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Part I

Complements for Section 2

OA.1 Additional Details on the Computations

In this section we provide the details on the computations of Section 2 in the main text.
First, we derive the equilibrium effort for the standard model, the first example of

Section 2. Equation (3) (in the main text) implies that, if the worker exerts effort At at
round t, then the expected market belief, from the viewpoint of the worker, is

E[µt] =
Σ

1 + (t− 1)Σ

t−1∑
s=1

(As −A∗s). (OA.1)

The worker chooses each effort level At, t = 1, . . . , T so as to maximize Equation (2), which
after plugging in (OA.1) is equal to

T∑
t=1

δt−1E[µt − c(At)] = −
T∑
t=1

δt−1A
2
t

2
+

T∑
t=1

t−1∑
s=1

δt−1 Σ

1 + (t− 1)Σ
(As −A∗s)

= −
T∑
t=1

δt−1A
2
t

2
+

T∑
t=1

T∑
s=t+1

δs−1 Σ

1 + (s− 1)Σ
(At −A∗t ).

Hence, maximizing (3) yields a unique optimal effort level At at each round t, which is the
maximizer of

−δt−1A
2
t

2
+

T∑
s=t+1

δs−1 Σ

1 + (s− 1)Σ
(At −A∗t ).

Hence

At =
T∑

s=t+1

δs−t
Σ

1 + (s− 1)Σ
,

which corresponds to Equation (4).
Next, we derive the equilibrium effort for the two-signal two-period cases for the second

and third examples of Section 2. Recall that in this variant of the standard model,

SI
1 = αIA1 + βIθ + εI

1,

SII
1 = αIIA1 + βIIθ + εII

1 ,

and
Y2 = λSI

1 + (1− λ)SII
1 .
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As in the standard model the worker exerts no effort in the second round (A2 = 0). The
equilibrium effort in the first round is determined by the value of the rating at the start of
round 2: the worker chooses effort A1 to maximize

2∑
t=1

δt−1E[µt − c(At)] = δE[µ2]− c(A1), (OA.2)

where the expectation reflects the worker’s viewpoint, i.e., it assumes the distribution over
signals obtained under effort At. Using the standard projection formulas for the multivariate
normal distribution, we get

µ2 = E[θ | Y2] = E[θ] +
Cov[θ, Y2]

Var[Y2]
(Y2 −E[Y2]) ,

=
Cov[θ, Y2]

Var[Y2]

(
Y2 − (λαI + (1− λ)αII)A∗1

)
,

where this time the expectation reflects the market’s viewpoint, i.e., it assumes that the
worker exerts effort A∗1 during the first round, as opposed to A1. The market’s belief may
thus differ from the worker’s belief off equilibrium when A∗1 6= A1. We also have

Cov[θ, Y2] = λβIΣ + (1− λ)βIIΣ,

Var[Y2] = (λβI + (1− λ)βII)2Σ + λ2 + (1− λ)2.

Covariance and variance are also taken with respect to the market’s viewpoint, but their
expression remains the same when taken with respect to the worker’s viewpoint, so it is
irrelevant. Overall, we can rewrite Equation (OA.2) as

δ
λβIΣ + (1− λ)βIIΣ

(λβI + (1− λ)βII)2Σ + λ2 + (1− λ)2
(λαI + (1− λ)αII) (A1 −A∗1)− A2

1

2
,

and so the effort level A1 that maximizes (OA.2) is

A1 = δ
λβIΣ + (1− λ)βIIΣ

(λβI + (1− λ)βII)2Σ + λ2 + (1− λ)2
(λαI + (1− λ)αII), (OA.3)

which corresponds to Equation (5) when (αI, βI) = (1, 0) and (αII, βII) = (0, 1). The
optimal weights of Equations (6) and (7) are obtained by maximizing the equilibrium effort
given by (OA.3) for the two cases (αI, βI) = (1, 0), (αII, βII) = (0, 1) and (αI, βI) = (αI, 1),
(αI, βII) = (1, 1).

We now derive the equilibrium effort for the one-signal three-period case, which is the
fourth example of Section 2. At the first round, the rating is irrelevant and µ1 = 0. At the
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second round, the rating chosen is Y2 = X1 and the market belief is

µ2 = E[θ | X1] = E[θ] +
Cov[θ,X1]

Var[X1]
(X1 −E[X1]) ,

=
Cov[θ,X1]

Var[X1]
(X1 −A∗1) ,

=
Σ

Σ + 1
(X1 −A∗1) ,

by another application of the projection formulas for the multivariate normal distribution,
where the expectations are taken from the market’s perspective and where we note that

Cov[θ,X1] = Σ, and Var[X1] = Σ + 1.

At the third round, the rating is Y3 = λX1 + (1− λ)X2 and the market belief is

µ3 =
Cov[θ, Y3]

Var[Y3]
(Y3 − λA∗1 − (1− λ)A∗2) ,

=
Σ

λ2 + (1− λ)2 + Σ
(Y3 − λA∗1 − (1− λ)A∗2) ,

where we note that

Cov[θ, Y3] = Σ, and Var[Y3] = λ2 + (1− λ)2 + Σ.

Therefore, at round 2 and 3, the expected market beliefs from the worker’s viewpoint are
respectively

E[µ2] =
Σ

Σ + 1
(A1 −A∗1) , (OA.4)

and

E[µ3] =
Σ

λ2 + (1− λ)2 + Σ
(λA1 + (1− λ)A2 − λA∗1 − (1− λ)A∗2) . (OA.5)

The worker chooses effort A3 = 0 at round 3, and chooses efforts A1 and A2, at round 1
and 2 respectively, to maximize

3∑
t=1

δt−1E[µt − c(At)] = δE[µ2] + δ2E[µ3]− c(A1)− δc(A2). (OA.6)

After plugging Equations (OA.4) and (OA.5) into Equation (OA.6), we get the optimal
effort levels

A1 = δΣ

(
δλ

2(λ− 1)λ+ Σ + 1
+

1

Σ + 1

)
,
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and

A2 = − δ(λ− 1)Σ

2(λ− 1)λ+ Σ + 1
.

Choosing λ that maximizes A1 +A2 yields

λ =

√
2
√
δ2 + (δ − 1)2Σ + 1− 2

2(δ − 1)
,

which after simplification is equal to Λ(δ) defined in Equation (7).
Finally, we consider the last example of Section 2, with T rounds, and a rating linear in

output: at the start of round t, the market observes

Yt =
t−1∑
s=1

us,tXs.

From the now usual projection formulas for multivariate normal distributions, the market
belief about the worker’s ability is then

µt = E[θ | Yt] =
Cov[θ, Yt]

Var[Yt]
(Yt −E[Yt]) ,

where the expectation is taken according to the market’s conjecture of the worker’s effort
A∗, and with

Cov[θ, Yt] = Σ
t−1∑
k=1

uk,t,

Var[Yt] =
t−1∑
k=1

u2
k,t + Σ

t−1∑
i,j=1

ui,tuj,t.

Hence,

µt =

∑t−1
k=1 uk,t

Σ−1
∑t−1

k=1 u
2
k,t +

∑t−1
i,j=1 ui,tuj,t

(
Yt −

t−1∑
k=1

uk,tA
∗
k

)
.

The worker chooses his efforts At, t = 1, . . . , T to maximize

E

[
T∑
t=1

δt−1 (µt − c(At))

]

=

T∑
t=1

δt−1

( ∑t−1
k=1 uk,t

Σ−1
∑t−1

k=1 u
2
k,t +

∑t−1
i,j=1 ui,tuj,t

(
t−1∑
s=1

uk,t(Ak −A∗k)

)
− A2

t

2

)
.
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The first-order condition yields

As =

T∑
t=s+1

δt−sus,t
∑t−1

k=1 ukt

Σ−1
∑t−1

k=1 u
2
k,t +

∑t−1
i,j=1 ui,tuj,t

,

and the second-order condition is always satisfied. Finding the parameters us,t, s < t so as
to maximize aggregate equilibrium effort

T∑
s=1

As,

and so maximizing

T∑
t=1

t−1∑
s=1

δt−sus,t
∑t−1

k=1 uk,t

Σ−1
∑t−1

k=1 u
2
k,t +

∑t−1
i,j=1 ui,tuj,t

=
T∑
t=1

(∑t−1
k=1 δ

t−suk,t

)
·
(∑t−1

k=1 uk,t

)
Σ−1

∑t−1
k=1 u

2
k,t +

∑t−1
i,j=1 ui,tuj,t

,

is equivalent to finding, for every t, the parameters us,t, s < t that maximize(∑t−1
k=1 δ

t−kuk,t

)
·
(∑t−1

k=1 uk,t

)
Σ−1

∑t−1
k=1 u

2
k,t +

∑t−1
i,j=1 ui,tuj,t

.

Observe that this last expression is more concisely expressed as√
Σ

Var[Yt]
Corr[θ, Yt]

t−1∑
s=1

δt−sus,t,

which corresponds to Equation (9) of the main text.
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Part II

Complements for Section 3

OA.2 Proof of Lemma 3.2

1. If the wage satisfies the zero-profit condition, then the worker who chooses effort
strategy A makes (ex ante) payoff

E

[∫ ∞
0

(A∗t + µt − c(At)) e−rt dt

]
,

where A∗ denotes the market conjectured effort level. The worker has no impact on
A∗, which may only depend on time. Thus, the worker’s strategy is optimal if, and
only if, it maximizes

E

[∫ ∞
0

(µt − c(At)) e−rt dt

]
.

2. Letting M′ = {M′t}t≥0 and M′t = σ(µt), we have E∗[θt|M′t] = E∗[θt|µt] = µt, hence
for a given conjectured effort level A∗, the market’s transfers and the worker’s best
response are the same under both information structures M and M′.

OA.3 Proofs of Proposition 3.4 and Lemma B.3

We prove the existence and uniqueness of the equilibrium, and give the closed-form
expression of the equilibrium action in the stationary case. We work directly under the
multisignal framework of Section 5, which encompasses the baseline model of Section 3.

Let Y by a linear rating, not necessarily stationary. As Y is linear, then the market
belief µ is also a linear rating, by the projection formula for jointly Gaussian variables, and
we can write

µt =
∑
k

∫
s≤t

wk,s,t (dSk,s − αkA∗s ds) ,

where A∗ is the effort level conjectured by the market.
We prove that, given the (unique) wage that satisfies the zero-profit condition, there

exists a (up to measure zero sets) unique optimal effort strategy for the worker, pinned
down by a first-order condition. This, in turn, yields existence of a unique equilibrium.

Let us fix the wage process π that satisfies the zero-profit condition, and suppose that
the worker follows effort strategy A. The worker’s time-0 (ex post) payoff is then∫ ∞

0
(A∗t + µt − c(At)) e−rt dt. (OA.7)
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Maximizing the worker’s ex ante payoff is equivalent to maximizing the ex post payoff (up
to null events). Hence, we seek conditions on A that characterize when it is a maximizer
of (OA.7). Thus, as

dSk,s = (αkAs + βkθs) ds+ σk dZk,s,

maximizing (OA.7) is equivalent to maximizing∫ ∞
0

∫ t

0

K∑
k=1

αkwk,s,tAse
−rt dsdt−

∫ ∞
0

c(At)e
−rt dt. (OA.8)

Let us rewrite∫ ∞
0

∫ t

0

K∑
k=1

αkwk,s,tAse
−rt ds dt =

∫ ∞
0

∫ ∞
s

K∑
k=1

αkwk,s,tAse
−rt dtds.

Maximizing (OA.8) is then the same as maximizing∫ ∞
0

∫ ∞
s

K∑
k=1

αkwk,s,tAse
−rt dtds−

∫ ∞
0

c(At)e
−rt dt,

which is the same as maximizing(∫ ∞
s

K∑
k=1

αkwk,s,te
−rt dt

)
As − c(As)e−rs,

for (almost) every s. By strict convexity of the worker’s cost, (OA.8), and thus (OA.7), is
maximized if, and only if, for (almost) every t,

c′(At) =

∫ ∞
s

K∑
k=1

αkwk,s,te
−r(t−s) dt. (OA.9)

This yields existence and uniqueness of the equilibrium, and proves Proposition 3.4.
We now proceed to the proof of Lemma B.3. Observe that, if Y is a linear rating that

is stationary, then, up to an additive constant,

Yt =
∑
k

∫
s≤t

uk(t− s) dSk,s.

If Var[Yt] = 1, applying the projection formula for jointly Gaussian random variables, we
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get

µt = E∗[θt | Yt] =
Cov[θt, Yt]

Var[Yt]
(Yt −E∗[Yt]) = Cov[θt, Yt]

∑
k

∫
s≤t

uk(t−t) (dSk,s − αkA∗s ds) .

Thus,
wk,s,t = Cov[θt, Yt]uk(t− t). (OA.10)

We note that Cov[Yt, θt] is constant and equal to

Cov[Yt, θt] =
γ2

2

K∑
k=1

βk

∫ ∞
0

uk(s)e
−s ds.

Plugging (OA.10) into (OA.9) yields

c′(At) =
γ2

2

[
K∑
k=1

βk

∫ ∞
0

uk(t)e
−t dt

][
K∑
k=1

αk

∫ ∞
0

uk(t)e
−rt dt

]
.

OA.4 Complements to the Proof of Theorem 3.6 (and Th.
B.4)

In this section, we prove Theorem B.4, which is the multisignal signal version of
Theorem 3.6, and we show how to generate the educated guess used in that proof (which
includes the guess candidate of Theorem 3.6 as a special case).

Derivation of the candidate guess

Assume that Y has the linear representation

Yt =
K∑
k=1

∫
s≤t

uk(t− s) dSk,s,

with uk integrable and square integrable. It is helpful to make additional regularity
assumptions to derive necessary conditions, so as to pin down a unique candidate for the
coefficients uk. Let B > 0, and assume that every uk is twice continuously differentiable on
[0, B], and that uk(s) = 0 if s > B. Below, we relax the bounded-support assumption. We
define U =

∑
k βkuk.

We have

fk(τ) = Cov[Yt, Sk,t−τ ]
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=

K∑
i=1

∫ ∞
0

ui(s) Cov[dSi,t−s, Sk,t−τ ]

= σ2
k

∫ ∞
τ

uk(s) ds+
βkγ

2

2

∫ ∞
0

∫ ∞
τ

U(s)e−|j−s| dj ds.

Successive differentiations yield

f ′k(τ) = −σ2
kuk(τ)− βkγ

2

2

∫ ∞
0

U(s)e−|τ−s| ds, (OA.11)

f ′′k (τ) = −σ2
ku
′
k(τ) +

βkγ
2

2

∫ τ

0
U(s)e−(τ−s) ds− βkγ

2

2

∫ ∞
τ

U(s)e+(τ−s) ds,

f ′′′k (τ) = −σ2
ku
′′
k(τ) + βkγ

2U(τ)− βkγ
2

2

∫ τ

0
U(s)e−(τ−s) ds− βkγ

2

2

∫ ∞
τ

U(s)e+(τ−s) ds.

Thus,
f ′k − f ′′′k = σ2

ku
′′ − σ2

ku− βkγ2U. (OA.12)

Multiplying (OA.12) by βk/σ
2
k and summing over k yields an ordinary differential equation

(ODE) for U :
f̄ ′ − f̄ ′′′ = U ′′ − U − γ2mβU = U ′′ − κ2U, (OA.13)

where we recall that

f̄(s) :=

K∑
k=1

βk
σ2
k

fk(s).

Integrating by parts the general solution of (OA.13) gives

U(τ) = C1e
κτ + C2e

−κτ − f̄ ′(τ)− κ2 − 1

κ

∫ τ

0
sinh(κ(τ − s))f̄ ′(s) ds, (OA.14)

for some constants C1 and C2. Multiplying the expression for f ′k by βk/σ
2
k and summing

over k gives

f̄ ′(τ) = −U(τ)− κ2 − 1

2

∫ ∞
0

U(s)e−|τ−s| ds, (OA.15)

for every τ ≥ 0. Together, and after simplification, (OA.14) and (OA.15) yield an equation
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that C1 and C2 should satisfy, for every τ :

f̄ ′(τ) = f̄ ′(τ)− C1e
κτ − C2e

−κτ

− κ2 − 1

2
C1

[
eB(κ−1)+τ

κ− 1
− e−τ

κ+ 1
+

eκτ

κ+ 1
− eκτ

κ− 1

]

− κ2 − 1

2
C2

[
−e
−B(κ+1)+τ

κ+ 1
+

e−τ

κ− 1
+
e−κτ

κ+ 1
− e−κτ

κ− 1

]

+
κ2 − 1

2

κ2 − 1

κ

e−B+τ

κ2 − 1

∫ B

0
f̄ ′(j) [κ cosh(κ(B − j)) + sinh(κ(B − j))] dj.

After further simplification, we obtain a system of two equations in C1 and C2:

− C1
1

κ− 1
eB(κ−1) + C2

1

κ+ 1
e−B(κ+1)

+
eB(κ−1)

2κ
(κ+ 1)

∫ B

0
f̄ ′(j)e−κj dj +

e−B(κ+1)

2κ
(κ− 1)

∫ B

0
f̄ ′(j)eκj dj = 0,

and
C1

κ+ 1
=

C2

κ− 1
.

Therefore, solving these two equations,

C1 =
1

2κ

eB(κ−1)(κ+ 1)2(κ2 − 1)
∫ B

0 f̄ ′(j)e−κj dj + e−B(κ+1)(κ+ 1)2(κ− 1)2
∫ B

0 f̄ ′(j)eκj dj

(κ+ 1)2eB(κ−1) − (κ− 1)2e−B(κ+1)
,

and

C2 =
1

2κ

eB(κ−1)(κ+ 1)2(κ− 1)2
∫ B

0 f̄ ′(j)e−κj dj + e−B(κ+1)(κ2 − 1)(κ− 1)2
∫ B

0 f̄ ′(j)eκj dj

(κ+ 1)2eB(κ−1) − (κ− 1)2e−B(κ+1)
.

To get candidate coefficients whose support is not necessarily bounded, we send B to infinity
and get

C1 → C∞1 :=
κ2 − 1

2κ

∫ ∞
0

f̄ ′(j)e−κj dj, (OA.16)

and

C2 → C∞1 :=
(κ− 1)2

2κ

∫ ∞
0

f̄ ′(j)e−κj dj. (OA.17)

Thus, a candidate for U is

U(τ) = C∞1 eκτ + C∞2 e−κτ − f̄ ′(τ)− κ2 − 1

κ

∫ τ

0
sinh(κ(τ − s))f̄ ′(s) ds.
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We plug in the expression of U in (OA.11), which yields the candidate for uk:

uk(τ) = C∞1
βkγ

2

σ2
k(κ

2 − 1)
eκτ +C∞1

βkγ
2

σ2
k(κ

2 − 1)
e−κτ −

f ′k(τ)

σ2
k

− βkγ
2

σ2
kκ

∫ τ

0
sinh(κ(τ − s))f̄ ′(s) ds,

(OA.18)
and after simplification,

uk(τ) =
βkγ

2

σ2
kκ

(
sinhκτ + κ coshκτ

1 + κ

∫ ∞
0

e−κs df̄(s)−
∫ τ

0
sinhκ(t− s) df̄(s)

)
−
f ′k(τ)

σ2
k

.

(OA.19)

Proof that the candidate guess is correct

We show that the candidate for {uk}k defines valid coefficients for the rating. Let uk
be defined by (OA.18), or, equivalently, by (OA.19). That uk is integrable and square
integrable was already demonstrated in the proof of Theorem 3.6 for the one-signal case,
and continues to apply for the multisignal case.

Let

Ỹt := E∗[Yt] +
K∑
k=1

∫
s≤t

uk(t− s)(dSk,s − αkA∗s ds).

If we have Cov[Yt − Ỹt, Sk,t−τ ] = 0 for all τ and k, then Yt and Sk,t−τ are independent for

all τ and k. As Yt − Ỹt is measurable with respect to the information generated by the
signals Sk,t−τ , τ ≥ 0, k = 1, . . . ,K, it implies that Var[Yt − Ỹt] = 0 and thus Yt = Ỹt. In

the remainder, we show that Cov[Yt − Ỹt, Sk,t−τ ] = 0 for all τ ≥ 0 and k = 1, . . . ,K. Let

gk(τ) = Cov[Ỹt, Sk,t−τ ]. We have:

gk(τ) =
K∑
i=1

∫ ∞
0

ui(s) Cov[dSi,t−s, Sk,t−τ ]

= σ2
k

∫ ∞
τ

uk(s) ds+
βkγ

2

2

∫ ∞
0

∫ ∞
τ

U(s)e−|s−j| dj ds,

where U(s) :=
∑

i βiui(s), and so

g′k(τ) = −σ2
kuk(τ)− βkγ

2

2

∫ ∞
0

U(s)e−|τ−s| ds.
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Replacing uk by its definition in (OA.18),

g′k(τ) = f ′k(τ)− C1
βkγ

2

κ2 − 1
eκτ − C2

βkγ
2

κ2 − 1
e−κτ +

βkγ
2

κ

∫ τ

0
sinh(κ(τ − s))f̄ ′(s) ds

− βkγ
2

2

∫ ∞
0

U(s)e−|τ−s| ds.

(OA.20)

Further, multiplying (OA.18) by βk and summing over k, we have

U(τ) = C∞1 eκτ + C∞2 e−κτ − f̄ ′(τ)− κ2 − 1

κ

∫ τ

0
sinh(κ(τ − s))f̄ ′(s) ds.

It holds that ∫ ∞
0

U(s)e−|τ−s| ds = lim
B→∞

∫ B

0
U(s)e−|τ−s| ds.

Thus,∫ B

0
U(s)e−|τ−s| ds = C∞1

∫ B

0
eκse−|τ−s| ds+ C∞2

∫ B

0
e−κse−|τ−s| ds−

∫ B

0
f̄ ′(s)e−|τ−s| ds

− κ2 − 1

κ

∫ B

0

∫ s

0
sinh(κ(s− j))f̄ ′(j)e−|τ−s| dj ds.

