
m values, in decreasing order, and with

|E1| =

˛̨̨̨
˛
Z

ṽ1≥···≥ṽm≥V̄−δ

"Z
x̃1,...,x̃m

max
j

x̃j

Y
j

(f|ṽj
(x̃j)− f|V̄ (x̃j))dx̃1 . . . dx̃m

#
dQ(ṽ1, . . . , ṽm)

˛̨̨̨
˛

≤ ε

Z
ṽ1,...,ṽm

»Z
x̃1,...,x̃m

max
j

x̃j

–
dQ(ṽ1, . . . , ṽm)

≤ εX̄
m+1

and

E2 =

Z
ṽ1≥···≥ṽm≥V̄−δ"Z

x̃1,...,x̃m

max
j

x̃j

Y
j

f|V̄ (x̃j)dx̃1 . . . dx̃m

#
dQ(ṽ1, . . . , ṽm)

=

»
m

Z
x̃

x̃F m−1
|V̄ (x̃)f|V̄ (x̃)dx̃

–
.Z

ṽ1≥···≥ṽm≥V̄−δ

dQ(ṽ1, . . . , ṽm)

=

»
m

Z
x̃

x̃F m−1
|V̄ (x̃)f|V̄ (x̃)dx̃

–
P (vBm ≥ V̄ − δ)

≤ m

Z
x̃

x̃F m−1
|V̄ (x̃)f|V̄ (x̃)dx̃
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thus, any period t > Tc, for some period Tc, given any ε > 0
if n is large enough,

E[Rt] ≤ X̄ε + X̄
m+1

ε + m

Z
x̃

x̃F m−1
|V̄ (x̃)f|V̄ (x̃)dx̃

hence,

lim sup
n→+∞

E[xσt(i)] ≤ m

Z
x

xF|V̄ (x)m−1f|V̄ (x)dx

uniformly in t > Tc. Note that the bound is tight (obtained
when excluded bidders bids their true value and bids of the
winners are ordered so that the i-th bidder has the highest
ad relevance).

Proof of lemma 5. Let Rt = rt(i) be the bidder of

rank i for period t. Consider any ε > 0. As f(x,v)
f(v)

is con-

tinuous on the compact S, it is uniformly continuous by
the Heine-Cantor theorem, and there exists δ > 0 such that

|v − V̄ | ≤ δ implies | f(x,v)
f(v)

− f(x,V̄ )

f(V̄ )
| ≤ ε for all x.

We decompose the expectation:

E[xRt ] = E[xRt1vRt
<V̄−δ] + E[xRt1vRt

≥V̄−δ]

= E[xRt1vRt
<V̄−δ] +

nX
j=1

E[xj1Rt=j1vj≥V̄−δ]

Combining lemma 1 and lemma 2, we have
E[xRt1vRt

<V̄−δ] ≤ X̄P (vrt(i) < V̄ − δ) ≤ X̄ε for n large

enough, if t > Tc for some Tc independent of ε.
Rt is a random variable that gives the bidder of rank i.

Ranks are determined by bids, which are themselves deter-
mined by initial values, bidding history, previous allocations
or payments, which in turn may depend on past bids, alloca-
tions and payments, but as none of these quantities depend
directly on ad relevance, they ultimately are determined by
initial values only. This means that Rt is measurable with
respect to values, and that the indicator function 1Rt=j is
defined on the set of values. Hence8:

E[xj1Rt=j1vj≥V̄−δ] =Z
x̃

Z
ṽ,vj≥X̄−δ

x̃j1Rt=j(ṽ1, . . . , ṽn)
Y

l

f(x̃l, ṽl)dx̃dṽ

=

Z
ṽ,vj≥X̄−δ

1Rt=j(ṽ1, . . . , ṽn)
Y

l

f(ṽl)