Then, for any B > τ , we write∫ B

0

∫ s

0
sinh(κ(s− j))f̄ ′(j)e−|τ−s| dj ds = − κ

κ2 − 1

∫ B

0
f̄ ′(j)e−|τ−j| dj

+
e−B+τ

κ2 − 1

∫ B

0
f̄ ′(j) [κ cosh(κ(B − j)) + sinh(κ(B − j))] dj

− 2

κ2 − 1

∫ τ

0
sinh(κ(τ − j))f̄ ′(j) dj.

Using the expressions for C∞1 and C∞2 given by (OA.16) and (OA.17), we get that

C∞1

[
eB(κ−1)+τ

κ− 1
− e−τ

κ+ 1

]
+ C∞2

[
−e
−B(κ+1)+τ

κ+ 1
+

e−τ

κ− 1

]

+
κ2 − 1

κ

κ

κ2 − 1

∫ B

0
f̄ ′(j)e−|τ−j| dj

− κ2 − 1

κ

e−B+τ

κ2 − 1

∫ B

0
f̄ ′(j) [κ cosh(κ(B − j)) + sinh(κ(B − j))] dj
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converges to 0 as B →∞. Therefore,∫ ∞
0

U(s)e−|τ−s| ds =
2

κ

∫ τ

0
sinh(κ(τ − j))f̄ ′(j) dj

+ C∞1

[
eκτ

κ+ 1
− eκτ

κ− 1

]
+ C∞2

[
e−κτ

κ+ 1
− e−κτ

κ− 1

]
.

(OA.21)

Plugging the expression of (OA.21) in (OA.20) yields

g′k(τ) = f ′k(τ)− C∞1
βkγ

2

κ2 − 1
eκτ − C∞2

βkγ
2

κ2 − 1
e−κτ +

βkγ
2

κ

∫ τ

0
sinh(κ(τ − s))f̄ ′(s) ds

− βkγ
2

κ

∫ τ

0
sinh(κ(τ − j))f̄ ′(j) dj − βkγ

2

2
C∞1

[
eκτ

κ+ 1
− eκτ

κ− 1

]
− βkγ

2

2
C∞2

[
e−κτ

κ+ 1
− e−κτ

κ− 1

]
= f ′k(τ).

So g′k = f ′k. As fk(0) = gk(0) = 0, it follows that f = g. Uniqueness of the coefficients (up
to measure zero sets) is immediate by linearity, as different coefficients on a set of positive
measure yield a different joint distribution over ratings and signals.
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Part III

Complements for Section 4

OA.5 Proof of Theorem 4.1 (and Th. 5.1 and B.8)

We prove Theorems 5.1 and B.8, which include as a special case Theorem 4.1. The
constants mα, mβ, mαβ and κ are defined in Section B.3.1 of Appendix B.

The first half of the proof derives a candidate optimal rating, obtained through first-order
necessary conditions using a variational argument. The second half, self contained, verifies
that the candidate rating just derived is optimal.

OA.5.1 Candidate Optimal Rating

We use the following shorthand notation:

U(t) :=
K∑
k=1

βkuk(t), V (t) :=
K∑
k=1

αkuk(t),

U0 :=

∫ ∞
0

U(t)e−t dt, V0 :=

∫ ∞
0

V (t)e−rt dt.

We seek to maximize c′(A) (where A is the stationary equilibrium action of the worker)
among confidential information structures generated by rating processes with mean zero
and with linear filter u := {uk}k, which in addition satisfy the normalization condition that
the rating has variance one.

Any such rating process Y can be written as

Yt =

K∑
k=1

∫
s≤t

uk(t− s) dSk,s.

We note that, by Itô’s isometry,

Var[Yt] =
K∑
k=1

σ2
k

∫ ∞
0

uk(s)
2 ds

+

K∑
k=1

K∑
k′=1

∫
j≤t

∫
i≤t

βkβk′uk(t− i)uk′(t− j) Cov[θi, θj ] di dj,

and since θ is a stationary Ornstein-Uhlenbeck process with mean-reversion rate 1 and scale
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γ, we have Cov[θt, θs] = γ2e−|t−s|/2, so that

Var[Yt] =

K∑
k=1

σ2
k

∫ ∞
0

uk(s)
2 ds+

γ2

2

∫ ∞
0

∫ ∞
0

U(i)U(j)e−|j−i| di dj.

Applying Lemma B.3, the problem of maximizing c′(A) among rating processes that
satisfy the normalization condition thus reduces to choosing a linear filter u that maximizes[∫ ∞

0
V (t)e−rt dt

] [∫ ∞
0

U(t)e−t dt

]
,

subject to

γ2

2

∫ ∞
0

∫ ∞
0

U(i)U(j)e−|j−i| di dj +
K∑
k=1

σ2
k

∫ ∞
0

uk(t)
2 dt = 1.

This optimization problem is a problem of calculus of variations with isoperimetric
constraint. Assume there exists a solution u∗ to this optimization problem, where u∗ is
twice differentiable, integrable, and square integrable.

Let
L(u, λ0) = F (u) + λ0G(u),

where F and G are defined as

F (u) =

[∫ ∞
0

V (t)e−rt dt

] [∫ ∞
0

U(t)e−t dt

]
,

and

G(u) =
γ2

2

∫ ∞
0

∫ ∞
0

U(i)U(j)e−|j−i| didj +

K∑
k=1

σ2
k

∫ ∞
0

uk(t)
2 dt.

The function L defines an unconstrained maximization problem for every given λ0. It
corresponds to the Lagrangian of the constrained optimization problem up to an additive,
u-independent term, where the coefficient λ0 is a Lagrangian multiplier. However, we do
not need to invoke the Theorem of Lagrange Multipliers and its extensions to isoperimetric
problems in the calculus of variations. Instead, we will look for a constant λ0 that yields
a unique candidate of the unconstrained maximization problem that satisfies the Euler-
Lagrange first-order conditions, and, in addition, satisfies the original constraint. In the
remainder of this proof, we refer to the unconstrained optimization problem as the relaxed
optimization problem, as opposed to the original (constrained) maximization problem.

Observe that we can write both F and G as a double integral, namely,

F (u) =

∫ ∞
0

∫ ∞
0

V (i)U(j)e−rie−j didj,
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while

G(u) =

∫ ∞
0

∫ ∞
0

(
γ2

2
U(i)U(j)e−|j−i| di dj +

K∑
k=1

σ2
kuk(j)

2e−i

)
didj.

This enables the application of Proposition OA.1 in Part VI of this Online Appendix.
Assume there exists a λ∗0 < 0 such that u = u∗ maximizes u 7→ L(u, λ∗0).1

Proposition OA.1 gives the first-order condition derived from the Euler-Lagrange equa-
tions: if λ0 = λ∗0 and u = u∗, then for all k and all t, we have Lk(t) = 0, where

Lk(t) := αkU0e
−rt + βkV0e

−t + λ0γ
2βk

∫ ∞
0

U(j)e−|t−j| dj + 2λ0σ
2
kuk(t) = 0, (OA.22)

and where U0, V0, U and V are defined as above as an implicit function of u.
We differentiate the above equation in the variable t twice, and get, for all k and all t:

αkU0r
2e−rt + βkV0e

−t − 2λ0γ
2βkU(t) + λ0γ

2βk

∫ ∞
0

U(j)e−|t−j| dj + 2λ0σ
2
ku
′′
k(t) = 0.

(OA.23)

The difference between (OA.22) and (OA.23) is

(1− r2)αkU0e
−rt + 2λ0γ

2βkU(t) + 2λ0σ
2
k(uk(t)− u′′k(t)) = 0. (OA.24)

In particular, multiplying (OA.24) by βk/σ
2
k and summing over k, we get a linear differential

equation that U(t) must satisfy, namely,

(1− r2)mαβU0e
−rt + 2λ0γ

2mβU(t) + 2λ0(U(t)− U ′′(t)) = 0,

where we recall that mβ =
∑

k β
2
k/σ

2
k, mαβ =

∑
k αkβk/σ

2
k, and mα =

∑
k α

2
k/σ

2
k.

The characteristic polynomial has roots ±
√

1 + γ2mβ = ±κ. A particular solution is
Ce−rt, for some constant C. We have assumed integrable functions uk, so in the general
solution we retain the two exponentials with negative rates, and get

U(t) = C1e
−rt + C2e

−κt,

for some constants C1 and C2.
For such U , uk satisfies the linear differential equation (OA.24), whose characteristic

polynomial has roots ±1. A particular solution is a sum of scaled time exponentials e−rt

1Insofar as we find a coefficient λ∗0 that yields a unique candidate which is shown to solve the original
problem, we need not prove uniqueness of the coefficient. However, it is easily seen that λ∗0 < 0 is a necessary
second-order condition. The optimum marginal cost, if it exists, is strictly positive, i.e., F (u∗) > 0, since
the optimal solution does at least as well as transparency (giving all information included in all signals to
the market) and transparency induces a positive equilibrium effort by our assumption that mαβ > 0. This
implies λ∗0 < 0, because F (u∗) > 0 and G(u∗) = 1.

III.3



and e−κt. As every uk is bounded, we must consider the negative root of the characteristic
equation, and we get that

uk(t) = D1,ke
−rt +D2,ke

−κt +D3,ke
−t, (OA.25)

for some constants D1,k, D2,k, D3,k.

Determination of the Constants

We have established that the solution belongs to the family of functions that are sums
of scaled time exponentials. We now solve for the constant factors.

We plug in the general form of uk from (OA.25) in the expression for Lk, and get:

Lk = L1,ke
−rt + L2,ke

−κt + L3,ke
−t,

where the coefficients L1,k, L2,k, L3,k depend on the primitives of the model and the
constants D1,k, D2,k, D3,k. The condition that Lk = 0 implies that L1,k = L2,k = L3,k = 0.

First, note that U(t) does not include a term of the form e−t, which implies that

K∑
k=1

βkD3,k = 0. (OA.26)

We also observe that

L2,k = 2λ0σ
2
kD2,k −

2γ2λ0βk
∑K

i=1 βiD2,i

κ2 − 1
,

so that L2,k = 0 for all k implies

D2,k = a
βk
σ2
k

, (OA.27)

for some multiplier a. Next, we use (OA.27) together with (OA.26) to show that

L3,k =
βk
2r

K∑
i=1

αiD1,i +
βk
r + 1

K∑
i=1

αiD3,i +
γ2λ0βk
r − 1

K∑
i=1

βiD1,i + 2λ0σ
2
kD3,k

+
aγ2λ0βkmβ

κ− 1
+
aβkmαβ

κ+ r
,

and L3,k = 0 for every k implies that D3,k = 0 for all k. The equation L3,k/βk = 0 is linear
in λ0, and then simplifies to:

λ0

(
γ2

r − 1

K∑
i=1

βiD1,i +
aγ2mβ

κ− 1

)
+

1

2r

K∑
i=1

αiD1,i +
amαβ

κ+ r
= 0. (OA.28)
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Next, we use (OA.27) together with (OA.26) to show that

L1,k = 2λ0σ
2
kD1,k +

aαkmβ

κ+ 1
+

(
(r − 1)αk − 2γ2λ0βk

)
r2 − 1

K∑
i=1

βiD1,i,

and, since L1,k = 0 must hold for every k, we get, since λ0 6= 0,

σ2
kD1,k =

(
γ2βk
r2 − 1

− αk
2λ0 + 2λ0r

) K∑
i=1

βiD1,i −
aαkmβ

2κλ0 + 2λ0
. (OA.29)

We multiply (OA.29) by βk/σ
2
k, and sum over k to get

[
(κ+ 1)

(
(r − 1) (mαβ + 2λ0(r + 1))− 2γ2λ0mβ

)] K∑
i=1

βiD1,i = −a
(
r2 − 1

)
mαβmβ.

As by assumption r 6= 1, the right-hand side is nonzero, which implies(
(r − 1) (mαβ + 2λ0(r + 1))− 2γ2λ0mβ

)
6= 0, (OA.30)

and thus

K∑
i=1

βiD1,i =
−a
(
r2 − 1

)
mαβmβ

(κ+ 1) ((r − 1) (mαβ + 2λ0(r + 1))− 2γ2λ0mβ)
. (OA.31)

Similarly, if we multiply (OA.29) by αk/σ
2
k and sum over k, we get

K∑
i=1

αiD1,i =

(
γ2mαβ

r2 − 1
− mα

2λ0 + 2λ0r

) K∑
i=1

βiD1,i −
amαmβ

2κλ0 + 2λ0

=
amβ

(
mα

(
γ2mβ − r2 + 1

)
− γ2m2

αβ

)
(κ+ 1) ((r − 1) (mαβ + 2λ0(r + 1))− 2γ2λ0mβ)

.

Putting together (OA.28), (OA.31) and (OA.5.1) yield a quadratic equation in λ0 of the
form

Aλ2
0 +Bλ0 + C = 0, (OA.32)

with coefficients given by, after simplifications using in particular that κ2 = 1 + γ2mβ,

A = mβ
κ+ r

1− κ
,
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B =
mαβ

(
γ2mβ

(
−2κ2 + r2 + 1

)
+
(
κ2 − 1

) (
r2 − 1

))
γ2 (κ2 − 1) (γ2mβ − r2 + 1)

= − 2

γ2
mαβ,

C =
mαmβ(κ+ r)

(
r2 − κ2

)
+m2

αβ

(
γ2mβ(κ+ r)− 2(κ+ 1)(r − 1)r

)
4γ2(κ+ 1)r (r2 − κ2)

=
(κ− 1)mα(κ+ r)2 − γ2m2

αβ(κ+ 2r − 1)

4γ4r(κ+ r)
.

As κ > 1, we immediately have A < 0. Also, C has the sign of

(κ− 1)mα(κ+ r)2−m2
αβ(κ− 1 + 2r)γ2 = (κ− 1)mα(κ+ r)2−m2

αβ(κ− 1 + 2r)m−1
β (κ2− 1).

By the Cauchy-Schwarz inequality, mαmβ ≥ m2
αβ, so

(κ− 1)mα(κ+ r)2 −m2
αβ(κ− 1 + 2r)m−1

β (κ2 − 1) ≥ mα

{
(κ− 1)(κ+ r)2 − (κ− 1 + 2r)(κ2 − 1)

}
= mα(κ− 1)(1− r)2 > 0.

Hence C is positive, A ·C is negative, and Equation (OA.32) has two roots, one positive and
one negative. Besides, as mαβ > 0 by assumption, B < 0. As we have already established
that λ0 must be negative, we conclude that

λ0 =
−B +

√
B2 − 4AC

2A
.

Pulling out the term
∑

i βiD1,i in (OA.29) using (OA.31), we express D1,k as a solution of
the linear equation. It follows that

D1,k = a
mβ

[
γ2mαβ

βk
σ2
k
− (κ2 − r2)αk

σ2
k

]
(1 + κ) [2λ0(κ2 − r2) + (1− r)mαβ]

,

where the denominator is nonzero by (OA.30). We can simplify those expressions further.
We define

λ = (κ− 1)
√
r(1 + r)mαβ + (κ− r)

√
∆,

where
∆ := (r + κ)2(mαmβ −m2

αβ) + (1 + r)2m2
αβ.

Then, D1,k = a
√
rck/λ with

ck := (κ2 − r2)mβ
αk
σ2
k

+ (1− κ2)mαβ
βk
σ2
k

.
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Note that, as a rating process induces the same effort level up to a scaling of the rating
process, any multiplier a yields the same equilibrium action. Thus, a candidate optimal
rating process for the original optimization problem is given by the linear filter

uk(t) = ck

√
r

λ
e−rt +

βk
σ2
k

e−κt, ∀k.

If

a =
(κ− 1)

(
(κ− 1)mαβ(r + 1)

√
r +
√

∆(κ− r)
)

2
√

∆mβ(κ− r)
,

then the conditions of Proposition B.1 are satisfied, so that the associated rating process is
a market belief for a confidential information structure.

OA.5.2 Verification of Optimality

In this (sub)section, we establish that the candidate rating obtained above is indeed
optimal. We consider an auxiliary principal-agent setting. We refer to the principal-agent
setting as the auxiliary setting, and to the main setting detailed in the main text as the
original setting.

Auxiliary Setting. In the auxiliary setting, there is a principal (a female) and an agent
(a male). Time t ≥ 0 is continuous and the horizon infinite. The agent is as the worker in
the original model. He exerts private effort (his action), has an exogenous random ability,
produces output X and generates signals S1 = X, S2, . . . , SK over time. The various laws
of motion, for the agent’s ability, output, signals, are as in those of the worker in the
original setting. The filtration R captures all information of the signal processes, as defined
in Section 3 and Appendix A. The agent’s information at time t is also Rt. The agent’s
strategy, which specifies his private action at every moment as a function of his information,
continues to be a bounded R-adapted process A.

However, the agent’s payoff is not the same as the worker’s payoff of the original model.
In the auxiliary setting, the agent is not paid by a market, but by a principal. Informally,
over the interval [t, t+ dt), the principal transfers the amount Yt dt to the agent. Here, Y is
a stochastic process interpreted as a transfer rate (payments may be negative). The agent
is risk-neutral; he discounts future payoffs at rate r > 0, and his instantaneous cost of effort
is c(·), as in the original setting. The agent’s realized discounted payoff is∫ ∞

0
e−rt (Yt − c(At)) dt.

Given Y , the agent chooses a strategy A that maximizes his expected discounted payoff,
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namely,

A ∈ argmax
Â

E

[∫ ∞
0

e−rt
(
Yt − c(Ât)

)
dt

∣∣∣∣ R0

]
, (OA.33)

where the expectation is under the law of motion defined by strategy Â. A strategy that
satisfies (OA.33) is called a best response to the transfer process Y .

In the auxiliary setting, the principal combines features of both the market and the
rater in the original setting. As the market, the principal sets the transfer to the agent, and
as the rater, she observes all the signals the agent generates over time, i.e., she knows Rt
at time t. The principal recommends a strategy to the agent, denoted A∗—the analogue
of the market conjecture in the original setting. She is risk-neutral and has discount rate
ρ ∈ (0, r). Her payoff is ∫ ∞

0
e−ρtHt dt.

For now, there is no need to specify the instantaneous payoff process H. We specialize H
below as we discuss the principal’s optimization program.

A contract for the principal is a pair (A∗, Y ). The contract is incentive compatible if A∗

is a best response to Y . For the most part, we focus on stationary linear contracts. These
are contracts whose transfer processes Y are affine in the past signal increments, and are
stationary: that is, there exist uk, k = 1, . . . ,K, such that, up to an additive constant,

Yt =
K∑
k=1

∫
s≤t

uk(t− s) dSk,s.

The principal wants to maximize her own payoff over all contracts that are incentive
compatible. This implies that there are two optimal control problems, one embedded into
the other. First, we solve the agent’s problem, and then turn to the principal’s problem.

The Agent’s Problem

We first state conditions of incentive compatibility. The proof follows the same arguments
as in Lemma B.3.

Lemma OA.1 Let (A, Y ) be a stationary linear contract. The contract is incentive com-
patible if, and only if,

c′(A) =

K∑
k=1

αk

∫ ∞
0

u(t)e−rt dt.

As is common in principal-agent problems, to solve the principal’s problem using a dynamic
programming approach, we express incentive compatibility in terms of the evolution of the
agent’s continuation value, or equivalently, the agent’s continuation transfer. In the sequel,
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as in the main body of the paper, νt = E[θt | Rt] is the agent’s best current estimate about
his ability.

Lemma OA.2 Let (A, Y ) be a stationary linear contract. If the contract is incentive
compatible, then there exists constants C1, . . . , CK , such that the agent’s continuation
transfer process J defined by

Jt = E

[∫
s≥t

e−r(s−t)Ys ds

∣∣∣∣ Rt] ,
(where the expectation is taken with respect to the law induced by strategy A) satisfies the
SDE

dJt = (rJt − Yt) dt+

K∑
k=1

(
ξβ

γ2

(1 + κ)(1 + r)

βk
σ2
k

+ Ck

)
[dSk,t − (αkAt + βkνt) dt] ,

and the two transversality conditions

lim
τ→+∞

E[e−ρτJt+τ | Rt] = 0, and

lim
τ→+∞

E[e−ρτJ2
t+τ | Rt] = 0,

where ξβ :=
∑K

k=1 βkCk. In addition, the equilibrium action is defined by c′(At) = ξα :=∑K
k=1 αkCk.

Note that transversality is with respect to the principal’s discount rate, not the agent’s.
Proof. Consider a stationary linear contract (A, Y ), where

Yt =
K∑
k=1

∫
s≤t

uk(t− s) [dSk,s − αkAs ds] .

Let JT := E
[∫
t≥T e

−r(t−T )Yt dt
∣∣∣ RT ] . We compute

∫
t≥T

e−r(t−T )Yt dt =

K∑
k=1

∫
t≥T

∫
s≤T

e−r(t−T )uk(t− s) [dSk,s −As ds] dt

+

K∑
k=1

∫
s≥T

∫
t≥s

e−r(t−T )uk(t− s) dt [dSk,s −As ds] .

Note that, for t ≥ T , E[θt | RT , θT ] = E[θt | θT ] = e−(t−T )θT , so using the law of iterated
expectations, E[θt | RT ] = E[E[θt | RT , θT ] | RT ] = E[e−(t−T )θT | RT ] = e−(t−T )νT . Hence,
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we can compute JT as

JT =

K∑
k=1

∫
t≥T

∫
s≤T

e−r(t−T )uk(t− s) [dSk,s −As ds] dt

+
K∑
k=1

βk

∫
s≥T

∫
t≥s

e−r(t−T )uk(t− s)e−(s−T )νT dt

=

∫
t≥T

∫
s≤T

e−r(t−T )u(t− s) [dSk,s −As ds] dt+
νT

1 + r

K∑
k=1

βk

∫
τ≥0

e−rτuk(τ) dτ.

Now, let us define the constants C1, . . . , CK as

Ck =

∫
τ≥0

e−rτuk(τ) dτ.

Then

dJT =
ξβ

1 + r
dνT − YT dT +

K∑
k=1

Ck [dSk,T − αkAT dT ] + rJT dT − r

1 + r
ξβνT dT

=
ξβ

1 + r
dνT + (rJT − YT ) dT +

K∑
k=1

Ck

[
dSk,T −

(
αkAT +

r

1 + r
βkνt

)
dT

]
.

After simplification, and using that dνt = −κνt dt+ γ2

1+κ

∑K
k=1

βk
σ2
k

[dSk,t − αkAt dt], we get

dJt = (rJt − Yt) dt+

K∑
k=1

(
ξβ

γ2

(1 + κ)(1 + r)

βk
σ2
k

+ Ck

)
[dSk,t − (αkAt + βkνt) dt] .

That c′(At) = ξα follows from Lemma OA.1.

Lemma OA.3 Let (A, Y ) be a stationary linear contract. Suppose J and Ĉ1, . . . , ĈK are
R-adapted processes, and that J satisfies the SDE

dJt = (rJt − Yt) dt+

K∑
k=1

(
ξ̂β,t

γ2

(1 + κ)(1 + r)

βk
σ2
k

+ Ĉk,t

)
[dSk,t − (αkAt + βkνt) dt] ,

(OA.34)
and the two transversality conditions

lim
τ→+∞

E[e−ρτJt+τ | Rt] = 0, and (OA.35)

lim
τ→+∞

E[e−ρτJ2
t+τ | Rt] = 0, (OA.36)
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where ξ̂β :=
∑

k βkĈk.

Then, Jt is the agent’s continuation transfer E
[∫
s≥t e

−r(s−t)Ys ds
∣∣∣ Rt], the contract is

incentive compatible, and the agent’s equilibrium action satisfies c′(At) =
∑

k αkĈk.

Proof. We fix a stationary linear contract (A, Y ). Let J and Ĉ1, . . . , ĈK be R-adapted
processes such that J satisfies (OA.34), subject to (OA.35) and (OA.36).

Integrating J yields

Jt − e−rτJt+τ =∫ t+τ

t
e−r(s−t)

[
Ys −

K∑
k=1

(
ξ̂β,t

γ2

(1 + κ)(1 + r)

βk
σ2
k

+ Ĉk,t

)
[dSk,t − (αkAt + βkνt) dt]

]
,

and using that J is R-adapted, together with the law of iterated expectations, we get

Jt −E
[
e−rτJt+τ

∣∣ Rt]
= E

[∫ t+τ

t
e−r(s−t)Ys

∣∣∣∣ Rt]
+

K∑
k=1

E

[∫ t+τ

t
e−r(s−t)

(
ξ̂β,t

γ2

(1 + κ)(1 + r)

βk
σ2
k

+ Ĉk,t

)
[dSk,t − (αkAt + βkνt) dt]

∣∣∣∣ Rt]
= E

[∫ t+τ

t
e−r(s−t)Ys

∣∣∣∣ Rt] .
Taking the limit as τ → +∞ and applying the transversality condition (OA.35), we get
J = V , where V is the agent’s continuation transfer, namely,

Vt := E

[∫ ∞
t

e−r(s−t)Ys

∣∣∣∣ Rt] .
As in the proof of Lemma OA.2, for any stationary linear contract—incentive compatible
or not—and an arbitrary strategy A of the agent, we have that

dVt = [rVt − Yt] dt+

K∑
k=1

(
ξβ

γ2

(1 + κ)(1 + r)

βk
σ2
k

+ Ck

)
[dSk,t − (αkAt + βkνt) dt] ,

with Ck :=
∫
τ≥0 e

−rτuk(τ) dτ . That J = V implies Ĉk = Ck, and thus, by Lemma OA.1,
the contract is incentive compatible.

III.11



The Principal’s Problem

The problem for the principal is to choose a contract (A, Y ) such that two conditions
are satisfied:

1. The process Y maximizes

E

[∫ ∞
0

e−ρtHt dt

∣∣∣∣ R0

]
.

2. The contract is incentive compatible.

In the remainder of this proof, as instantaneous payoff for the principal, we use

Ht := c′(At)− φYt(Yt − νt), (OA.37)

where

φ :=

√
∆√

r(κ− 1)(r + κ)
> 0, (OA.38)

and ∆ = (r + κ)2(mαmβ −m2
αβ) + (1 + r)2m2

αβ, as defined in Section B.3.1.

Remarks on the choice of the principal’s payoff. In the original setting, the rater
seeks to maximize the agent’s discounted output. In a stationary setting, it is equivalent
to maximizing the agent’s discounted marginal cost. The marginal cost is the first term
in the right-hand side of (OA.37). However, in the original setting, the agent’s incentives
are driven by the market’s belief process. By Proposition B.1, the market belief process µ
satisfies

µt = E[θt | µt] = E[νt | µt] =
Cov[µt, νt]

Var[µt]
µt,

using the law of iterated expectations and the projection formula for jointly normal random
variables. Thus Cov[µt, νt] = Var[µt]. To make the principal’s payoff in the auxiliary
setting and the rater’s objective of the original setting comparable, we include a penalty
term φµt(νt−µt) in the principal’s payoff. Note that E [Yt(νt − Yt)] = Cov[Yt, νt]−Var[Yt].
As a Lagrangian multiplier, the parameter φ captures the tradeoff between the maximization
of the agent’s marginal cost and the penalty term, so as to constrain the transfer to be
close to a market belief. Its specific value (given in (OA.38)) is picked using the candidate
optimal rating derived in the first half of this proof.

The principal’s problem is an optimal control problem with two natural state variables:
the agent’s estimate of his ability, ν, and the agent’s continuation transfer J . The state ν
appears explicitly in the principal’s payoff. Recall that ν can be expressed in closed form,

III.12



namely,

νt =
γ2

1 + κ

K∑
k=1

βk
σ2
k

∫
s≤t

e−κ(t−s) [dSk,s − αkAs ds] .

Thus, for t ≥ 0, the state variable ν is determined by its initial value,

ν0 =
γ2

1 + κ

K∑
k=1

βk
σ2
k

∫
s≤0

eκs dSk,s,

and the equation of evolution of ν, namely,

dνt = −κνt dt+
γ2

1 + κ

K∑
k=1

βk
σ2
k

[dSk,s − αkAs ds] .

The other state J does not appear explicitly in the principal’s payoff, but must be controlled
to ensure that the transversality conditions are satisfied—by Lemmas OA.2 and OA.3, these
transversality conditions are necessary and sufficient to ensure that the contract is incentive
compatible.

The principal’s problem can then be restated as follows: the principal seeks to find a
stationary linear contract (A, Y ), along with processes Ĉk, k = 1, . . . ,K, so as to maximize,
for all t,

E

[∫ ∞
t

ρe−ρ(s−t)(c′(At)− φYt(Yt − νt)) ds

∣∣∣∣ Rt]
subject to:

1. Incentive compatibility: c′(At) = ξ̂α, where we recall that ξ̂α =
∑

k αkĈk.

2. The evolution of the agent’s belief ν, given by

dνt = −κνt dt+
γ2

1 + κ

K∑
k=1

βk
σ2
k

[dSk,s − αkAs ds] .

3. The evolution of the agent’s continuation transfer J , given by

dJt = (rJt − Yt) dt+

K∑
k=1

(
ξ̂β,t

γ2

(1 + κ)(1 + r)

βk
σ2
k

+ Ĉk,t

)
[dSk,t − (αkAt + βkνt) dt] ,

where we recall that ξ̂β =
∑

k βkĈk.
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4. The transversality conditions, given by

lim
τ→+∞

E[e−ρτJt+τ | Rt] = 0, and

lim
τ→+∞

E[e−ρτJ2
t+τ | Rt] = 0.

To solve the principal’s problem, we use dynamic programming. The principal maximizes

E

[∫ ∞
t

ρe−ρ(s−t)(ξα,t − φYt(Yt − νt)) ds

∣∣∣∣ Rt] ,
for every t, subject to the evolution of the state variables ν and J , and the transversality
conditions on J . Without the restriction to stationary linear transfer processes, the dynamic
programming problem is standard. We solve the principal’s problem without imposing that
restriction, and verify ex post that the optimal transfer in this relaxed problem is indeed
stationary linear.

Assume the principal’s value function V is C2(R2), as a function of the two states J and ν.
By standard arguments, an application of Itô’s Lemma yields the Hamilton-Jacobi-Bellman
(HJB) equation for V , namely

ρV = sup
y,c1,...,cK

ρξ̂α − ρφy(y − ν) + (rJ − y)VJ − νtVν + γ2κ− 1

κ+ 1
Vνν

+
(κ+ r)γ2ξ̂β

(1 + κ)(1 + r)
VνJ +

∑
k

(
ξ̂β

γ2

(1 + κ)(1 + r)

βk
σk

+ σkck

)2

VJJ ,

(OA.39)

where to shorten notation we have used the subscript notation for the (partial) derivatives
of V , and have abused notation by using ξ̂α and ξ̂β to denote

∑
k αkck and

∑
k βkck,

respectively.
We conjecture a quadratic value function V of the form

V (J, ν) = a0 + a1J + a2ν + a3Jν + a4J
2 + a5ν

2. (OA.40)

Using the general form of the conjectured value function (OA.40), we can solve for
y, c1, . . . , cK using the first-order condition. We can then plug these variables expressed as
a function of the coefficients ai’s back into (OA.39), which allows to uniquely identify the
coefficients. We obtain

a0 = −
m2
αβ(κ− 1)(1 + 2r + κ)

4mβ(κ+ r)2(2r − ρ)φ
+
mαβ(κ− 1)

2mβ(κ+ r)
+

(κ− 1)2φ

2mβ(2 + ρ)
+

mα

4(2r − ρ)φ
,

a1 = 0, a2 = 0, a3 =
(2r − ρ)ρφ

1 + r
, a4 = −(2r − ρ)ρφ, and a5 =

ρ(1− r + ρ)2φ

4(1 + r)2(2 + ρ)
.
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It is readily verified that the second-order condition is equivalent to a5 < 0, and so it is
satisfied for all ρ < r. After simplification, we obtain the following expressions for y and ck:

y(J, ν) = (2r − ρ)J +
1− r + ρ

2(1 + r)
ν, and (OA.41)

ck(J, ν) =
αk

2σ2
k(2r − ρ)φ

−
βk(κ− 1) (mαβ(1 + 2r + κ)− (r + κ)(2r − ρ)φ)

2σ2
kmβ(r + κ)2(2r − ρ)φ

.

Thus, we obtain that the optimal processes Ĉk are constant, and we get the optimal
transfer at time t, Yt, as a linear function of the state variables Jt, νt:

Yt =

[
2r − ρ
1−r+ρ
2(1+r)

]
·
[
Jt
νt

]
. (OA.42)

We insert the optimal control Yt back into the equations that determine the evolution of
the state variables. Doing so yields a linear two-dimensional stochastic differential equation,
namely

d

[
Jt
νt

]
= M

[
Jt
νt

]
+

K∑
k=1

ξ̂β,t
γ2

(1 + κ)(1 + r)

βk
σ2
k

+ Ĉk,t

κ− 1

mβ

βk
σ2
k

 [dSk,t − αkAt dt] ,

where

M :=

−r + ρ −ξ̂β
κ+ r

1 + r
− 1− r + ρ

2(1 + r)
0 −κ

 .
The matrix M has two eigenvalues, −(r − ρ) and −κ, which are generically distinct, and
negative for ρ < r. We can write[

Jt
νt

]
=

K∑
k=1

∫
s≤t

(
fke
−(r−ρ)(t−s) + gke

−κ(t−s)
)

[dSk,t − αkAt dt] ,

where fk and gk are two-dimensional vectors that can be expressed in closed form as:

fk :=

[
mβ(r+κ)(r−κ−ρ)

2mβ(r+κ)(2r−ρ)(r−κ−ρ)φ
αk
σ2
k

+
mαβ(κ−1)(1+κ+ρ)

2mβ(r+κ)(2r−ρ)(r−κ−ρ)φ
βk
σ2
k

0

]
, and

gk :=

− (κ−1)(mαβ(1+r)2−(r+κ)(2r−ρ)(r−κ−ρ)φ)
2mβ(1+r)(r+κ)(2r−ρ)(r−κ−ρ)φ

βk
σ2
k

κ−1
mβ

βk
σ2
k

 .
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Moreover, when we plug the expressions of the state variables into (OA.41), we get a
stationary linear transfer process

Yt =
∑
k

∫
s≤t

uk(t− s) [dSk,s − αkAs ds] ,

with linear filter
uk(τ) = Fke

−(r−ρ)τ +Gke
−κτ ,

where

Fk :=
mβ(r + κ)(r − κ− ρ)

2mβ(r + κ)(r − κ− ρ)φ

αk
σ2
k

+
mαβ(κ− 1)(1 + κ+ ρ)

2mβ(r + κ)(r − κ− ρ)φ

βk
σ2
k

, and

Gk :=
(κ− 1) (mαβ(1 + r) + (κ+ r)(κ− r + ρ)φ)

2mβ(r + κ)(κ− r + ρ)φ

βk
σ2
k

.

The equilibrium action for the agent is stationary, and given by

c′(At) =
∆ +mαβ(κ− 1)(r + κ)(2r − ρ)φ

2mβ(r + κ)2(2r − ρ)φ
.

Thus, the contract (A, Y ) just defined is an optimal stationary linear contract for the
principal.

Note that, as ρ→ 0,

c′(At)→
κ− 1

4(κ+ r)mβ

(
2mαβ +

√
∆/r

)
,

and {uk}k converges to the linear filter associated with the market belief of the conjectured
optimal rating, derived in the first half of this proof.

Back to the Original Model

Now, we connect the auxiliary model and the original model, and conclude the verification.
We prove by contradiction that the candidate rating obtained in the first half of this proof
is indeed optimal. We continue to consider the auxiliary model. Let (A∗, Y ∗) be the
incentive-compatible contract defined by

c′(A∗) =
κ− 1

4(κ+ r)mβ

(
2mαβ +

√
∆/r

)
,
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and

Y ∗t =
(κ− 1)

(
(κ− 1)mαβ(r + 1)

√
r +
√

∆(κ− r)
)

2
√

∆mβ(κ− r)
·
K∑
k=1

∫
s≤t

uck(t− s) [dSk,s − αkA∗s ds] .

The market belief Y ∗t is defined as the conjectured optimal rating of the original setting,

while A∗ is the corresponding equilibrium action. Consider an information structure M̂,
generated by some rating process, that induces a stationary action Â. Let Ŷ := E[θt | M̂t].
Note that (Â, Ŷ ) is a well-defined incentive-compatible stationary linear contract. We
show that c′(A∗) ≥ c′(Â). Let (A(ρ), Y (ρ)) be the optimal incentive-compatible stationary
linear contract defined above, as a function of the principal’s discount rate ρ. Let V (ρ) be
the corresponding principal’s expected payoff. Note that, for every confidential exclusive
information structureM generated by a rating process, the equilibrium market belief of the
original setting, µt = E[θt | Mt], satisfies Cov[µt, νt] = Var[µt], and thus the principal’s
expected payoff for contract (A∗, Y ∗) is V ∗ := c′(A∗)/ρ, while the principal’s expected
payoff for contract (Â, Ŷ ) is V̂ := c′(Â)/ρ.

Then, for every ρ ∈ (0, r), the inequalities ρV (ρ) ≥ ρV̂ = c′(Â) must hold. However, as
ρ→ 0, c′(A(ρ))→ c′(A∗), and the linear filter of Y (ρ) converges pointwise to the linear filter
of Y ∗. Thus, Cov[Y (ρ), νt] −Var[Y (ρ)] → 0, which in turn implies that ρV (ρ) → c′(A∗).
Hence, c′(A∗) ≥ c′(Â).

OA.6 Proof of Corollary 4.2

In this section, we prove the following (which is more general than Corollary 4.2, because
it applies to the general, multisignal version of the model, and it includes the case of public
ratings):

Proposition OA.1 Suppose the rater has access to a source of independent noise. Let
M be either confidential (resp. public), in the sense described in Section B, and let A be
the (stationary) effort level it induces. For all A′ ∈ [0, A], there exists a confidential (resp.
public) information structure M′ that induces effort level A′.

To show that any action in the range [0, A] can be attained in the equilibrium of an
alternative confidential/public information structure, we modify the rating process that
achieves A to depress incentives to any desired extent. To do so, we use a source of
independent noise. In addition to the K signals described in the general model of Section 5,
we include one additional signal, indexed by K + 1, which is entirely uninformative about
both the worker’s action and the worker’s ability. Let us assume SK+1 is a two-sided
standard Brownian motion. Consider the two-sided process

ξt =

∫
s≤t

e−(t−s) dSK+1,s.
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From Lemma B.3, if Y has linear filter {uk}k, the equilibrium action A in both the public
and confidential cases is the solution to

c′(A) =
Cov[Yt, θt]

Var[Yt]

K∑
k=1

αk

∫ ∞
0

uk(τ)e−rτ dτ.

Consider the alternative rating process Ŷ = (1− a)Y + aξ, for some a ∈ [0, 1], which is
a well-defined rating process for the information generated by the K + 1 signals. Consider
the information structure generated by the rating process Ŷ , and the induced equilibrium
action, Â. We have

c′(Â) =
Cov[Ŷt, θt]

Var[Ŷt]

K∑
k=1

αk

∫ ∞
0

uk(τ)e−rτ dτ

=
(1− a) Cov[Yt, θt]

(1− a)2 Var[Yt] + a2 Var[ξ]

K∑
k=1

αk

∫ ∞
0

uk(τ)e−rτ dτ

=
1− a

(1− a)2 + a2 Var[ξ]/Var[Yt]
c′(A).

By varying a over the interval [0, 1], c′(Â) covers the entire interval [0, c′(A)], and thus Â
covers the interval [0, A]. Besides, as Y and ξ are independent, for τ ≥ 0,

Cov[Ŷt, Ŷt+τ ] = (1− a)2 Cov[Yt, Yt+τ ] + a2 Cov[ξt, ξt+τ ].

By Itô’s isometry, we get

Cov[ξt, ξt+τ ] =

∫ ∞
0

e−se−(s+τ) ds =
1

2
e−τ = Var[ξt]e

−τ .

Moreover, by Proposition B.9, if Y is proportional to the the belief associated with a public
information structure, Cov[Yt, Yt+τ ] = Var[Yt]e

−τ . Thus,

Cov[Ŷt, Ŷt+τ ] = ((1− a)2 Var[Yt] + a2 Var[ξt])e
−τ = Var[Ŷt]e

−τ .

Invoking Proposition B.9 again, we find that Ŷ is proportional to the market belief of a
public information structure. Hence, Â also denotes the equilibrium action under that
structure. In conclusion, under both the public and confidential information structure, any
action in [0, A] can be induced in equilibrium.
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OA.7 Proof of Theorem 4.3

First, we provide the explicit specification of the functions appearing in the statement
of Theorem 4.3. Define

c1(t) =
(r2 − 1)(κ2 − 1)

2
√
R(t)

,

and

c2(t) =
(κ2 − 1)(κ+ 1)eκt

(
(κ− 1)2(r − 1)e−rt + eκt

(√
R(t)−

(
κ2 − 1

)
(1 + r)

))
2
√
R(t) ((κ+ 1)2e2κt − (κ− 1)2)

,

as well as

c3(t) =
(κ2 − 1)(κ− 1)

(
(κ+ 1)2(r − 1)e−rt + e−κt

(√
R(t)−

(
κ2 − 1

)
(1 + r)

))
4
√
R(t) ((κ2 + 1) sinh(κt) + 2κ cosh(κt))

,

where

R(t) =
(κ− 1)2

(
(1− r)2(r − κ)2e−2rt − (1 + r)2(r + κ)2

)
(coth(κt)− 1)

2r

+
(κ+ 1)2(r + 1)2(r − κ)2(coth(κt) + 1)

2r
+ 4κ

(
κ2 − 1

) (
r2 − 1

)
e−rtcsch(κt)

− (κ+ 1)2(1− r)2(κ+ r)2e2t(κ−r)(coth(κt)− 1)

2r
.

Then the optimal rating that is referred to in Theorem 4.3 is given by

us,t = c1(t)e−r(t−s) + c2(t)e−κ(t−s) + c3(t)eκ(t−s).

Turning, to the proof, the rater designs a linear rating Y , where

Yt =

∫ t

0
us,t dXs

to maximize ∫ T

0
As ds,

where A is the worker’s equilibrium effort strategy given the rating Y , and s 7→ us,t is twice
continuously differentiable. The smoothness assumption on the linear filter u is used to pin
down a unique candidate rating (up to scaling and shifting).

It is convenient to impose, without loss, that the rating Y is equal to the market belief,
up to an additive constant. Proposition B.1 (which is stated for the case of stationary linear

III.19



ratings to fit the main framework of this paper, but that remains valid for the nonstationary
case) remains valid: Y is equal to a market belief, up to an additive constant, if and only if
Var[Yt] = Cov[Yt, θt]. Using Itô’s Isometry, as in the proof of the baseline confidential case
explained in Section OA.5, we have that Var[Yt] = Cov[Yt, θt] is written

σ2

∫ t

0
u2
j,t dj +

γ2

2

∫ t

0

∫ t

0
ui,tuj,te

−|i−j| didj =
γ2

2

∫ t

0
uj,te

−|j−t| dj.

In the proof of Proposition 3.4 detailed in Section OA.3, we derived the equilibrium
action of the worker for any linear rating, stationary or not. Its adaptation to the finite
horizon case is immediate, and we get that

c′(As) = As =

∫ T

s
us,te

−r(t−s) dt.

Hence, the rater wants choose us,t to maximize∫ T

0
As ds =

∫ T

0

∫ T

s
us,te

−r(t−s) dt ds =

∫ T

0

∫ t

0
us,te

−r(t−s) ds dt,

subject to the constraint

σ2

∫ t

0
u2
j,t dj +

γ2

2

∫ t

0

∫ t

0
ui,tuj,te

−|i−j| didj =
γ2

2

∫ t

0
uj,te

−|j−t| dj,

for every t.
Observe that the objective is separable in t, so that the problem for the rater reduces

to maximizing, for every t, ∫ t

0
us,te

rs ds,

by choosing us,t such that

σ2

∫ t

0
u2
j,t dj +

γ2

2

∫ t

0

∫ t

0
ui,tuj,te

−|i−j| didj =
γ2

2

∫ t

0
uj,te

−|j−t| dj. (OA.43)

Fix some t. We consider the relaxed problem for the rater, which internalizes the
variance-covariance constraint in the objective: the rater seeks to maximize∫ t

0
us,te

rs ds+ λσ2

∫ t

0
u2
j,t dj + λ

γ2

2

∫ t

0

∫ t

0
ui,tuj,te

−|i−j| didj − λγ
2

2

∫ t

0
uj,te

−|j−t| dj,

where λ is the Lagrange multiplier.
To simplify notation, we momentarily abandon the subscript t from the control variable,
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so that us,t is now written us. The first-order condition, that is, the Euler-Lagrange
necessary condition adapted to our setting by Proposition OA.1 of Part VI of this Online
Appendix, yields

ers + 2λσ2us + λγ2

∫ t

0
uje
−|j−s| dj − λγ

2

2
es−t = 0, (OA.44)

and the Legendre second order condition is

λ < 0. (OA.45)

We differentiate twice (with respect to s), and get

r2ers + 2λσ2u′′s − 2λγ2us + λγ2

∫ t

0
uje
−|j−s| dj − λγ

2

2
es−t = 0. (OA.46)

Subtracting (OA.46) from (OA.44) yields the following ODE that us must satisfy:

(1− r2)ers + 2λσ2us − 2λσ2u′′s + 2λγ2us = 0.