»Z
x̃

x̃f|ṽi
(x̃)dx̃

–
dṽ

= E1 + E2

with

E1 =

Z
ṽ,vj≥X̄−δ

1Rt=j(ṽ1, . . . , ṽn)
Y

f(ṽl)»Z
x̃

x̃
`
f|ṽi

(x̃)− f|V̄ (x̃)
´
dx̃

–
dṽ

noting that

|E1| ≤ εX̄
2
Z
ṽ

1Rt=j(ṽ1, . . . , ṽn)
Y

f(ṽl)dṽ

≤ X̄
2
P (Rt = j)ε

8We use the vector notation a = (a1, . . . , an).

while

E2 =

"Z
ṽ,ṽj≥V̄−δ

1Rt=j(ṽ1, . . . , ṽn)
Y

f(ṽl)dv

#
.»Z

x̃

x̃f|V̄ (x̃)dx̃

–
= P ({Rt = j} ∩ {vj ≥ V̄ − δ})E[X|V = V̄ ]

As
Pn

j=1 P (Rt = j) = 1 and
Pn

j=1 P ({Rt = j} ∩ {vj ≥
V̄ − δ}) = P (vRt ≥ V̄ − δ), by summation, we get:

|E[xRt1vRt
≥V̄−δ]− E[X|V = V̄ ]|

≤ X̄
2
ε + E[X|V = V̄ ]P (vRt < V̄ − δ)

≤ X̄
2
ε + X̄ε

by lemma 1 and 2, for n large enough.

Thus, for any ε > 0, |E[xRt ]−E[X|V = V̄ ]| ≤ (X̄ + X̄
2
+

X̄)ε for all t > Tc when n is large enough, and we conclude
E[xRt ] → E[X|V = V̄ ] as n → +∞, when t is large enough,
uniformly in t.

Proof of lemma 6. The profit at t is:

Πt =

sX
i=1

θixrt(i)pt(i)

with pt(i) = qi(b
(t)

rt(1)
, . . . , b

(t)

rt(k)). We use the same event A

as in theorem 1, and note that

E[xrt(i)pt(i)] = V̄ E[xrt(i)]− V̄ E[1Axrt(i)]

+ E[(pt(i)− V̄ )xrt(i)1A]

+ E[xrt(i)pt(i)1Ā]

Each of the terms converges to 0 except for the first one,
which converges to V̄ E[X|V = V̄ ]. The rest of the proof is
similar to that of theorem 1.

Proof of lemma 7. Let ε, δ > 0, and M =
max(x,v)∈S xρv1−ρ. Let K be the bidder with the s + 1-th

highest product value xρ
i v1−ρ

i . At equilibrium, for any slot i,

xρ
r(i)b

1−ρ
r(i) ≥ xKvK , otherwise bidder K would be able to get

a slot and a positive profit by raising her bid. Additionally,
xρ

r(s+1)b
1−ρ
r(s+1) ≤ M , otherwise the winning bidders would

have a negative utility.
Consider a position i < s, and suppose that |xρ

Kv1−ρ
K −

M | ≤ δ′, with δ′ = δ(1 + θi
θs

)−1. By definition 1,

θi(xr(i)vr(i)−xr(i+1)br(i+1)) ≥ θs(xr(i)vr(i)−xr(s+1)vr(s+1).
Therefore

M ≥ xρ
r(s+1)b

1−ρ
r(s+1) ≥ xρ

r(i)v
1−ρ
r(i)

− θi

θs
(xρ

r(i)v
1−ρ
r(i) − xρ

r(i+1)b
1−ρ
r(i+1))

≥ xρ
Kv1−ρ

K − θi

θs
(M − xρ

Kv1−ρ
K )

≥ M − δ′ − θi

θs
(M − (M − δ′))

≥ M − δ

By lemma 2, if the number of bidders n is large
enough, then P (|xρ

Kv1−ρ
K − M | ≤ δ′) ≥ 1 − ε, and so

P (|xρ
r(s+1)b

1−ρ
r(s+1) −M | ≤ δ) ≥ 1− ε).
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