Letting κ =
√

1 + γ2/σ2, the general solution of the above ODE is

us = C−e−λs + C+eκs +
1− r2

2λσ2(r2 − κ2)
e−∆s.

It remains to identify the constants. To do so, we use the second-order condition (OA.45),
the first-order condition (OA.44), and the constraint (OA.43), where γ2 = σ2(κ2 − 1).
Fixing λ, the first-order condition (OA.44) yields a linear system of two equations in C+

and C−, which allows to express C+ and C− as a function of λ. Plugging the resulting
function us into (OA.43), we obtain a quadratic equation in λ, with only one positive root.
The details of these expressions are lengthy and omitted.

This yields a unique candidate for the optimal rating, whose general form is described in
the statement of Theorem 4.3. It is tedious but straightforward to verify that the coefficients
are those given above.
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Part IV

Complements for Section 5

OA.8 Proof of Theorem 5.2 (and Th. B.10)

We prove Theorems 5.2 and B.10. The constants mα, mβ, mαβ and κ are defined in
Section B.3.1 of Appendix B.

The proof proceeds as in the proof of the baseline case of Section OA.5. The first half
of the proof derives a candidate optimal rating, and the second half is self-contained and
verifies that the candidate rating just derived is optimal.

OA.8.1 Candidate Optimal Rating

Recall the shorthand notation of Section OA.5 that will be used here as well:

U(t) :=
K∑
k=1

βkuk(t), V (t) :=
K∑
k=1

αkuk(t),

U0 :=

∫ ∞
0

U(t)e−t dt, V0 :=

∫ ∞
0

V (t)e−rt dt.

We want to maximize c′(A), with A the stationary equilibrium action of the agent,
among all public information structures generated by some rating process Y that satisfies
the variance normalization Var[Yt] = 1 and that is proportional to the market belief. Such
rating processes can be described by their linear filter u := {uk}k, and are written as

Yt =
K∑
k=1

∫
s≤t

uk(t− s) [dSk,s − αkAs ds] .

As in Section OA.5, we note that, by Itô’s isometry, for τ ≥ 0,

Cov[Yt, Yt+τ ] =

K∑
k=1

σ2
k

∫ ∞
0

uk(s)uk(s+ τ) ds

+
K∑
k=1

K∑
k′=1

∫
i≤t

∫
j≤t+τ

βkβk′uk(t− i)uk′(t+ τ − j) Cov[θi, θj ] dj di.
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Hence, as Cov[θi, θj ] = γ2e−|i−j|/2, after a change of variables in the last term, we get

Cov[Yt, Yt+τ ] =

K∑
k=1

σ2
k

∫ ∞
0

uk(s)uk(s+ τ) ds+
γ2

2

∫ ∞
0

∫ ∞
0

U(i)U(j)e−|j+τ−i| didj.

By Proposition B.9, the rating process Y is proportional to the belief of a public
information structure if, and only if, Cov[Yt, Yt+τ ] = e−τ for every τ ≥ 0.

Using the expression for Cov[Yt, Yt+τ ] just obtained, and applying Lemma B.3, our
optimization problem is thus that of maximizing

γ2

2

[∫ ∞
0

U(t)e−t dt

] [∫ ∞
0

V (t)e−rt dt

]
,

subject to the continuum of constraints

K∑
k=1

σ2
k

∫ ∞
0

uk(j)uk(j + τ) dj +
γ2

2

∫ ∞
0

∫ ∞
0

U(i)U(j)e−|j+τ−i| didj = e−τ ,

for every τ ≥ 0.
The continuum of constraints makes it difficult to solve this optimization problem

directly by forming the Lagrangian, as we have done for the proof of confidential case.
Instead, we solve a relaxed optimization problem with a single constraint: we maximize
F (u), defined as

F (u) =

[∫ ∞
0

U(t)e−t dt

] [∫ ∞
0

V (t)e−rt dt

]
,

(as before, the original objective without the constant factor γ2/2), subject to G(u) = 2
1+r ,

where

G(u) := g(u, 0) + (1− r)
∫ ∞

0
e−rτg(u, τ) dτ,

with

g(u, τ) :=

K∑
k=1

σ2
k

∫ ∞
0

uk(j)uk(j + τ) dj +
γ2

2

∫ ∞
0

∫ ∞
0

U(i)U(j)e−|j+τ−i| didj.

Assume there exists a solution u∗ to this optimization problem, where u∗ is twice differ-
entiable, integrable, and square integrable. As will be shown, the solution of this relaxed
constrained problem satisfies the original continuum of constraints.

As in the confidential setting, we work with an unconstrained problem that internalizes
the above constraint. Thus, we relax the problem a second time, and we let

L(u, λ0) = F (u) + λ0G(u)
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be the Lagrangian, from which we remove the additive terms that do not depend on
u. Assume there exists some λ∗0 < 0 such that u∗ maximizes u 7→ L(u, λ∗0).2 As in the
confidential case, we apply Proposition OA.1 to get first-order conditions, namely: if λ0 = λ∗0
and u = u∗, then for all k = 1, . . . ,K and all t, Lk(t) = 0, with

Lk(t) := Fk(t) + λ0Gk(t),

Fk(t) := αkU0e
−rt + βkV0e

−t,

and

Gk(t) := 2σ2
kuk(t) + γ2βk

∫ ∞
0

U(j)e−|j−t| dj

+ (1− r)σ2
k

∫ ∞
0

e−rτ [uk(t+ τ) + uk(t− τ)] dτ

+ (1− r)γ
2βk
2

∫ ∞
0

e−rτ
∫ ∞

0
U(j)e−|j+τ−t| dj dτ

+ (1− r)γ
2βk
2

∫ ∞
0

e−rτ
∫ ∞

0
U(i)e−|t+τ−i| di dτ.

Throughout the proof, any function h defined on the nonnegative real line is extended
to the entire real line with the convention that these functions assign value zero to any
negative input. By convention, the derivative of h at 0 is defined to be the right-derivative
of h at 0, which is well-defined for h twice differentiable. Let some function h : R+ → R
be twice differentiable and such that h, h′, h′′ are all integrable. Throughout the proof, to
compute derivatives of integral functions, we use the following arguments.

First, if H(t) =
∫∞

0 h(i)e−|t+τ−i| di for some τ ≥ 0, then

H(t) =

∫ t+τ

0
h(i)e−(t+τ−i) di+

∫ ∞
t+τ

h(i)et+τ−i di,

so that
H ′′(t) = H(t)− 2h(t+ τ).

Similarly, if instead H(t) =
∫∞

0 h(j)e−|j+τ−t| dj then if t > τ ,

H(t) =

∫ t−τ

0
h(j)e(j+τ−t) dj +

∫ ∞
t−τ

h(j)e−(j+τ−t) dj,

and for every t,
H ′′(t) = H(t)− 2h(t− τ).

2As in the confidential setting, it is easily seen that λ∗0 < 0 is a necessary second-order condition.

IV.3



Finally, if H(t) =
∫∞

0 e−rτ [h(t+ τ) + h(t− τ)] dτ , then

H ′(t) = e−rth(0) +

∫ ∞
0

e−rτ
[
h′(t+ τ) + h′(t− τ)

]
dτ,

and

H ′′(t) = −re−rth(0) + e−rth′(0) +

∫ ∞
0

e−rτ
[
h′′(t+ τ) + h′′(t− τ)

]
dτ.

We can now compute pk := Lk − L′′k as

pk(t) = Lk(t)− L′′k(t) = αkU0(1− r2)e−rt

+ 2λ0σ
2
k[uk(t)− u′′k(t)] + 2λ0γ

2βkU(t)

+ λ0(1− r)σ2
k

∫ ∞
0

e−rτ [uk(t+ τ) + uk(t− τ)] dτ

− λ0(1− r)σ2
k

∫ ∞
0

e−rτ [u′′k(t+ τ) + u′′k(t− τ)] dτ

− λ0(1− r)σ2
k

[
−re−rtuk(0) + u′k(0)e−rt

]
+ λ0(1− r)γ2βk

∫ ∞
0

e−rτU(t− τ) dτ

+ λ0(1− r)γ2βk

∫ ∞
0

e−rτU(t+ τ) dτ.

Next, we let

Jk(t) =

∫ ∞
0

e−rτ [uk(t+ τ) + uk(t− τ)] dτ, and

J(t) =
K∑
k=1

βkJk(t).

We observe that J ′′k = −2ruk + r2Jk. Plugging Jk in the expression for pk:

pk(t) = αkU0(1− r2)e−rt + 2λ0σ
2
k

[
uk(t)− u′′k(t)

]
+ 2λ0γ

2βkU(t)

+ 2rλ0(1− r)σ2
kuk(t) + λ0(1− r)(1− r2)σ2

kJk(t) + λ0(1− r)γ2βkJ(t).

After differentiation, we get

p′′k(t) = r2αU0(1− r2)e−rt + 2λ0σ
2
k

[
u′′k(t)− u′′′′k (t)

]
+ 2λ0γ

2βU ′′(t)

+ 2rλ0(1− r)σ2
ku
′′
k(t) + λ0(1− r)(1− r2)σ2

k

[
−2ruk(t) + r2Jk(t)

]
+ λ0(1− r)γ2βk

[
−2rU(t) + r2J(t)

]
.
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Finally, we let qk := p′′k − r2pk. We have

qk(t) = 2λ0σ
2
k

[
u′′k(t)− u′′′′k (t)

]
− r22λ0σ

2
k

[
uk(t)− u′′k(t)

]
+ 2λ0γ

2βkU
′′(t)− 2r2λ0γ

2βkU(t)

+ 2rλ0(1− r)σ2
ku
′′
k(t)− 2r3λ0(1− r)σ2

kuk(t)

− 2rλ0(1− r)(1− r2)σ2
kuk(t)

− 2rλ0(1− r)γ2βkU(t).

We must have qk(t) = 0 for all k and all t. In particular, and since λ0 6= 0,

1

2λ0

K∑
k=1

βk
σ2
k

qk(t) = 0,

hence

U ′′−U ′′′′−r2(U−U ′′)+γ2mβU
′′−r2γ2mβU+r(1−r)U ′′−r(1−r)U−r(1−r)γ2mβU = 0.

The characteristic polynomial associated with this homogeneous linear differential equation
has roots ±

√
1 + γ2mβ = ±κ and ±

√
r. As we have assumed that the solution to the

optimization problem is admissible, it follows that U must be bounded, and we discard the
positive roots. Thus, U must have the form

U(t) = C1e
−
√
rt + C2e

−κt, (OA.47)

for some constants C1 and C2.
Next, pick an arbitrary pair (i, j) with i 6= j, and define ζij(t) := βiσ

2
juj(t)− βjσ2

i ui(t).
That (βiqj(t) − βjqi(t))/(2λ0) = 0 yields, after simplification, the following differential
equation for ζij :

ζ ′′ij − ζ ′′′′ij − r2(ζij − ζ ′′ij) + r(1− r)(ζ ′′ij − ζij) = 0.

The characteristic polynomial associated with this homogeneous linear differential equation
has roots ±1 and ±

√
r. As ζij must be bounded, we get that ζij has the form

ζij(t) = C ′1e
−
√
rt + C ′2e

−t, (OA.48)

for some constants C ′1 and C ′2.
Putting together (OA.47) and (OA.48), we get that

uk(t) = D1,ke
−
√
rt +D2,ke

−κt +D3,ke
−t, (OA.49)

for some constants D1,k, D2,k, D3,k.
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Determination of the Constants

We have established that the solution belongs to a family of functions that are sums
of some given scaled time exponentials. We now solve for the constant factors D1,k, D2,k,
D3,k, k ≥ 1.

We first note that, since the term e−t vanishes in Equation (OA.47) that gives the
general form of the function U , the equality

K∑
k=1

βkD3,k = 0 (OA.50)

obtains.
Using (OA.50), we plug (OA.49) in the equation for Lk(t) and get that

Lk(t) = L1,ke
−rt + L2,ke

−κt + L3,ke
−t,

where L1,k, L2,k and L3,k are scalar factors that will be expressed as a function of the

primitives of the model and the constants D1,k, D2,k, D3,k. Note that the exponential e−
√
rt,

which appears in the general form of uk(t) given in (OA.49), vanishes after simplification,
while instead an exponential e−rt appears, which is not present in uk(t).

We observe that

L2,k =
2σ2

kλ0(r − κ2)

(r − κ)(κ+ r)
D2,k +

2γ2λ0βk
(
r − κ2

)
(κ− 1)(κ+ 1)(κ− r)(κ+ r)

K∑
i=1

βiD2,i

=
2λ0σ

2
k

(
r − κ2

)
D2,k

(r − κ)(κ+ r)
+

2λ0βk
(
κ2 − r

)
mβ(r − κ)(κ+ r)

K∑
i=1

βiD2,i,

using that γ2 = (κ2 − 1)/mβ. That L2,k = 0 for all k implies

D2,k = a
βk
σ2
k

, (OA.51)

for some constant a. It can be seen that if a = 0, then D1,k = D2,k = D3,k = 0 for all
k, in which case uk = 0 and the variance normalization constraint is violated. Hence, in
the remainder of the proof, we assume a 6= 0. (As it turns out, as ratings yield the same
market belief up to a scalar, the precise value of a is irrelevant, as long as it is nonzero.) In
particular,

K∑
k=1

αkD2,k = amαβ,
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and
K∑
k=1

βkD2,k = amβ.

Using (OA.50), (OA.51), and γ2 = (κ2 − 1)/mβ, we get

L3,k =

(
κ2 − 1

)
λ0βk

(
√
r − 1) (r + 1)mβ

K∑
i=1

βiD1,i +
βk

r +
√
r

K∑
i=1

αiD1,i

+
βk
r + 1

K∑
i=1

αiD3,i +
2λ0σ

2
k

r + 1
D3,k +

aβkmαβ

κ+ r
+
a(κ+ 1)λ0βk

r + 1
.

(OA.52)

As L3,k = 0 for all k, we can multiply (OA.52) by βk/σ
2
k, sum over k, and use (OA.50) to

get that D3,k = 0. In addition, after plugging D3,k = 0, the term L3,k simplifies to(
κ2 − 1

)
λ0βk

(
√
r − 1) (r + 1)mβ

K∑
i=1

βiD1,i+
βk

r +
√
r

K∑
i=1

αiD1,i+
aβkmαβ

κ+ r
+
a(κ+ 1)λ0βk

r + 1
= 0, (OA.53)

which we will use to determine λ0.
Finally, given D2,k = aβk/σ

2
k and D3,k = 0, and using that γ2 = (κ2 − 1)/mβ, the

remaining constant L1,k simplifies to

L1,k =

(
αk√
r + 1

−
(
κ2 − 1

)
λ0βk

(
√
r − 1)

√
r(r + 1)mβ

)
K∑
i=1

βiD1,i +
λ0 (
√
r + 1)σ2

k√
r

D1,k

+
aαkmβ

κ+ 1
+
aλ0βk(κ+ r)

r + 1
.

(OA.54)

As L1,k = 0 must hold for every k, we multiply (OA.54) by βk/σ
2
k, sum over k, and we get

an equation that the term
∑

i βiD1,i must satisfy:(
mαβ√
r + 1

−
(
κ2 − 1

)
λ0mβ

(
√
r − 1)

√
r(r + 1)mβ

)
K∑
i=1

βiD1,i +
λ0 (
√
r + 1)√
r

K∑
i=1

βiD1,i

+
amαβmβ

κ+ 1
+
aλ0mβ(κ+ r)

r + 1
= 0. (OA.55)

As mαβ ≥ 0 and mβ > 0,

amαβmβ

κ+ 1
+
aλ0mβ(κ+ r)

r + 1
6= 0, (OA.56)

which implies that the factor of
∑

i βiD1,i is nonzero. Similarly, if we multiply (OA.54) by
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αk/σ
2
k and sum over k, we get an equation that the term

∑
i αiD1,i must satisfy:(

mα√
r + 1

−
(
κ2 − 1

)
λ0mαβ

(
√
r − 1)

√
r(r + 1)mβ

)
K∑
i=1

βiD1,i +
λ0 (
√
r + 1)√
r

K∑
i=1

αiD1,i

+
amαmβ

κ+ 1
+
aλ0mαβ(κ+ r)

r + 1
= 0. (OA.57)

Now we can solve for
∑

i αiD1,i and
∑

i βiD1,i, using (OA.55) and (OA.57). Plugging in
the solutions in (OA.53), we get a rational expression in λ0, whose denominator is

(κ+1)(r+1)2
(√
r − 1

)√
r
(√
r + 1

)2
mαβ(κ+r)+(κ+1)λ0(r+1)

(√
r + 1

)3
(r−κ)(κ+r)2,

and whose numerator is

− a(r + 1)2
(√
r − κ

) (
mαmβ(κ+ r)2 − (κ+ 1)m2

αβ(κ+ 2r − 1)
)

+ 4a(κ+ 1)λ0(r + 1)
√
r
(√
r + 1

)2
mαβ

(√
r − κ

)
(κ+ r)

+ a(κ+ 1)2λ2
0

(√
r + 1

)4 (√
r − κ

)
(κ+ r)2.

We observe that the numerator, which must equal zero, yields a quadratic equation in λ0,

a
(√
r − κ

) (
Aλ2

0 +Bλ0 + C
)

= 0, (OA.58)

where:

A = (κ+ 1)2(κ+ r)2
(√
r + 1

)4
,

B = 4(κ+ 1)(κ+ r)
(√
r + 1

)2√
r(r + 1)mαβ,

C = −(r + 1)2
(
mαmβ(κ+ r)2 − (κ+ 1)m2

αβ(κ+ 2r − 1)
)
,

= −(r + 1)2
(
(κ+ r)2

(
mαmβ −m2

αβ

)
+ (1− r)2m2

αβ

)
.

Next, we have that A > 0, and also that C < 0, which owes to the Cauchy-Schwarz
inequality mαmβ ≥ m2

αβ and to κ > 1. Hence, there are two real roots of (OA.58), one
negative, and one positive. As B > 0 and we have established that λ0 < 0, it follows that

λ0 =
−B +

√
B2 − 4AC

2A
,

which, after simplification, reduces to

λ0 = −
(r + 1)

(√
∆ + 2

√
rmαβ

)
(κ+ 1) (

√
r + 1)

2
(κ+ r)

,
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with ∆ = (r + κ)2(mαmβ −m2
αβ) + (1 + r)2m2

αβ.
Finally, (OA.54) and (OA.55) yield a linear equation that determines D1,k:

D1,k = −
a
√
r(r + 1)mβ (

√
r − κ) (κ+ r)

(κ+ 1)
(

(r2 − 1)
√
rmαβ + λ0 (

√
r + 1)

2
(r2 − κ2)

) αk
σ2
k

−
a(r + 1)

√
rmαβ (κ+ r −

√
r − 1) + aλ0 (r −

√
r) (
√
r + 1)

2
(κ+ r)(

(r2 − 1)
√
rmαβ + λ0 (

√
r + 1)

2
(r2 − κ2)

) βk
σ2
k

.

Letting λ = (κ− 1)
√
r(1 + r)mαβ + (κ− r)

√
∆, we can make further simplifications, and

express the solution in a form similar to that of the confidential case. We have

uk(t) = adk

√
r

λ
e−
√
rt + a

βk
σ2
k

e−κt,

with

dk =
κ−
√
r

κ− r
ck + λ

√
r − 1

κ− r
βk
σ2
k

,

and, as in the confidential setting,

ck = (κ2 − r2)mβ
αk
σ2
k

+ (1− κ2)mαβ
βk
σ2
k

. (OA.59)

As in the case of confidential ratings, because a rating process induces the same effort level
up to scaling, all constant multipliers a yield the same effort level. We can use, for example,
a = 1 in the preceding expressions.

If

a = −
(κ− 1)

(
(κ− 1)mαβ(r + 1)

√
r +
√

∆(κ− r)
)

√
∆mβ (

√
r + 1) (

√
r − κ)

,

then it can be verified that the corresponding rating process satisfies the conditions of
Proposition B.9, so is a market belief for a public information structure.

OA.8.2 Verification of Optimality

We now establish that the candidate rating obtained above is indeed optimal. We
continue to use the auxiliary setting introduced in Section OA.5, with the same variables
and notation, except for the principal’s instantaneous payoff function H. To define the
principal’s payoff, we introduce an additional state variable, Λ, with initial value Λ0 = 0,
and which evolves according to

dΛt = −rΛt dt+ Yt dt. (OA.60)
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Instead of using H as in the auxiliary setting of Section OA.5, we let

Ht = c′(At)− φ1Yt(Yt − νt)− φ2Yt

(
Yt

1 + r
− Λt

)
,

where

φ1 :=
2
√

∆

(1 + r)(κ− 1)(κ+ r)
, and φ2 :=

√
∆(r − 1)

(κ− 1)(κ+ r)
,

and ∆ is as defined in Section B.3.1, namely, ∆ = (r + κ)2(mαmβ −m2
αβ) + (1 + r)2m2

αβ.
Compared to the case of the confidential setting of Section OA.5, we require two penalty

terms to ensure that the principal’s payoff (in the auxiliary setting) and the rater’s objective
(in the original setting) are comparable. As in the confidential exclusive case, the term
φ1Yt(Yt − νt) can be interpreted as a Lagrangian term ensuring that the optimal transfer
for the principal is close to a market belief (in the sense of the original setting). The second

term, φ2Yt

(
Yt

1+r − Λt

)
, is new. It captures the public constraint: together with the first

term, it ensures that the transfer for the principal is close to a market belief derived from
a public information structure. Indeed, recall that any public market belief µ satisfies
Cov[µt, µt+τ ] = Var[µt]e

−τ , by Proposition B.9. If

Λt =

∫ t

0
e−r(t−s)µs ds,

it is immediate that Λ satisfies (OA.60) for Y = µ and

E [µtΛt] =

∫ t

0
e−r(t−s) Cov [µs, µt] ds =

Var [µt]

1 + r

(
1− e−(1+r)t

)
.

Thus,

E

[
µt

(
µt

1 + r
− Λt

)]
=

Var [µt]

1 + r
e−(1+r)t.

As opposed to the first penalty term, this expectation does not vanish for finite values of t,
because Λ0 = 0 (more generally, as long as Λ0 is set independently of the contract, the above
expectation cannot be zero for every market belief). However, it converges exponentially to
zero as t grows, and this turns out to be sufficient for our purposes. The specific values
for φ1 and φ2 are carefully selected using the conjectured optimal rating derived from
Euler-Lagrange-type necessary conditions in the first half of this proof.

The principal’s problem is an optimal control problem with three state variables: the
agent’s estimate of his ability, ν, the state associated with the public constraint, Λ, and the
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agent’s continuation transfer, J . The state variables evolve according to

dνt = −κνt dt+
κ− 1

mβ

K∑
k=1

βk
σ2
k

[dSk,t − αkAt dt] ,

dJt = (rJt − Yt) dt+
K∑
k=1

(
ξβ
mβ

κ− 1

1 + r

βk
σ2
k

+ Ck

)
[dSk,t − (αkAt + βkνt) dt] ,

dΛt = −rΛt dt+ Yt dt,

with ξβ :=
∑

k βkCk and Ck :=
∫
τ≥0 e

−rτuk(τ) dτ . As in the confidential exclusive setting
considered in Section OA.5, the principal’s problem can be restated as follows: the principal
seeks to find a stationary linear contract (A, Y ), along with processes Ĉk, k = 1, . . . ,K,
which maximizes, for all t,

E

[∫ ∞
t

ρe−ρ(s−t)
(
c′(As)− φ1Ys(Ys − νs)− φ2Ys

(
Ys

1 + r
− Λs

))
ds

∣∣∣∣ Rt]
subject to:

1. Incentive compatibility: c′(At) = ξ̂α, where ξ̂α :=
∑

k αkĈk.

2. The evolution of the agent’s belief ν, given by

dνt = −κνt dt+
κ− 1

mβ

K∑
k=1

βk
σ2
k

[dSk,s − αkAs ds] .

3. The evolution of the state Λ, given by dΛt = −rΛt dt+ Yt dt.

4. The evolution of the agent’s continuation transfer J , given by

dJt = (rJt − Yt) dt+

K∑
k=1

(
ξ̂β,t

γ2

(1 + κ)(1 + r)

βk
σ2
k

+ Ĉk,t

)
[dSk,t − (αkAt + βkνt) dt] ,

where ξ̂β :=
∑

k βkĈk.

5. The transversality conditions, given by

lim
τ→+∞

E[e−ρτJt+τ | Rt] = 0, and lim
τ→+∞

E[e−ρτJ2
t+τ | Rt] = 0.

We use dynamic programming to solve the principal’s problem. The principal maximizes

E

[∫ ∞
t

ρe−ρ(s−t)
(
ξ̂α,s − φ1Ys(Ys − νs)− φ2Ys

(
Ys

1 + r
− Λs

))
ds

∣∣∣∣ Rt] ,
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for every t, subject to the evolution of the state variables and the transversality conditions.
As before, we solve the principal’s problem without imposing the restriction that transfer
processes be stationary linear, and verify ex post that the optimal transfer in this relaxed
problem is stationary linear. Assume the principal’s value function V is C2(R3), as a
function of the states J , ν and Λ. By standard arguments, Itô’s Lemma yields as HJB
equation

ρV = sup
y,c1,...,cK

ρξ̂α − ρφ1y(y − ν)− ρφ2y

(
y

1 + r
− Λ

)
− νVν + (rJ − y)VJ + (−rΛ + y)VΛ

+
ξ̂β
mβ

(κ− 1)(κ+ r)

1 + r
VνJ +

(κ− 1)2

2mβ
Vνν +

1

2

K∑
k=1

(
ξ̂β
mβ

κ− 1

1 + r

βk
σk

+ σkck

)2

VJJ ,

(OA.61)
where, as before, to shorten notation, we have used the subscript notation for the (partial)
derivatives of V , and have abused notation by using ξ̂α and ξ̂β to denote

∑
k αkck and∑

k βkck, respectively.
We conjecture a quadratic value function V of the form

V (J, ν,Λ) = a0 + a1ν + a2J + a3Λ + a4νJ + a5νΛ + a6JΛ + a7ν
2 + a8J

2 + a9Λ2. (OA.62)

We plug (OA.62) into the dynamic programming equation (OA.61) and solve for the
optimal control variables y, c1, . . . , cK . The equation is quadratic in (y, c1, . . . , cK). The
second-order conditions are

φ1 +
φ2

1 + r
> 0, and (OA.63)

a8 < 0. (OA.64)

That condition (OA.63) is satisfied is immediate by the definition of φ1 and φ2. Assuming
momentarily that (OA.64) holds, the first-order conditions yield as maximizers

y(J,Λ, ν) =
(a6 − 2a8) (r + 1)

2ρ ((r + 1)φ1 + φ2)
J +

(r + 1) (−a6 + 2a9 + ρφ2)

2ρ ((r + 1)φ1 + φ2)
Λ (OA.65)

+
(r + 1) (−a4 + a5 + ρφ1)

2ρ ((r + 1)φ1 + φ2)
ν +

(a3 − a2) (r + 1)

2ρ ((r + 1)φ1 + φ2)
,

ck(J,Λ, ν) =
(κ− 1) (mαβρ(κ+ 2r + 1)− a4(r + 1)(κ+ r))

2a8mβ(κ+ r)2
· βk
σ2
k

− ρ

2a8
· αk
σ2
k

. (OA.66)

Note that y is affine in the three state variables, and every ck is constant. Define

ρ̄ =
√

(ρ+ 2)(ρ+ 2r).
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We then plug the optimal controls in (OA.61) to identify the coefficients a0, . . . , a9.
Contrary to the confidential exclusive case, the system is linear-quadratic. There are two sets
of coefficients that satisfy the equality (OA.61) and the second-order conditions. However,
only one set of coefficients yields a state J that satisfies the transversality condition. Keeping
that set of coefficients, we get:

a1 = a2 = a3 = 0,

a4 =

√
∆ρ(2r − ρ)(ρ+ r + 1) (ρ(ρ+ 2) + (r − 1− ρ)ρ̄)

(κ− 1)(ρ+ 2)(r − 1)r(r + 1)2(κ+ r)
,

a5 =

√
∆ρ2 ((ρ+ 2)(r − 1− ρ)(ρ+ 2r) + (ρ− r + 1)(ρ+ r + 1)ρ̄)

(κ− 1)(ρ+ 2)(r − 1)r(r + 1)2(κ+ r)
,

a6 =

√
∆ρ(2r − ρ)

(
2r2 − (ρ+ 2)r + ρ (ρ̄− ρ− 1)

)
4(κ− 1)r2(κ+ r)

,

a7 =
2
√

∆ρ(ρ− r + 1)2(ρ+ r + 1)2 (ρ− ρ̄+ r + 1)

(κ− 1)(ρ+ 2)2(r − 1)2(r + 1)4(κ+ r)
,

a8 = −
√

∆ρ(2r − ρ)
(
ρ2 + ρ− ρr + 2r(r + 1)

)
8(κ− 1)r2(κ+ r)

−
√

∆ρρ̄(ρ− 2r)2

8(κ− 1)r2(κ+ r)
,

a9 =

√
∆ρ3 (ρ− ρ̄+ r + 1)

8(κ− 1)r2(κ+ r)
.

The expression for a0 does not impact the calculations that follow. Therefore, it is omitted.
Note that, if ρ < r, the coefficient a8 is negative, hence (OA.64) is satisfied, and the
maximizers are determined by the first-order condition. After inserting the coefficients
a1, . . . , a9 into (OA.65) and (OA.66), we obtain the optimal processes Ĉk, which are constant
(and whose expression is lengthy and omitted), as well as the optimal transfer at time t, Yt,
as a linear function of the state variables Jt, νt,Λt:

Yt =

b1b2
b3

 ·
JtΛt
νt

 , (OA.67)

with

b1 :=
(2r − ρ) (ρ̄− ρ+ 2r)

4r
, b2 :=

ρ (ρ− ρ̄+ 2r)

4r
, and b3 :=

(
(ρ+ 1)2 − r2

)
(ρ̄− ρ− 2)

(ρ+ 2)(r − 1)(r + 1)2
.

We insert the optimal control Yt into the equations that determine the evolution of the
state variables. Doing so yields a linear three-dimensional stochastic differential equation,
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namely

d

JtΛt
νt

 = M

JtΛt
νt

+
K∑
k=1


ξ̂β,t

γ2

(1 + κ)(1 + r)

βk
σ2
k

+ Ĉk,t

0
κ− 1

mβ

βk
σ2
k

 [dSk,t − αkAt dt] ,

where

M :=

r − b1 −b2 −ξ̂β
κ+ r

1 + r
− b3

b1 −r + b2 b3
0 0 −κ

 .
The matrix M has three eigenvalues,

δf :=
1

4

(
3ρ− ρ̄−

√
2
√
ρ(ρ+ ρ̄+ 1) + 2r2 − r(ρ+ 2ρ̄− 2)− 2r

)
,

δg :=
1

4

(
3ρ− ρ̄+

√
2
√
ρ(ρ+ ρ̄+ 1) + 2r2 − r(ρ+ 2ρ̄− 2)− 2r

)
,

and δh := −κ. As ρ→ 0, it holds that δf → −
√
r, and δg → −r. Hence, if ρ is close to zero

(i.e., ρ < ρ0, for some ρ0 > 0), the eigenvalues of the matrix M are distinct and negative.
We can writeJtΛt

νt

 =
K∑
k=1

∫
s≤t

(
fke

δf (t−s) + gke
δg(t−s) + hke

δh(t−s)
)

[dSk,t − αkAt dt] ,

where fk,gk and hk are three-dimensional vectors that can be expressed in closed form (the
expression for ρ > 0 is lengthy and omitted). From (OA.67), we get

Yt =

K∑
k=1

∫
s≤t

uk(t− s) [dSk,t − αkAt dt] ,

with uk(τ) := Fke
δf τ +Gke

δgτ +Hke
δhτ , for some constants Fk, Gk, Hk, k = 1, . . . ,K that

depend on the parameters of the model, and, in particular, on ρ. As ρ→ 0, we can simplify
these constants. We obtain Gk → 0, and

Fk →
(κ− 1)mβ (

√
r − κ) (κ+ r)

mβ (
√
r + 1)

√
∆
r (
√
r − κ)

αk
σ2
k
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+
(κ− 1)

(√
∆ + (κ− 1)mαβ (κ+ r −

√
r + 1)−

√
∆r
)

mβ (
√
r + 1)

√
∆
r (
√
r − κ)

βk
σ2
k

,

Hk → −
(κ− 1)

(
(κ− 1)mαβ(r + 1)

√
r +
√

∆(κ− r)
)

√
∆mβ (

√
r + 1) (

√
r − κ)

βk
σ2
k

.

Also, as ρ→ 0,

Ĉk →
mβ(κ+ r)2

√
∆mβ (

√
r + 1)

2
(κ+ r)

αk
σ2
k

+
(κ− 1)

(
2
√

∆r − (κ− 1)mαβ(κ+ 2r + 1)
)

√
∆mβ (

√
r + 1)

2
(κ+ r)

βk
σ2
k

.

Thus,

ξ̂α(= c′(A))→
(κ− 1)

(
mαmβ(κ+ r)2 − (κ− 1)m2

αβ(κ+ 2r + 1) + 2mαβ

√
∆r
)

√
∆mβ (

√
r + 1)

2
(κ+ r)

,

and so, after simplification,

c′(At)→
(κ− 1)

(
1−

(√
r−1√
r+1

)2
)(

2mαβ +
√

∆
r

)
4mβ(κ+ r)

.

Back to the Original Model

We conclude the verification and connect the auxiliary model and the original model.
The procedure is analogous to the confidential case described in Section OA.5. Let (A∗, Y ∗)
be the incentive-compatible contract defined by

c′(A∗t ) =
(κ− 1)

4mβ(κ+ r)

(
1−

(√
r − 1√
r + 1

)2
)(

2mαβ +

√
∆

r

)
,

and

Y ∗t = −
(κ− 1)

(
(κ− 1)mαβ(r + 1)

√
r +
√

∆(κ− r)
)

√
∆mβ (

√
r + 1) (

√
r − κ)

·
K∑
k=1

∫
s≤t

upk(t− s) [dSk,s − αkA∗s ds] .

Here, Y ∗t is the market belief of the conjectured optimal rating of the original setting, and

A∗t is the conjectured optimal action. Let M̂ be a public information structure, generated

by some rating process, which induces a constant action process Â. Let Ŷ := E[θt | M̂t].
Observe that (Â, Ŷ ) is an incentive-compatible stationary linear contract. We show that
c′(A∗) ≥ c′(Â). For ρ < ρ0, let (A(ρ), Y (ρ)) be the optimal incentive-compatible stationary
linear contract defined above.
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Let V ∗ be the principal’s expected payoff under contract (A∗, Y ∗), V̂ her expected
payoff under (Â, Ŷ ), and V (ρ) her expected payoff (A(ρ), Y (ρ)). For every public exclusive
information structureM generated by some rating process, the equilibrium market belief of
the original setting, µt = E[θt | Mt], satisfies Cov[µt, νt] = Var[µt], and Cov[µt, µt+τ ] =
Var[µt]e

−τ for all τ > 0, by Proposition B.9. Thus, under (µ,A), with A the equilibrium
action, the state variable Λ is expressed as Λt =

∫ t
0 e
−r(t−s)µs ds, and the principal’s payoff

is∫ ∞
0

e−ρt
(
c′(A)− φ1µt(µt − νt)− φ2µt

(
µt

1 + r
− Λt

))
dt =

c′(At)

ρ
−φ2

Var [µt]

(1 + r)(1 + r + ρ)
.

Hence, as ρ → 0, ρV ∗ → c′(A∗), and ρV̂ → c′(Â). For every ρ small enough, V (ρ) ≥
V̂ must hold, because (A(ρ), Y (ρ)) is optimal. However, as ρ → 0, c′(A(ρ)) → c′(A∗),
and the linear filter of Y (ρ) converges pointwise to the linear filter of Y ∗. In particular,

Cov[Y (ρ), νt]−Var[Y (ρ)]→ 0, and, for every τ > 0, Cov[Y
(ρ)
t , Y

(ρ)
t+τ ]−Var[Y

(ρ)
t ]e−τ → 0.

Together, these two limits imply that, as ρ→ 0, ρV (ρ) − ρV ∗ → 0. Thus, ρV (ρ) → c′(A∗),
implying that c′(A∗) ≥ c′(Â).

OA.9 Proof of Theorem 5.3 (and Th. B.12)

As for the exclusive cases, the first half of the proof derives a candidate optimal rating
obtained through first-order necessary conditions, and the second half verifies that the
candidate rating just derived is optimal. Recall that the constants mα, mβ , mαβ and κ are
defined in Section B.3.1 of Appendix B. The constants mn

α, mn
β , mn

αβ , me
α, me

β , me
αβ , and κ̂

are defined in Section B.3.3.

OA.9.1 Candidate Optimal Rating

We continue to use the shorthand notation of the proof for the exclusive cases:

U(t) :=
K∑
k=1

βkuk(t), V (t) :=

K∑
k=1

αkuk(t),

U0 :=

∫ ∞
0

U(t)e−t dt, V0 :=

∫ ∞
0

V (t)e−rt dt.

We seek to maximize the equilibrium marginal cost c′(A), where A is the stationary
equilibrium action of the agent, among all confidential information structures with nonex-
clusive signals S1, . . . , SK0 that are generated by some rating process Y that satisfies the
variance normalization Var[Yt] = 1 and that is proportional to the market belief. Recall
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that such a rating process takes the form

Yt =

K∑
k=1

∫
s≤t

uk(t− s) [dSk,s − αkAs ds] ,

where u = {uk}k is the associated linear filter.
Proposition B.11, accounting for the variance normalization, yields the constraints that

Y must satisfy to be proportional to the market belief: for every nonexclusive signal Sk,

Cov[θt, Yt] Cov[Sk,t, Yt+τ ] = Cov[Sk,t, θt+τ ], ∀t,∀τ ≥ 0.

An equivalent constraint, more convenient to work with, is as follows: for every nonexclusive
signal Sk,

Cov[θt, Yt] Cov[(Sk,t+τ − St), Yt+τ ] = Cov[(Sk,t+τ − Sk,t), θt+τ ], ∀t,∀τ ≥ 0.

Lemma B.3 continues to hold and maximizing the equilibrium marginal cost is maximizing

γ2

2

[∫ ∞
0

U(t)e−t dt

] [∫ ∞
0

V (t)e−rt dt

]
.

Recall from the proof for the corresponding result in the confidential exclusive setting
that the variance normalization constraint can be expressed in terms of the linear filter as

K∑
k=1

σ2
k

∫ ∞
0

uk(s)
2 ds+

γ2

2

∫ ∞
0

∫ ∞
0

U(i)U(j)e−|j−i| di dj = 1.

As for the constraints associated with the nonexclusive signals, we have:

Cov[θt, Yt] =
K∑
k=1

∫
s≤t

uk(t− s) Cov[θt, θs] ds =
γ2

2

∫ ∞
0

U(s)e−s ds,

Cov[(Sk,t+τ−Sk,t), θt+τ ] =

∫ τ

0
βk Cov[θt+τ , θt+τ−s] ds =

βkγ
2

2

∫ τ

0
e−s ds =

βkγ
2

2
(1−e−τ ),

and using Itô’s isometry,

Cov[(Sk,t+τ − St), Yt+τ ] =
γ2

2

[∫ τ

0
uk(s)σ

2
k ds+

βkγ
2

2

∫ τ

i=0

∫ ∞
j=0

U(j)e−|i−j| di dj

]
.

Thus, the constraints that the linear filter {uk}k must satisfy are:

G(u) = 1,
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and for all τ ≥ 0, and all k = 1, . . . ,K0,

Hk(u, τ) = βk(1− e−τ ),

where we define

G(u) =
γ2

2

∫ ∞
0

∫ ∞
0

U(i)U(j)e−|j−i| didj +

K∑
i=1

∫ ∞
0

σ2
i ui(t)

2 dt,

Hk(u, τ) =

[∫ ∞
0

U(t)e−t dt

] [
σ2
k

∫ τ

0
uk(s) ds+

βkγ
2

2

∫ τ

i=0

∫ ∞
j=0

U(j)e−|i−j| di dj

]
.

As in the exclusive public setting, it is difficult to solve the optimization problem directly,
given the continuum of constraints. We solve a relaxed optimization problem with 1 + 2K0

constraints: one constraint is associated with the variance normalization, to which we
append two constraints for every nonexclusive signal. We thus maximize F (u), defined as
in the exclusive setting, namely

F (u) :=

[∫ ∞
0

U(t)e−t dt

] [∫ ∞
0

V (t)e−rt dt

]
,

subject to

G(u) = 1,∫ ∞
0

e−rτHk(u, τ) dτ =
βk

r(1 + r)
, ∀k = 1, . . . ,K0,∫ ∞

0
e−κ̂τHk(u, τ) dτ =

βk
κ̂(1 + κ̂)

, ∀k = 1, . . . ,K0.

Assume there exists a solution u∗ = {u∗k}k to the relaxed problem, where u∗ is four times
differentiable, integrable, and square integrable. It will be shown that the solution of this
relaxed optimization problem satisfies the original (continuum of) constraints.

To solve the relaxed problem, we consider the Lagrangian

L (u, λ0, {λr,k}k≤K0 , {λκ,k}k≤K0) := F (u) + λ0G(u)

+

K0∑
i=1

λr,i

∫ ∞
0

e−rτHi(u, τ) dτ

+

K0∑
i=1

λκ,i

∫ ∞
0

e−κ̂τHi(u, τ) dτ.
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Assume there exist λ∗0, λ
∗
r,1, . . . , λ

∗
r,K0

, λ∗κ,1, . . . , λ
∗
κ,K0

such that u∗ maximizes

u 7→ L
(
u, λ∗0, {λ∗r,k}k≤K0 , {λ∗κ,k}k≤K0

)
.

Assume λ∗0 < 0.3 We shall define these constants in such a way that there is a unique
solution to the unconstrained maximization problem (up to a scalar factor), that, in addition,
solves the constraints of the relaxed optimization problem.

In the sequel, we drop the star notation for simplicity. Throughout, let

zk(τ) = σ2
k

∫ τ

0
uk(s) ds+

βkγ
2

2

∫ τ

i=0

∫ ∞
j=0

U(j)e−|i−j| didj.

Applying Proposition OA.1 in Part VI of this Online Appendix, we get first-order
conditions: for all k and all t, Lk(t) = 0, where Lk is defined as follows.

If k indexes an exclusive signal, then

Lk(t) := U0αke
−rt + V0βke

−t

+ λ0

(
2σ2

kuk(t) + γ2βk

∫ ∞
0

U(j)e−|j−t| dj

)
+ βke

−t
K0∑
i=1

λr,i

∫ ∞
0

e−rτzi(τ) dτ

+ βke
−t

K0∑
i=1

λκ,i

∫ ∞
0

e−κ̂τzi(τ) dτ

+
U0βkγ

2

2

∫ ∞
0

∫ τ

0
e−rτe−|s−t| ds dτ

K0∑
i=1

λr,i

+
U0βkγ

2

2

∫ ∞
0

∫ τ

0
e−κ̂τe−|s−t| ds dτ

K0∑
i=1

λκ,i.

3The inequality is a Legendre second-order condition.
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If, instead, k indexes a nonexclusive signal, then we must include two additional terms:

Lk(t) := U0αke
−rt + V0βke

−t

+ λ0

(
2σ2

kuk(t) + γ2βk

∫ ∞
0

U(j)e−|j−t| dj

)
+ βke

−t
K0∑
i=1

λr,i

∫ ∞
0

e−rτzi(τ) dτ

+ βke
−t

K0∑
i=1

λκ,i

∫ ∞
0

e−κ̂τzi(τ) dτ

+
U0βkγ

2

2

∫ ∞
0

∫ τ

0
e−rτe−|s−t| ds dτ

K0∑
i=1

λr,i

+
U0βkγ

2

2

∫ ∞
0

∫ τ

0
e−κ̂τe−|s−t| ds dτ

K0∑
i=1

λκ,i

+ λr,kU0σ
2
k

∫ ∞
t

e−rτ dτ

+ λκ,kU0σ
2
k

∫ ∞
t

e−κ̂τ dτ,

where we note that ∫ ∞
t

e−rτ dτ =
e−rt

r
,∫ ∞

t
e−κ̂τ dτ =

e−κ̂t

κ̂
,∫ ∞

0

∫ τ

0
e−rτe−|s−t| ds dt =

[
2e−rt

r(1− r2)
− e−t

r(1− r)

]
,∫ ∞

0

∫ τ

0
e−κ̂τe−|s−t| ds dt =

[
2e−κ̂t

κ̂(1− κ̂2)
− e−t

κ̂(1− κ̂)

]
.

We first obtain conditions on uk when k indexes an exclusive signal. In the same fashion
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as in the public exclusive case, we obtain

Lk(t)− L′′k(t) = αkU0(1− r2)e−rt

+ 2λ0σ
2
k

[
uk(t)− u′′k(t)

]
+ 2λγ2βkU(t)

+ U0βk
2e−rt

r

K0∑
i=1

λr,i
βiγ

2

2

+ U0βk
2e−κ̂t

κ̂

K0∑
i=1

λκ,i
βiγ

2

2
.

(OA.68)

Now, let k denote the index of a nonexclusive signal. We then obtain

Lk(t)− L′′k(t) = αkU0(1− r2)e−rt

+ 2λ0σ
2
k

[
uk(t)− u′′k(t)

]
+ 2λ0γ

2βkU(t)

+ U0βk
2e−rt

r

K0∑
i=1

λr,i
βiγ

2

2

+ U0βk
2e−κ̂t

κ̂

K0∑
i=1

λκ,i
βiγ

2

2

+ (1− r2)λr,kU0σ
2
k

e−rt

r

+ (1− κ̂2)λκ,kU0σ
2
k

e−κ̂t

κ̂
.

(OA.69)

The equality Lk − L′′k = 0 must hold for every k. Multiplying (OA.68) by βk
2σ2
k
, and

summing over the exclusive signal index k, multiplying (OA.69) by βk/(2σ
2
k) and summing

over the nonexclusive signal index k, and aggregating those two summations, we get that

2λ0

[
U(t)− U ′′(t)

]
+ 2λ0γ

2mβU(t)

is equal to a sum of two exponentials with rates −r and −κ̂.
As by assumption, λ0 6= 0, the characteristic polynomial associated with this linear

differential equation has the familiar roots ±
√

1 + γ2mβ = ±κ. As U is bounded, it implies
that U , expressed as a sum of a particular solution to the above ODE and a solution to the
homogeneous ODE, can be written as the sum of three exponentials:

U(t) = C1e
−rt + C2e

−κt + C3e
−κ̂t. (OA.70)

Plugging back (OA.70) into (OA.68) and (OA.69) and equating to zero, we obtain K
additional differential equations, one for every uk. Accounting for the fact that uk must
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remain bounded, the general solution of these equations yields that uk is the sum of four
exponentials, that is,

uk(t) = D1,ke
−rt +D2,ke

−κt +D3,ke
−κ̂t +D4,ke

−t, (OA.71)

for some constants D1,k, D2,k, D3,k, D4,k.

Determination of the Constants

We plug the general form of uk obtained in (OA.71) in the expression for Lk(t). We get
that, for both exclusive and nonexclusive signal indices k, Lk can be written in the form of
a sum of four exponential terms

Lk = L1,ke
−rt + L2,ke

−κt + L3,ke
−κ̂t + L4,ke

−t,

where, as in the exclusive cases, the constant factors L1,k, L2,k, L3,k, and L4,k depend on
the primitives of the model and the constants D1,k, D2,k, D3,k and D4,k. Asserting that
Lk = 0 is equivalent to L1,k = L2,k = L3,k = L4,k = 0.

Let

Ai =
K∑
k=1

αkDi,k, Bi =
K∑
k=1

βkDi,k,

Br =

K0∑
k=1

βkλr,k, Bκ =

K0∑
k=1

βkλκ,k,

and let

ξr,i =

∫ ∞
0

e−rτzi(τ) dτ,

ξκ,i =

∫ ∞
0

e−κτzi(τ) dτ.

For a nonexclusive signal index k, we have the following:

L1,k =

((
r2 − 1

)
σ2
k (2λ0rD1,k + U0λr,k) + γ2 (−βk) (2B1λ0r +BrU0) + r

(
r2 − 1

)
U0αk

)
r (r2 − 1)

,

L2,k =
2λ0

((
κ2 − 1

)
σ2
kD2,k −B2γ

2βk
)

κ2 − 1
,

L3,k =

((
κ̂2 − 1

)
σ2
k (2κ̂λ0 (D3,k +D4,k) + U0λκ,k)− γ2βk (2B3κ̂λ0 +BκU0)

)
κ̂ (κ̂2 − 1)

,

IV.22



L4,k =
1

2
βk

(
γ2λ0

(
2

(
B1

r − 1
+

B2

κ− 1
+

B3

κ̂− 1

)
+ 2B4t+B4

))
,

+
1

2
βk

(
γ2U0

(
Bκ

(κ̂− 1)κ̂
+

Br
(r − 1)r

)
+ 2

K0∑
i=1

λκ,iξκ,i + 2

K0∑
i=1

λr,iξr,i + 2V0

)
.

Instead, for an exclusive signal index k, we have the following:

L1,k =

(
2λ0r

(
r2 − 1

)
σ2
kD1,k + γ2 (−βk) (2B1λ0r +BrU0) + r

(
r2 − 1

)
U0αk

)
r (r2 − 1)

,

L2,k =
2λ0

((
κ2 − 1

)
σ2
kD2,k −B2γ

2βk
)

κ2 − 1
,

L3,k =

(
2κ̂
(
κ̂2 − 1

)
λ0σ

2
k (D3,k +D4,k)− γ2βk (2B3κ̂λ0 +BκU0)

)
κ̂ (κ̂2 − 1)

,

L4,k =
1

2
βk

(
γ2λ0

(
2

(
B1

r − 1
+

B2

κ− 1
+

B3

κ̂− 1

)
+ 2B4t+B4

))
+

1

2
βk

(
γ2U0

(
Bκ

(κ̂− 1)κ̂
+

Br
(r − 1)r

)
+ 2

K0∑
i=1

λκ,iξκ,i + 2

K0∑
i=1

λr,iξr,i + 2V0

)
.

Similarly, Hk can be written in the form of a sum of four exponential terms and a constant:

Hk = H1,ke
−rt +H2,ke

−κt +H3,ke
−κ̂t +H4,ke

−t +H5,k,

where it can be shown that

H1,k =
U0

(
B1γ

2βk −
(
r2 − 1

)
σ2
kD1,k

)
r (r2 − 1)

,

H2,k =
U0

(
B2γ

2βk −
(
κ2 − 1

)
σ2
kD2,k

)
κ (κ2 − 1)

,

H3,k =
U0

(
B3γ

2βk −
(
κ̂2 − 1

)
σ2
k (D3,k +D4,k)

)
κ̂ (κ̂2 − 1)

,

H4,k =
1

4
γ2U0βk

(
− 2B1

r − 1
− 2B2

κ− 1
− 2B3

κ̂− 1
−B4(2t+ 3)

)
,

H5,k =
1

4
U0

(
4σ2

k (κκ̂D1,k + r (κ (D3,k +D4,k) + κ̂D2,k))

κκ̂r

)
+

1

4
U0

(
γ2βk

(
2

(
B1(r + 2)

r(r + 1)
+
B2(κ+ 2)

κ(κ+ 1)
+
B3(κ̂+ 2)

κ̂(κ̂+ 1)

)
+ 3B4

))
.

Using that L2,k = 0 for all k, we immediately get D2,k = aβk/σ
2
k for some scalar a, and

thus B2 = amβ. Using L4,k = 0 for all k, we get that D4,k is proportional to βk/σ
2
k. As
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the term in e−t vanishes in (OA.70), we get B4 = 0, which in turn implies D4,k = 0 for
all k. Using that H3,k = 0 for every nonexclusive signal index k, we infer that D3,k is also
proportional to βk/σ

2
k for every nonexclusive signal index k. Summing the term H3,k over

these indices, and equating to zero, we get

B3 =

K0∑
k=1

βkD3,k.

Next, for an exclusive signal index k, L3,k = 0 implies that D3,k is proportional to βk/σ
2
k

for the exclusive signal indices as well. Further,

K∑
k=K0+1

βkD3,k = 0

implies that D3,k = 0 for exclusive signal indices k.
Similarly, H1,k = 0 implies that

D1,k =
βk
σ2
k

γ2

(r2 − 1)
B1.

As L3,k = 0, we get

B3 = −BκU0

2κ̂λ0
. (OA.72)

Then, plugging this value of B3 into the equation L3,k = 0 for nonexclusive signal indices k,
we get that, for some ν,

λκ,k = ν
βk
σ2
k

.

Furthermore, Bκ = νmn
β.

Finally,
∑K0

k=1 L1,k = 0 implies that

Br = −
r
(
r2 − 1

)
mn
αβ

−γ2mn
β + r2 − 1

,

and plugging Br back into the equation L1,k = 0 gives

λr,i = −
γ2rβkm

n
αβ

σ2
k (r2 − κ̂2)

− rαk
σ2
k

.
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Then, computing
∑K

k=1 L1,k and equating to zero, we get

B1 = −

(
r2 − 1

)
U0

(
mα

(
r2 − κ̂2

)
+mn

αβ

(
κ2 − r2

))
2λ0(r − κ)(κ+ r) (r2 − κ̂2)

,

and

D1,k = −
U0

(
γ2βkmα + αk

(
r2 − κ2

))
2λ0σ2

k (r2 − κ2)
.

Note that we have

U0 =
amβ

κ+ 1
+

B1

r + 1
+

B3

κ̂+ 1
,

V0 =
amαβ

κ+ r
+
A1

2r
+

A3

κ̂+ r
.

At this stage, beside a, only two unknown variables remain: λ0 and ν.
We plug the values of the variables obtained thus far to express the values of L4,k, H5,k,

and G. This yields two quadratic equations in λ0 and ν, obtained by setting L4,k to zero
and set H5,k equal to G (which is equal to 1).4

Solving for the quadratic system of equations, we obtain, after simplification,

λ0 =

√
r
(

(κ+ 1)mn
αβ(κ+ r)− (κ̂+ 1)mαβ(κ̂+ r)

)
(κ+ 1) (κ̂+ 1)

√
r(κ+ r)(κ̂+ r)

−
√

∆(κκ̂− 1)

(κ+ 1) (κ̂+ 1)
√
r
,

and

ν =
γ2κ̂

κ̂+ 1

(
(r + 1)mn

αβ

(r − κ̂)(κ̂+ r)
+

√
∆√
r

)
,

where ν is chosen to be the unique negative root of the quadratic equation that results (the
other root is the unique positive root and is associated with a minimum of the objective
function), and where, as in Section B.3.1,

∆ :=
(κ+ 1)(κ̂+ 1)

2(κ− κ̂)

[
me
αm

e
β

κ2 − κ̂2
+

(1 + 2r + κ̂)(mn
αβ)2

(r + κ̂)2(κ̂+ 1)
−

(1 + 2r + κ)m2
αβ

(r + κ)2(κ+ 1)

]
.

(We prove below that ∆ ≥ 0, so the square root is well-defined.)
Plugging back these expressions into the variables obtained so far, and (re)defining

λ = (κ− 1)
(√

r(1 + r)mαβ + (κ2 − r2)
√

∆
)
,

4The expressions for L4,k, H5,k, and G are lengthy and therefore omitted. The details of the derivation
and the two equations are available upon request.
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we obtain after simplification, for a given factor a, the following variables.
For k = 1, . . . ,K0:

D1,k = −
a
(
κ2 − 1

)√
r
(
mαβ

(
r2 − κ̂2

)
+mn

αβ

(
κ2 − r2

))
λ (r2 − κ̂2)

βk
σ2
k

,

D2,k = a
βk
σ2
k

,

D3,k = a

(κ+ 1)

(κ̂+ 1)
−

(
κ2 − 1

)√
r(r + 1)

(
mαβ

(
r2 − κ̂2

)
+mn

αβ

(
r2 − κ2

))
(κ̂+ 1)λ (r2 − κ̂2)

 βk
σ2
k

,

and for k = K0 + 1, . . . ,K:

D1,k = −
a
(
κ2 − 1

)
mαβ
√
r

λ

βk
σ2
k

−
a
(
κ2 − 1

) (
r2 − κ2

)√
r

γ2λ

αk
σ2
k

,

D2,k = a
βk
σ2
k

,

D3,k = 0.

It can be verified that the rating process Y defined by such linear filter {uk}k satisfies the
initial set of constraints for every a, except for the normalization constraint; but as rating
policies yield the same market belief when multiplied by a scalar, the exact value of a does
not need to be determined.

To conclude, we show that ∆ ≥ 0, or equivalently that δ0 ≥ 0, with

δ0 :=
(κ+ 1)(r + κ)2

κ2 − κ̂2
me
αm

e
β − (1 + 2r + κ)m2

αβ +
(κ+ 1)(r + κ)2(1 + 2r + κ̂)

(r + κ̂)2(κ̂+ 1)
(mn

αβ)2.

We can express δ0 as

δ0 =
(κ+ 1)(r + κ)2

κ2 − κ̂2
(me

αm
e
β − (me

αβ)2) + f((mn
αβ)2, (me

αβ)2),

where the first term is nonnegative, by the Cauchy-Schwarz inequality, and the second term
is the quadratic form

f((mn
αβ)2, (me

αβ)2) =
(
(mn

αβ)2 (me
αβ)2

)(a11 a12

a21 a22

)(
(mn

αβ)2

(me
αβ)2

)
,
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where

a11 =
(κ− κ̂)

(
2r3 + (1 + κ)(1 + κ̂)(κ+ κ̂) + 4r2(1 + κ+ κ̂) + 2r(1 + κ+ κ̂)2

)
(1 + κ̂)(r + κ̂)2

,

a12 = a21 = −(1 + 2r + κ),

a22 =
r(r + (2 + r)κ) + (1 + 2r + κ)κ̂2

κ2 − κ̂2
.

To prove that this quadratic form is positive semidefinite, we need to check that the three
principal minors are nonnegative. Clearly a11 ≥ 0 and a22 ≥ 0, and finally

a11a22 − a12a21 =
2r(1 + r)2(1 + κ)(r + κ)2

(1 + κ̂)(r + κ̂)2(κ+ κ̂)
≥ 0,

as required.

OA.9.2 Verification of Optimality

We now verify that the candidate rating introduced above is optimal among all ratings.
We continue to use the auxiliary setting introduced in Section OA.5, with the same variables
and notation. However, we must redefine the principal’s instantaneous payoff function, H.

To do so, we first introduce K0 extra state variables, Λr1, . . . ,Λ
r
K0

, with initial value

Λrk,0 =
1

r

∫
s≤0

e−r(t−s) dSk,s,

and which evolve according to

dΛrk,t = −rΛrk,t dt+
1

r
[dSk,t − αkAt dt] . (OA.73)

We also introduce K0 additional state variables, Λκ1 , . . . ,Λ
κ
K0

, with initial value

Λκk,0 =
1

κ̂

∫
s≤0

e−κ̂(t−s) dSk,s,

which evolve as

dΛκk,t = −κ̂Λκk,t dt+
1

κ̂
[dSk,t − αkAt dt] . (OA.74)

Instead of using H as in the case of confidential exclusive ratings, we redefine H as
follows:
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Ht := c′(At)− φ1Yt(Yt − νt) +

K0∑
k=1

φ2,k

(
βk(κ

2 − 1)

2mβr(1 + r)
− YtΛrk,t

)

−
K0∑
k=1

φ3,k

(
βk(κ

2 − 1)

2mβκ̂(1 + κ̂)
− YtΛκk,t

)
,

where

φ1 :=
√

∆/r,

φ2,k := r
αk
σ2
k

+
rmn

αβ(κ2 − 1)

mβ(r2 − κ̂2)

βk
σ2
k

,

φ3,k :=
κ̂(κ2 − 1)

(
mn
αβ

√
r(1 + r) +

√
∆(r2 − κ̂2)

)
mβ
√
r(1 + κ̂)(r2 − κ̂2)

βk
σ2
k

.

The parameter ∆ is defined as in Section B.3.1.
Compared to the case of confidential exclusive ratings, we now include 1 + 2K0 penalty

terms. As before, these penalty terms ensure that the principal’s payoff in this auxiliary
setting and the rater’s objective in the original setting are comparable. The (by now usual)
term φ1Yt(Yt − νt) is a penalty term that ensures that the optimal transfer of the principal
remains close to a market belief of the original setting. To ensure that the optimal transfer
is close to a market belief that incorporates all relevant information of the nonexclusive
signals, we add an additional penalty term for every nonexclusive signal Sk:

φ2,k

(
βk(κ

2 − 1)

2mβr(1 + r)
− YtΛrk,t

)
− φ3,k

(
βk(κ

2 − 1)

2mβκ̂(1 + κ̂)
− YtΛκk,t

)
.

To grasp the intuition behind this term, recall that, by Proposition B.11, for every
nonexclusive signal Sk, any market belief that includes all relevant information about Sk
satisfies

Cov [θt, Sk,t−τ ] = Cov [µt, Sk,t−τ ] , ∀τ ≥ 0, ∀t,

or equivalently,

Cov [θt, Sk,t − Sk,t−τ ] = Cov [µt, Sk,t − Sk,t−τ ] , ∀τ ≥ 0,∀t. (OA.75)

Note that

Cov [θt, Sk,t − Sk,t−τ ] =
βkγ

2

2

(
1− e−τ

)
=
βk(κ

2 − 1)

2mβ

(
1− e−τ

)
.
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Hence, ∫ ∞
0

e−rτ Cov [µt, Sk,t − Sk,t−τ ] dτ =

∫ ∞
0

e−rτ Cov [θt, Sk,t − Sk,t−τ ] dτ

=
βk(κ

2 − 1)

2mβr(1 + r)
,

and ∫ ∞
0

e−κ̂τ Cov [µt, Sk,t − Sk,t−τ ] dτ =

∫ ∞
0

e−κ̂τ Cov [θt, Sk,t − Sk,t−τ ] dτ

=
βk(κ

2 − 1)

2mβκ̂(1 + κ̂)
.

Next, remark that∫ ∞
0

e−rτ Cov [µt, Sk,t − Sk,t−τ ] dτ

= E

[
µt

∫ ∞
0

e−rτ
(
Sk,t −

∫
s≤t αkAs ds− Sk,t−τ +

∫
s≤t−τ αkAs ds

)
dτ

]
= E

[
µt

1

r

∫
s≤t

e−r(t−s) [dSk,s − αkAs ds]

]
= E

[
µtΛ

r
k,t

]
,

where the second equality is obtained by change of variables and integration by part.
Similarly, ∫ ∞

0
e−κ̂τ Cov [µt, Sk,t − Sk,t−τ ] dτ = E

[
µtΛ

κ
k,t

]
.

So, if µ is a market belief that incorporates the information of nonexclusive signal Sk, we
have

E

[
βk(κ

2 − 1)

2mβr(1 + r)
− µtΛrk,t

]
= 0, and E

[
βk(κ

2 − 1)

2mβκ̂(1 + κ̂)
− µtΛκk,t

]
= 0.

If µ was a market belief, but did not incorporate the information of nonexclusive signal
Sk, then these expectations would, in general, be nonzero. The factors φ2,k and φ3,k are
chosen so as to induce the principal to choose, as optimal transfer, a market belief that
does incorporate such nonexclusive information.5

5 In other words, the factor
φ2,ke

−rτ − φ3,ke
−κ̂τ

corresponds to an infinitesimal Lagrangian multiplier associated with the constraint of nonexclusivity

Cov [θt, Sk,t − Sk,t−τ ] = Cov [µt, Sk,t − Sk,t−τ ] .
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In the remainder of this proof, we will also use the following notation:

Φ2,α =

K0∑
k=1

αkφ2,k = rmn
α +

r(mn
αβ)2(κ2 − 1)

mβ(r2 − κ̂2)
,

Φ2,β =

K0∑
k=1

βkφ2,k = rmn
αβ +

rmn
αβm

n
β(κ2 − 1)

mβ(r2 − κ̂2)
,

Φ3,α =

K0∑
k=1

αkφ3,k =
κ̂(κ2 − 1)mn

αβ

(
mn
αβ

√
r(1 + r) +

√
∆(r2 − κ̂2)

)
mβ
√
r(1 + κ̂)(r2 − κ̂2)

,

Φ3,β =

K0∑
k=1

βkφ3,k =
κ̂(κ2 − 1)mn

β

(
mn
αβ

√
r(1 + r) +

√
∆(r2 − κ̂2)

)
mβ
√
r(1 + κ̂)(r2 − κ̂2)

.

The principal’s problem is then an optimal control problem with the following natural
state variables: the agent’s estimate of his ability, ν, the agent’s continuation transfer J , and
the states associated with the nonexclusive constraints. We have the following equations
for the evolution of the state variables:

dνt = −κνt dt+
κ− 1

mβ

K∑
k=1

βk
σ2
k

[dSk,t − αkAt dt] ,

dJt = (rJt − Yt) dt+

K∑
k=1

(
ξβ
mβ

κ− 1

1 + r

βk
σ2
k

+ Ck

)
[dSk,t − (αkAt + βkνt) dt] ,

dΛrk,t = −rΛrk,t dt+
1

r
[dSk,t − αkAt dt] , ∀k = 1, . . . ,K0,

dΛκk,t = −κ̂Λκk,t dt+
1

κ̂
[dSk,t − αkAt dt] , ∀k = 1, . . . ,K0.

Recall that, as in the exclusive cases, ξβ :=
∑

k βkCk and Ck :=
∫
τ≥0 e

−rτuk(τ) dτ .
As in the verification part for the confidential exclusive setting, detailed in Section OA.5,

the principal’s problem can be restated as follows: the principal seeks to find a stationary
linear contract (A, Y ), along with processes Ĉk, k = 1, . . . ,K, such that, for all t, the
principal maximizes

E

[∫ ∞
t

ρe−ρ(s−t)Hs ds

∣∣∣∣ Rt]
subject to:

1. Incentive compatibility: c′(At) = ξ̂α :=
∑

k αkĈk.
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2. The evolution of the agent’s belief ν,

dνt = −κνt dt+
κ− 1

mβ

K∑
k=1

βk
σ2
k

[dSk,s − αkAs ds] .

3. The evolution of the agent’s continuation transfer J ,

dJt = (rJt − Yt) dt+

K∑
k=1

(
ξ̂β,t

γ2

(1 + κ)(1 + r)

βk
σ2
k

+ Ĉk,t

)
[dSk,t − (αkAt + βkνt) dt] ,

with ξ̂β :=
∑

k βkĈk.

4. The evolution of the states Λrk and Λκk , for k = 1, . . . ,K0,

dΛrk,t = −rΛrk,t dt+
1

r
[dSk,t − αkAt dt] , ∀k = 1, . . . ,K0,

dΛκk,t = −κ̂Λκk,t dt+
1

κ̂
[dSk,t − αkAt dt] , ∀k = 1, . . . ,K0.

5. The following transversality conditions

lim
τ→+∞

E[e−ρτJt+τ | Rt] = 0, and

lim
τ→+∞

E[e−ρτJ2
t+τ | Rt] = 0.

We use dynamic programming to solve the principal’s problem. The principal maximizes
the expected value of

∫ ∞
t

ρe−ρ(s−t)
(
ξ̂α,s − φ1Yt(Yt − νt) +

K0∑
k=1

φ2,kYt

(
βk(κ

2 − 1)

2mβr(1 + r)
− Λrk,t

)

−
K0∑
k=1

φ3,kYt

(
βk(κ

2 − 1)

2mβκ̂(1 + κ̂)
− Λκ̂k,t

))
,

conditional on Rt, for every t, subject to the evolution of the different state variables and
the transversality conditions. As in the proof of the exclusive cases, we solve the principal’s
problem without imposing the restriction that transfer processes be stationary linear, and
verify that the optimal transfer in this relaxed problem is indeed stationary linear.

Assume the principal’s value function V is jointly twice continuously differentiable, as
a function of all the state variables. The Hamilton-Jacobi-Bellman (HJB) equation for V
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reads

ρV = sup
y,c1,...,cK

ρξ̂α − ρφ1y(y − ν)− ρy
K0∑
k=1

(
φ2,kΛ

r
k,t − φ3,kΛ

κ
k,t

)
+ V J(rJ − y)− V νν +

K0∑
k=1

V r
k

(
−rΛrk +

βk
r
ν

)
+

K0∑
k=1

V κ
k

(
−κ̂Λκk +

βk
κ̂
ν

)

+
V JJ

2

(
ξ̂2
β

mβ

(κ− 1)(1 + 2r + κ)

(1 + r)2
+

K∑
k=1

σ2
kc

2
k

)
+
V Jνξβ(κ− 1)(κ+ r)

mβ(1 + r)

+
V νν(κ− 1)2

2mβ
+

K0∑
k=1

(
V Jr
k

r
+
V Jκ
k

κ̂

)(
ξβ(κ− 1)βk
mβ(1 + r)

+ σ2
kck

)

+

K0∑
k=1

(
V νr
k

r
+
V νκ
k

κ̂

)
(κ− 1)βk

mβ
+

K0∑
k=1

(
V rr
kk

2r2
+
V rκ
kk

rκ̂
+
V κκ
kk

2κ̂2

)
σ2
k.

(OA.76)

To shorten notation, we have used the following superscript/subscript notation for the
(partial) derivatives of V . We use superscripts to denote the variables (ν, J,Λr,Λκ), and
subscripts to denote the index of the variables Λr and Λκ. For example,

V JJ :=
∂2V

∂J2
, V Jr

k :=
∂2V

∂J∂Λrk
, and V rκ

kj :=
∂2V

∂Λrk∂Λκj
.

We have also abused notation by using ξ̂α and ξ̂β to denote
∑

k αkck and
∑

k βkck, respec-
tively.

We conjecture a quadratic value function V of the form

V (J, ν,Λr,Λκ) = a0 + aJJ + aνν + aJνJν + aJJJ2 + aννν2

+

K0∑
k=1

(
arkΛ

r
k + aJrk JΛrk + aνrk νΛrk + aκkΛκk + aJκk JΛκk + aνκk νΛκk

)
+

K0∑
k,j=1

arκkjΛ
r
kΛ

κ
j +

∑
1≤k≤j≤K0

(
arrkjΛ

r
kΛ

r
j + aκκkj ΛκkΛκj

)
.

(OA.77)
After we substitute (OA.77) into the HJB equation (OA.76), we solve for the optimal

control variables y, c1, . . . , cK . The right-hand side of the resulting equation is a sum of
two quadratic functions, one in y, the other in (c1, . . . , cK). These quadratic functions are
strictly concave when the following second-order conditions are satisfied:

φ1 > 0 and aJJ < 0.
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It is immediate that the first inequality is satisfied by the definition of φ1. Let us assume
momentarily that the second inequality holds. The first-order conditions then yield the
value of the optimal control variables, which allows to identify the constant factors of the
quadratic value function. We get:

0 = aJ = aν = aκk = ark, ∀k = 1, . . . ,K0,

and

aJJ = −ρ(2r − ρ)φ1,

aJν =
(2r − ρ)ρ

(
2r2κ̂(r + κ̂)φ1 − κ̂(r + κ̂)Φ2,β + 2r2Φ3,β

)
2r2(1 + r)κ̂(r + κ̂)

,

aνν = ρ(r − 1− ρ)

×
(
(r − 1− ρ)φ2

1 + dνν2 φ1Φ2,β + dνν3 φ1Φ3,β + dνν22 Φ2
2,β + dνν23 Φ2,βΦ3,β + dνν33 Φ2

3,β

)
×
(
4(1 + r)2(2 + ρ)φ1

)−1
,

where

dνν2 =
−2r(1 + r) + ρ(2 + ρ)

r2(1 + r + ρ)
,

dνν3 =
2
(
r2 − κ̂(1 + ρ)− ρ(2 + ρ) + r(3 + κ̂+ ρ)

)
κ̂(r + κ̂)(1 + κ̂+ ρ)

,

dνν22 =
8r3(r + 1)− 4r2(r + 3)ρ+ 2

(
r + 1− 2r2

)
ρ2 + (r + 3)ρ3 + ρ4

4r4(r − 1− ρ)(r + 1 + ρ)(2r + ρ)
,

dνν23 =
(
− ρ(1 + ρ)(2 + ρ)(κ̂+ ρ)(κ̂+ 1 + ρ)− 2r5 − 4r4(κ̂+ 2 + ρ)

− 2r3
(
κ̂2 + κ̂(4 + ρ)− ρ2 + ρ+ 3

)
+ r2

(
2κ̂2ρ+ κ̂(−4 + ρ(5ρ+ 6)) + ρ(1 + ρ)(8 + 3ρ)

)
+ r

(
κ̂2(2 + ρ(4 + ρ)) + κ̂ρ(6 + ρ(6 + ρ)) + ρ(1 + ρ)(2 + ρ)

) )
×
(
κ̂r2(κ̂+ 1 + ρ)(κ̂+ r)(r − 1− ρ)(r + 1 + ρ)(κ̂+ r + ρ)

)−1
,

and

dνν33 =
(
2κ̂2(1 + ρ)2 + κ̂ρ(2 + ρ)(2 + 3ρ) + ρ2(1 + ρ)(2 + ρ) + 2r4 + 4r3(κ̂+ 1)

+2r2(κ̂(κ̂+ 4) + 1)− 2r
(
2κ̂2(1 + ρ) + κ̂(2 + ρ(8 + 3ρ)) + ρ(1 + ρ)(2 + ρ)

))
×
(
κ̂2(κ̂+ 1 + ρ)(2κ̂+ ρ)(κ̂+ r)2(r − 1− ρ)

)−1
.
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Since φ1 > 0, we have aJJ < 0 as long as ρ ∈ (0, 2r). Thus, the second-order conditions are
satisfied. For k = 1, . . . ,K0,

aJrk = −
ρ(2r − ρ)φ2,k

2r
,

aJκk =
(2r − ρ)ρφ3,k

r + κ̂
,

aνrk =
ρ2 ((r − 1− ρ)φ1 + dνr2 Φ2,β + dνr3 Φ3,β)φ2,k

4r(1 + r)(1 + r + ρ)φ1
,

aνκk =
ρ(r − κ̂− ρ) ((r − 1− ρ)φ1 + dνκ2 Φ2,β + dνκ3 Φ3,β)φ3,k

2(1 + r)(r + κ̂)(1 + κ̂+ ρ)φ1
,

where

dνr2 =
−4r2 + ρ+ rρ+ ρ2

2r2(2r + ρ)
,

dνr2 =
3r2 + r(1 + κ̂)− (1 + ρ)(κ̂+ ρ)

κ̂(r + κ̂)(r + κ̂+ ρ)
,

dνκ2 =
−2r2 − 2rκ̂+ ρ(1 + κ̂+ ρ)

2r2(r + κ̂+ ρ)
,

dνκ2 =
r2 − ρ(1 + ρ) + r(1 + 3κ̂+ ρ)− κ̂(1 + 2ρ)

κ̂(r + κ̂)(2κ̂+ ρ)
.

Finally, for 1 ≤ k, j ≤ K0,

arκkj =
(r − κ̂− ρ)ρ2φ2,kφ3,j

4r(r + κ̂)(r + κ̂+ ρ)φ1
,

and for 1 ≤ k ≤ j ≤ K0,

arrkj =


ρ3φ2,kφ2,j

8r2(2r+ρ)φ1
if k < j,

ρ3φ22,k
16r2(2r+ρ)φ1

if k = j,

aκκkj =


ρ(−r+κ̂+ρ)2φ3,kφ3,j

2(r+κ̂)2(2κ̂+ρ)φ1
if k < j,

ρ(−r+κ̂+ρ)2φ23,k
4(r+κ̂)2(2κ̂+ρ)φ1

if k = j.

The constant term a0 is unwieldy and irrelevant for the sequel. Therefore, its closed form
expression is omitted.

In turn, the controls are expressed as follows. If k > K0, i.e., if Sk is an exclusive signal,
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then

ck(J, ν,Λ) =
αk

2(2r − ρ)φ1σ2
k

−
(κ− 1) (mαβ(1 + 2r + κ)− (r + κ)(2r − ρ)φ1)βk

2mβ(r + κ)2(2r − ρ)φ1σ2
k

,

while if k ≤ K0,

ck(J, ν,Λ) =
αk

2(2r − ρ)φ1σ2
k

−
(κ− 1) (mαβ(1 + 2r + κ)− (r + κ)(2r − ρ)φ1)βk

2mβ(r + κ)2(2r − ρ)φ1σ2
k

−
κ̂(r + κ̂)φ2,k − 2r2φ3,k

4r2κ̂(r + κ̂)φ1
,

and finally,

y(J, ν,Λ) =


bJ

bν

br

bκ

 ·

J
ν

Λr

Λκ

 ,
where

bJ = 2r − ρ,

bν =
1− r + ρ

2 + 2r
+

(2r − ρ)Φ2,β

4r2(r + 1)φ1
−

(2r − ρ)Φ3,β

2(r + 1)κ̂(r + κ̂)
,

br =
ρ

4rφ1
φ2,

bκ = −(r − κ̂− ρ)

2(r + κ̂)φ1
φ3.

In the above equations, φ2 := (φ2,1, . . . , φ2,K0) and φ3 := (φ3,1, . . . , φ3,K0).
Plugging these controls back into the equations of evolution of the state variables, we

obtain a (2 + 2K0)-dimensional stochastic differential equation:

d


Jt

νt

Λr
t

Λκ
t

 = M


Jt

νt

Λr
t

Λκ
t

+
K∑
k=1


ξ̂β,t(κ−1)βk
mβ(1+r)σ2

k
+ Ĉk,t

(κ−1)βk
mβσ

2
k

ek/r

ek/κ̂

 [dSk,t − αkAt dt] ,
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where

M =


−(r − ρ)

ξ̂β(κ+r)
1+r − bν −(br)ᵀ −(bκ)ᵀ

0 −κ 0 0
0 0 −rIK0 0
0 0 0 −κ̂IK0

 .
In these equations, IK0 denotes the K0 ×K0 identity matrix, and ek ∈ RK0 is the vector
with one in the k-th component and zeros elsewhere. The matrix M has four eigenvalues,
−r,−κ̂,−κ,−(r− ρ), which are distinct and negative for ρ ∈ (0, r). Therefore, we can write
Jt
νt
Λr

Λκ

 =

K∑
k=1

∫
s≤t

(
f rke
−r(t−s) + fκk e

−κ(t−s) + f κ̂k e
−κ̂(t−s) + fρk e

−(r−ρ)(t−s)
)

[dSk,t − αkAt dt] ,

for some (2 + 2K0)-vectors f r, fκ, f κ̂, fρ which can be expressed in closed form as a function
of the parameters of the model (as in the public exclusive case, the expression for ρ > 0 is
lengthy and thus omitted). It follows that

Yt =
K∑
k=1

∫
s≤t

uk(t− s) [dSk,t − αkAt dt] ,

with
uk(τ) = F rk e

−rτ + F κk e
−κτ + F κ̂k e

−κ̂τ + F ρk e
−(r−ρ)τ .

In the limit as ρ→ 0, each factor converges, and the first and last exponential become
a single exponential with rate −r and factor F r + F ρ. For nonexclusive signals Sk, k ≤ K0,
we have

F r + F ρ → −
a(κ2 − 1)

√
r
(
mαβ(r2 − κ̂2) +mn

αβ(κ2 − r2)
)

λ(r2 − κ̂2)

βk
σ2
k

,

F κ → a
βk
σ2
k

,

F κ̂ → a

κ+ 1

κ̂+ 1
−

(κ2 − 1)
√
r(r + 1)(mαβ

(
r2 − κ̂2) +mn

αβ(r2 − κ2)
)

(κ̂+ 1)λ(r2 − κ̂2)

 βk
σ2
k

,

while for the exclusive signal Sk, k > K0,

F r + F ρ → −
a(κ2 − 1)mαβ

√
r

λ

βk
σ2
k

−
amβ(r2 − κ2)

√
r

λ

αk
σ2
k

,

IV.36



F κ → a
βk
σ2
k

,

F κ̂ → 0,

where the scaling factor is

a = −
(κ− 1)

(
mαβ(1 + r)− (r2 − κ2)φ1

)
2mβ(r2 − κ2)φ1

.

The limit of ξ̂α as ρ→ 0 is

c′(A) =
(κ− 1)

(
mn
αβ(κ+ 1)(r + κ) +mαβ(κ̂+ 1)(r + κ̂)

)
2mβ(r + κ)(1 + κ̂)(r + κ̂)

+
(κ− 1)(κ− κ̂)

2mβ(κ̂+ 1)

√
∆

r
.

We observe that, as ρ→ 0, the value obtained for c′(A) corresponds to the conjectured
optimum of the original model, and the optimal transfer Y corresponds to the conjectured
optimal market belief of the optimal rating of the original model, presented at the end of
Part I.

OA.9.2.1 Back to the Original Model

We can now conclude the verification, in a way very similar to the confidential setting
detailed in Section OA.5. We will therefore skip the details.

Let (A∗, Y ∗) be the incentive-compatible contract defined by Y ∗ as the market belief of
the conjectured optimal rating of the original setting, defined by the linear filter described
at the end of Part I, and A∗t the associated conjectured optimal action.

Let M̂ be a confidential information structure with nonexclusive signals Sk, k ≤ K0,
associated with market belief Ŷ and stationary action Â; (Â, Ŷ ) is then a well-defined
incentive-compatible stationary linear contract. We want to show that c′(A∗) ≥ c′(Â).

Let (A(ρ), Y (ρ)) be the optimal incentive-compatible stationary linear contract defined
as the optimal solution above, as a function of the discount rate of the principal ρ, with
V (ρ) the corresponding principal’s expected payoff. Under both (A∗, Y ∗) and (Â, Ŷ ), the
expectation of the penalty term in the principal’s payoff vanishes. Thus, the principal’s
expected payoff for contract (A∗, Y ∗) is V ∗ := c′(A∗)/ρ, while the principal’s expected
payoff for contract (Â, Ŷ ) is V̂ := c′(Â)/ρ. Then, for every ρ ∈ (0, r), the inequalities
ρV (ρ) ≥ ρV̂ = c′(Â) must hold. However, as ρ→ 0, c′(A(ρ))→ c′(A∗), and the linear filter
of Y (ρ) converges pointwise to the linear filter of Y ∗, as shown by the limits above. Thus,
the expectation of the penalty term of the principal’s payoff converges to zero, which in
turn implies that ρV (ρ) → c′(A∗). Hence, c′(A∗) ≥ c′(Â).
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OA.10 Missing Formulas for Theorem 5.4 (and Th. B.13)

The missing formulas for Theorem B.13 are

dn := −κ− 1

δ − 1
−

Λ1Rβ(δ + κ− r − 1)

z(δ − 1) (δ + κ−Rβ)
,

ce :=
(δ − r) (mαβRβ + z)

(r − κ)z
, de :=

(δ − r)(κ+ r)mβRβ
(κ2 − 1) z

,

where

Λ1 :=
λ1(κ+ r)

((
1− δ2

)
mβ +

(
κ2 − 1

)
mn
β

)
(δ − 1)mβ(r − δ)

,

Rβ :=
(κ− 1)

(
(δ − 1)(r + 1)mβ + (κ+ 1)mn

β(r + 1− δ − κ)
)

(δ − 1)mβ(r − δ)
,

z :=
mαβ

((
r2 − 1

)
mβ −

(
κ2 − 1

)
mn
β

)
(δ − κ)mβ

+

(
r2 − κ2

) ((
κ2 − 1

)
λ1m

n
β − (δ − 1)mβ

(
(δ + 1)λ1 +mn

αβ(r − δ)
))

(δ − 1)(δ − κ)mβ(r − δ)
,

in terms of λ1 and δ.
The parameter λ1 is a function of δ, and we accordingly write λ1(δ) when convenient.

It holds that

λ1 =
(r − δ)

(
(κ− 1)σβ

(
r(δ + κ+ 1)− δ2

)
+ (δ + κ)

(
δ2 − κr

))
(A1 +A2)

(1− κ)σβD1 + σαβ(κ+ r)D2
,

where

A1 :=
(
κ2 − 1

)
m2
αβ

(
(δ + κ)2 − (κ+ 1)σβ(2δ + κ− 1)

) ((
κ2 − 1

)
σβ + 2σαβ

(
r2 − κ2

))
,

A2 := (κ+ r)2
(
x2σαmαmβ − (κ+ 1)σ2

αβm
2
αβ((δ − 1)(δ + r)(r − κ) + x(δ + κ− r − 1))

)
,

with
x := (κ+ 1)σβ(δ + κ− r − 1) + (δ + κ)(r − κ).

The expressions for D1 and D2 are somewhat unwieldy. It holds that
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D1 := (κ− 1)(κ+ 1)2σ2
β

(
δ4 − r4 − 2r3 + 2r2

(
2δ2 + 2δκ+ κ2 − 1

)
− 2δ2r(2δ + 2κ− 1)

)
− (κ+ 1)σβ(δ + κ)

(
δ3
(
δ2 + 3δκ+ κ− 1

)
+ r4(δ − 2κ+ 1)

+ r3(δ(3− κ)− 3κ+ 1) + r2
(
δ2(3κ− 1)− 2δ3 + δ

(
4κ2 − κ+ 1

)
+ 4κ

(
κ2 − 1

))
+ δ2r

(
3(1 + κ)(1− δ)− 8κ2

) )
+ (δ + κ)2

(
δ3(2δκ+ δ + κ) + r4(δ − κ) + (δ + 1)r3(δ − κ)

+ r2
(
δ2(κ+ 1)− δ3 − δκ+ 2κ2(κ+ 1)

)
− δ2r

(
δ2 − δκ+ δ + κ(4κ+ 3)

) )
,

and

D2 :=
(
κ2 − 1

)
σ2
β

(
(δ − 1)δ3(κ− 1)− r3

(
2(δ + κ)2 + (1− δ)(κ− 1)

)
+ r2

(
4δ3 + δ2(7κ+ 1) + δ

(
4κ2 + κ− 1

)
+ 2κ

(
κ2 − 1

))
+ δ2r

(
δ − 2δ2 − 5δκ− 4κ2 + κ+ 1

) )
+ σβ(δ + κ)

(
δ3
(
δ
(
1− 3κ2

)
− δ2(κ+ 1) + (κ− 1)κ

)
+ r3

(
δ2(κ− 1) + δ

(
3κ2 − 1

)
+ κ

(
4κ2 + κ− 3

))
+ r2

(
δ3(1− 3κ) + δ2

(
3− 9κ2

)
− δκ

(
4κ2 + κ− 1

)
− 4κ2

(
κ2 − 1

))
+ δ2r

(
δ2(3κ+ 1) + 5δκ2 + δ + κ

(
8κ2 − κ− 5

)) )
− 2(δ + κ)2(r − κ)

(
δ2 − κr

)2
.

Finally, regarding δ, consider the polynomial

P̃ (z) := b0 + b1z + b2z
2 + b3z

3 + b4z
4 + b5z

5 + z6,

with

b0 := ζ (ζ + ψgαβ) ,

b1 := ζ (2ηβ + gαβ) ,

b2 :=
1

2

(
−2ηβ (2ζ − ηβ)− gαβ ((4ψ − 1)ηβ + ψ)− |gαβ|

√
ζ + ψ2 − 2ψηβ

)
,

b3 := −2
(
η2
β + ζ

)
− gαβ (ηβ + ψ)− |gαβ|

√
ζ + ψ2 − 2ψηβ,

b4 :=
1

2

(
2 (ηβ − 2) ηβ + gαβ (ηβ + ψ)− |gαβ|

√
ζ + ψ2 − 2ψηβ

)
,

b5 := 2ηβ + gαβ,
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where σβ := 1−mn
β/mβ, σα := 1−mn

α/mα, σαβ := 1−mn
αβ/mαβ and

ηβ :=
κ(1− σβ) + σβ

r
, ζ :=

κ2(1− σβ) + σβ
r2

,

gαβ :=
2(κ− 1)(r + 1)2χ(χ+ 1)m2

αβ

r
(
σαmαmβ(κ+ r)2 + (κ− 1)m2

αβ (2(r + 1)χ− (κ− 1)σβ)
) ,

ψ :=
(κ− 1)σβ + χ(κ(χ+ 2) + χ)

2rχ(χ+ 1)
, χ :=

(κ− 1)σβ − σαβ(κ+ r)

r + 1
.

We show the following lemma.

Lemma OA.1 The polynomial P̃ is irreducible and admits no solutions in terms of radicals.
It has exactly two positive distinct roots δ̃−, δ̃+. Let δ− = rδ̃−, δ+ = rδ̃+. It holds that either
(δ2
− − r)λ1(δ−) < 0 or (δ2

+ − r)λ1(δ+) < 0, but not both. The parameter δ is equal to δ− if
(δ2
− − r)λ1(δ−) < 0, and to δ+ otherwise.

Proof. Throughout, we use the notation

ρβ =
mn
β

mβ
, pαβ = mαβ −mn

αβ = me
αβ, pα = mα −mn

α = me
α.

We rule out the trivial case ρβ = 1.

We recall that the exponent δ is given by one of the roots (if any) of the polynomial P ,
defined as

P (x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6,

with

a0 = r2
((
κ2 − 1

)
ρβ + 1

) (
(κ+ r)2

(
mβpα

((
κ2 − 1

)
ρβ + 1

)
+
(
κ2 − 1

)
p2
αβ

)
− 2(κ− 1)κmαβpαβ(κ+ r + 1)(κ+ r)− (κ− 1)2 (ρβ − 1)m2

αβ(κ+ r + 1)2
)
,

a1 = 2r2
((
κ2 − 1

)
ρβ + 1

) (
(κ+ r)2

(
mβpα ((κ− 1)ρβ + 1) + (κ− 1)p2

αβ

)
+ (1− κ)mαβpαβ(2κ+ r + 1)(κ+ r)− (κ− 1)2 (ρβ − 1)m2

αβ(κ+ r + 1)
)
,

a2 = r
(
2(κ− 1)mαβpαβ(κ+ r)

(
(1− κ)ρβ

(
r2 − 2κ(κ+ 1) + r

)
+ κ

(
r2 + r+ 2

)
+ κ2(r+ 2)

− r(r + 1)
)

+ (κ+ r)2
(
mβpα ((κ− 1)ρβ + 1) ((κ− 1)ρβ(r − 2κ− 2) + r − 2)

+ (κ− 1)p2
αβ ((κ− 1)ρβ(r − 2κ− 2)− κ(r + 2) + r − 2)

)
+ (κ− 1)2 (ρβ − 1)m2

αβ(κ+ r + 1)
(
2
(
κ2 − 1

)
ρβ + r2 + κ(r + 2) + r + 2

))
,

a3 = r
(
2(κ+ r)2

(
mβpα ((1− κ)ρβ ((κ− 1)ρβ + κ+ 3)− 2)− p2

αβ

(
(κ− 1)2ρβ + κ2 − 1

))
+ 4(κ− 1)mαβpαβ(κ+ r)

((
κ2 − 1

)
ρβ + κ(κ+ r + 1) + 1

)
+ 2(κ− 1)2 (ρβ − 1)m2

αβ

((
κ2 − 1

)
ρβ + κ(κ+ 2) + r2 + 2(κ+ 1)r + 2

))
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a4 = −(κ− 1)2 (ρβ − 1)m2
αβ

((
κ2 − 1

)
ρβ + 2κ+ 1

)
+ (κ+ r)2

(
(κ− 1)p2

αβ ((κ− 1)ρβ + 2)−mβpα ((κ− 1)ρβ + 1) (ρβ(1− κ) + 2r − 1)
)

+ 2(κ− 1)mαβpαβ(κ+ r) ((κ− 1)ρβ(r − κ) + r − 2κ)

a5 = 2(κ+ r)2
(
mβpα ((κ− 1)ρβ + 1) + (κ− 1)p2

αβ

)
− 2(κ− 1)mαβpαβ(2κ+ r + 1)(κ+ r)− 2(κ− 1)2 (ρβ − 1)m2

αβ(κ+ r + 1),

a6 = mβpα(κ+ r)2 − 2(κ− 1)mαβpαβ(κ+ r)− (κ− 1)2 (ρβ − 1)m2
αβ.

We first show that such a root exists; in fact, we show that exactly two positive roots of P
exist. We break the analysis in a series of claims.

1. The polynomial P is (for general parameters) irreducible and cannot be solved by
radicals.

2. The coefficients a0 and a6 are strictly positive.

3. The polynomial P has at most two (real) positive roots.

4. The polynomial P has at least two positive roots.

We then show that these roots yield values of different signs for the candidate λ0 providing
a criterion to select the correct root. (An alternative selection criterion, of course, is to
compare the value of the objective at each of these two roots.)

Step 1: P cannot be solved. For this it suffices to use a simple (not nongeneric)
example. We consider the case of three signals (the first one being the only nonexclusive
one) with α1 = α2 = α3 = 1, βk = σk = k, k = 1, 2, 3, γ = 1, r = 3, giving (up to a
multiplicative constant),

P (x) = 1517x6 + 10356x5 + 15552x4 − 31388x3 − 97977x2 − 59688x+ 7154.

Irreducibility can be determined using the Mathematica c© programming language, using
the (exact) command IrreduciblePolynomialQ. The GAP package RadiRoot formally
determines whether a given polynomial has a solvable Galois group; applying it to this
polynomial establishes that it does not, and hence, its roots cannot be expressed by radicals.

Step 2: The coefficients a0, a6 are positive. First, we note that

p2
αβ < (1− ρβ)mβpα, (OA.78)

as
p2
αβ − (1− ρβ)mβpα = (mαβ − nαβ) 2 − (mα − nα) (mβ − nβ) ≤ 0
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by the Cauchy-Schwarz inequality. Hence,

a6 = mβpα(κ+ r)2 − 2(κ− 1)mαβpαβ(κ+ r)− (κ− 1)2 (ρβ − 1)m2
αβ

≥
p2
αβ(κ+ r)2

1− ρβ
− (κ− 1)2 (ρβ − 1)m2

αβ − 2(κ− 1)mαβpαβ(κ+ r)

=
((κ− 1) (ρβ − 1)mαβ + pαβ(κ+ r)) 2

1− ρβ
> 0.

As for a0, we first note that we can ignore the factor r2
((
κ2 − 1

)
ρβ + 1

)
(positive).

Using also (OA.78) to minorize mβpα (its coefficient being positive), we have

(κ+ r)2
(
mβpα

((
κ2 − 1

)
ρβ + 1

)
+
(
κ2 − 1

)
p2
αβ

)
− 2(κ− 1)κmαβpαβ(κ+ r + 1)(κ+ r)− (κ− 1)2 (ρβ − 1)m2

αβ(κ+ r + 1)2

≥ −2(κ− 1)κmαβpαβ(κ+ r + 1)(κ+ r)− (κ− 1)2 (ρβ − 1)m2
αβ(κ+ r + 1)2

+ (κ+ r)2

(
p2
αβ

((
κ2 − 1

)
ρβ + 1

)
1− ρβ

+
(
κ2 − 1

)
p2
αβ

)

=
((κ− 1) (ρβ − 1)mαβ(κ+ r + 1) + κpαβ(κ+ r)) 2

1− ρβ
,

which is positive.

Step 3: The polynomial P has at most two positive roots. We establish this result
by applying Descartes’ rule of sign, which states that an upper bound to the number of
positive roots of a polynomial is given by the number of changes of signs in the sequence of
its coefficients. We show that the sequence changes signs twice at most (in fact, exactly,
though we won’t need this).

We define

ηβ =
(κ− 1)ρβ + 1

r
,

ζ =

(
κ2 − 1

)
ρβ + 1

r2
,

gαβ =
2(κ− 1) ((κ− 1) (ρβ − 1)mαβ + pαβ(κ+ r)) ((pαβ −mαβ)(κ+ r) +mαβ(κ− 1)ρβ)

r
(

(κ− 1)2 (1− ρβ)m2
αβ +mβpα(κ+ r)2 − 2(κ− 1)mαβpαβ(κ+ r)

) ,

ψ =
κ+

(κ−1)(r+1)mαβ(κ+r)((ρβ−1)mαβ+pαβ)
((κ−1)(ρβ−1)mαβ+pαβ(κ+r))(mαβ(κ+r−(κ−1)ρβ)−pαβ(κ+r))

+ 1

2r
.
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This corresponds to the consecutive change of variables

pαβ → ±
√
wαβ
√
zα√

κ− 1(κ+ r)
,

mαβ →
√
wαβ
√
zα√

κ− 1
,

wαβ →
rgαβ

2 (yαβ (κ− rηβ)− 1) (yαβ (κ− rηβ + r + 1)− 1)
,

pα →
zα (wαβyαβ (yαβ (rηβ − κ) + 2) + 1)

mβ(κ+ r)2
,

yαβ →
κ2 + κ− r2ψ ±D + (2rψ − κ) (rηβ − 1)− rηβ − 2κrψ + κr + rψ

(κ− rηβ) ((κ+ r)(κ− 2rψ + r + 2)− (rηβ − 1) (κ− 2rψ + 1))
,

κ→
ζr2 − rηβ
rηβ − 1

,

ρβ →
rηβ − 1

κ− 1
,

where

D = (r + 1)
√

(rηβ − 1) (κ− 2rψ + 1) + (rψ − 1)2.

The sign in front of pαβ is chosen positive (negative) if mαβ is positive (negative), and
similarly, the sign in front of D is positive if

((κ− 1) (ρβ − 1)mαβ + pαβ(κ+ r)) (mαβ (κ+ r − (κ− 1)ρβ)− pαβ(κ+ r))

is positive. Finally, we do the change x→ rz.
We note for future reference that ζ, ηβ ≥ 0, and also

ζ − η2
β =

(κ− 1)2 (1− ρβ) ρβ
r2

> 0, (OA.79)

which implies in particular that

ζ + ψ2 − 2ψηβ ≥ (ψ − ηβ) 2 > 0.

(We occasionally take the square root of the left term in what follows.)
Up to a positive multiplicative constant (namely, a6), P is equal to P̃ , where

P̃ (z) = b0 + b1z + b2z
2 + b3z

3 + b4z
4 + b5z

5 + z6,
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with

b0 = ζ (ζ + ψgαβ) ,

b1 = ζ (2ηβ + gαβ) ,

b2 =
1

2

(
−2ηβ (2ζ − ηβ)− gαβ ((4ψ − 1)ηβ + ψ)− |gαβ|

√
ζ + ψ2 − 2ψηβ

)
,

b3 = −2
(
η2
β + ζ

)
− gαβ (ηβ + ψ)− |gαβ|

√
ζ + ψ2 − 2ψηβ,

b4 =
1

2

(
2 (ηβ − 2) ηβ + gαβ (ηβ + ψ)− |gαβ|

√
ζ + ψ2 − 2ψηβ

)
,

b5 = 2ηβ + gαβ.

We already know that b0 ≥ 0 (since b0 = a0/a6), and it is plain that sgn b1 = sgn b5. We
now show the following in turn.

The coefficient b3 is negative. (This is not entirely obvious because both ψ and gαβ can
take either sign.) Without loss, consider the case in which gαβ < 0 (the other case is entirely
symmetrical). If ψ > 0, then gαβ ≥ −ζ/ψ (because b0 > 0) and so

b3 = gαβ

(√
ζ + ψ2 − 2ψηβ − ηβ − ψ

)
− 2

(
η2
β + ζ

)
(OA.80)

≤ −
ζ
(√

ζ + ψ2 − 2ψηβ − ηβ + ψ
)

+ 2ψη2
β

ψ
,

an expression that is readily maximized over the domain {ψ, ζ, ηβ : ζ ≥ η2
β}, with maximum

0 at (ψ, ζ, ηβ) = (1, 0, 0). If instead ψ < 0, the maximum of (OA.80) over gαβ and
{ψ, ζ, ηβ : ζ ≥ η2

β} obtains at gαβ = 0, and (ψ, ζ, ηβ) = (−1, 0, 0), and is equal to zero as
well.

We note that this implies that there can be at most one switch of sign in the sequence
{b0, b1, b2, b3} if b2 ≤ 0, and similarly on {b3, b4, b5, b6 = 1} if b4 ≤ 0. The conclusion will
follow more generally if b2 ≥ 0, then b1 > 0 (and similarly, if b4 ≥ 0, then b5 > 0).

If b2 ≥ 0, then b1 > 0. Suppose not, that is, suppose b1 ≤ 0, or gαβ ≤ −2ηβ(< 0).
Clearly then

b2 =
1

2

(
2ηβ (ηβ − 2ζ) + gαβ

(√
ζ + ψ2 − 2ψηβ + (1− 4ψ)ηβ − ψ

))
is largest when ζ is smallest. Either the relevant constraint is (OA.79), and substituting
for ζ into b2 to majorize it, we are left with an expression that is easily seen to admit as
maximum over {

(gαβ, ηβ, ψ) : 2ηβ + gαβ < 0, ηβ ≥ 0, η2
β + ψgαβ

}
IV.44



the triple (gαβ, ηβ, ψ) = (−1, 1/2, 1/4), equal to 0. Or the constraint ζ + ψgαβ binds,
and eliminating ζ, the maximum over {2ηβ + gαβ < 0, ηβ ≥ 0} is seen to be 0, achieved at
(gαβ, ηβ, ψ) = (−1, 0, 0). Hence, b4 < 0.

If b4 ≥ 0, then b5 > 0. This case is handled exactly as the previous one: if b5 ≤ 0, then
gαβ ≤ −2ηβ(< 0), and b4 being decreasing in ζ, we majorize b4 by replacing ζ by its
minimum value, corresponding to one of the two constraints; we then consider the two
possible binding constraints for ζ, ζ ≥ η2

β > 0, ζ + ψgαβ > 0, and show that the maximum
is 0.

Step 4: The polynomial P admits at least two positive roots. Because a0 > 0
and a6 > 0, it suffices to show that P (x) < 0 for some x > 0, or equivalently, P̃ (z) < 0 for
some z > 0. We consider the polynomial Q̃ given by

Q̃(z) = z3 + ηβ(z − 1)z − ζ.

Its coefficients are given by (−ζ,−ηβ, ηβ, 1). Hence, recalling that ηβ ≥ 0, ζ ≥ 0, it follows
that Q̃ has at most one positive (real) root. Yet clearly, Q̃(0) < 0 while limz→∞ Q̃(z) = +∞;
in fact, Q̃(

√
η) = η2

β − ζ, which is negative, given (OA.78). Hence, Q admits exactly one
root z∗ in the interval (

√
η,∞).

We will show that P̃ (z∗) < 0. At z∗, it holds that ζ = (z∗)3 + ηβ(z∗− 1)z∗, by definition
of Q̃. We eliminate ζ from P̃ using this identity, and obtain that

P̃ (z∗) =
1

2
z∗(1 + z∗)

(
(2(z∗)3 + ηβ((z∗ − 1)z∗ − 2ψ) + ψ(z∗ − 1)z∗)gαβ

− |gαβ|z∗ (z∗ + 1)

√
ψ2 + ηβ ((z∗ − 1) z∗ − 2ψ) + (z∗)3

)
.

We argue that the negative last term dominates the (possibly positive) other terms appearing
in the brackets. To do so, compare their magnitude by taking the difference of the squares,
and compute

(z∗) (z∗ + 1)2
(
ψ2 + ηβ ((z∗ − 1) z∗ − 2ψ) + (z∗)3

)
−
(
(2(z∗)3 + ηβ((z∗ − 1)z∗ − 2ψ) + ψ(z∗ − 1)z∗)

)2
=
(

2ψ − (z∗)2 + z∗
)2

(ηβ + z∗)
(

(z∗)2 − ηβ
)
,

which is positive, because z∗ >
√
ηβ. Hence, P̃ (z∗) < 0.

How to select the root. We have not only shown that P , or P̃ , admits two positive
roots z < z, but have found in Step 4 a value z∗ such that z < z∗ < z. By definition, the
value of z∗ is the root of a polynomial, defined in Step 4 as Q̃.
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The rational function that gives λ0 as a function of x is equal to

Q(x) =
Q1(x)Q2(x)

Q3(x)
,

where Qk are polynomial in x, with Q1 being cubic and Q2 quadratic (with a negative
discriminant, and hence no real roots). Applying the same change of variable to Q1 as
in Step 3, we obtain a new polynomial, which is precisely (up to a positive multiplicative
constant) Q̃. Hence, Q changes signs at z∗/r, resulting in precisely one of the two roots
being associated with a negative value for the corresponding λ0. We omit the details.

OA.11 Proof of Theorem 5.4 (and Th. B.13)

We proceed as for the other three cases. The first half of the proof derives a candidate
optimal rating, while the second half verifies that the candidate rating just derived is
optimal. We recall that the constants mα, mβ, mαβ and κ are defined in Section B.3.1,
while the constants mn

α, mn
β, mn

αβ, me
α, me

β, me
αβ, and κ̂ are defined in Section B.3.3.

OA.11.1 Candidate Optimal Rating

We continue to use the shorthand notation of the proof for the exclusive cases:

U(t) :=
K∑
k=1

βkuk(t), V (t) :=
K∑
k=1

αkuk(t),

U0 :=

∫ ∞
0

U(t)e−t dt, V0 :=

∫ ∞
0

V (t)e−rt dt.

We maximize c′(A), with A the stationary equilibrium action of the agent, among all
public information structures with nonexclusive signals S1, . . . , SK0 , that are generated by
some rating process Y that satisfies the variance normalization Var [Yt] = 1 and that is
proportional to the market belief. We express such a rating process Y via its linear filter
u = {uk}k,

Yt =

K∑
k=1

∫ ∞
0

uk(t− s) [dSk,s − αkA∗ ds] .

Proposition B.11 and Proposition B.9 yield the constraints that Y must satisfy to be
proportional to the market belief. Namely:

1. The constraints of nonexclusivity: for every nonexclusive signal Sk,

Cov[θt, Yt] Cov[Sk,t, Yt+τ ] = Cov[Sk,t, θt+τ ], ∀t,∀τ ≥ 0,
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or equivalently,

Cov[θt, Yt] Cov[(Sk,t+τ − St), Yt+τ ] = Cov[(Sk,t+τ − Sk,t), θt+τ ], ∀t,∀τ ≥ 0.

2. The constraints of publicness, together with the variance normalization:

Cov [Yt, Yt+τ ] = e−τ , ∀r, ∀τ ≥ 0.

Recall from the proofs of the optimal ratings for the nonexclusive confidental and
exclusive public cases, in Sections OA.9 and OA.8 respectively, that the constraints can be
expressed in terms of the linear filter of the rating process as follows:

G(u, τ) = e−τ and Hk(u, τ) = βk(1− e−τ ) ∀τ ≥ 0,∀k = 1, . . . ,K0,

with

G(u, τ) =
γ2

2

∫ ∞
0

∫ ∞
0

U(i)U(j)e−|j+τ−i| didj +
K∑
k=1

σ2
k

∫ ∞
0

uk(s)uk(s+ τ) ds,

Hk(u, τ) =

[∫ ∞
0

U(t)e−t dt

] [
σ2
k

∫ τ

0
uk(s) ds+

βkγ
2

2

∫ τ

i=0

∫ ∞
j=0

U(j)e−|i−j| di dj

]
.

We solve a relaxed optimization problem with 2 + K0 constraints: one constraint is
associated with the variance normalization, one constraint associated with the constraints
of public ratings, and one constraint associated with each nonexclusive signal. Specifically,
we maximize F (u), defined as

F (u) =

[∫ ∞
0

U(t)e−t dt

] [∫ ∞
0

V (t)e−rt dt

]
,

and equal to a constant times c′(A), subject to

G(u, 0) = 1,∫ ∞
0

e−rτG(u, τ) dτ =
1

1 + r
,∫ ∞

0
e−rτHk(u, τ) dτ =

βk
r(1 + r)

, ∀k = 1, . . . ,K0.

Assume there exists a solution u∗ = {u∗k}k to the above problem that is four times
continuously differentiable, integrable, and square integrable, and which in addition satisfies
the continuum of constraints of the original problem.
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Let

L (u, λ0, λ1, {λr,k}k≤K0) = F (u) + λ0G(u, 0) + λ1

∫ ∞
0

e−rτG(u, τ) dτ

+

K0∑
i=1

λr,i

∫ ∞
0

e−rτHi(u, τ) dτ.

Assume there exist λ∗0, λ
∗
1, λ
∗
r,1, . . . , λ

∗
r,K0

such that u∗ maximizes

u 7→ L
(
u, λ∗0, λ

∗
1, {λ∗r,k}k≤K0

)
.

Assume λ∗1/λ
∗
0 > −r. We will choose these constants in such a way that there is a unique

solution to the unconstrained maximization problem (up to a scalar factor), which in
addition solves the constraints of the original problem.

In the sequel, we drop the star notation for simplicity. Throughout, let

zk(τ) = σ2
k

∫ τ

0
uk(s) ds+

βkγ
2

2

∫ τ

i=0

∫ ∞
j=0

U(j)e−|i−j| didj.

As in the other three cases, we apply Proposition OA.1 of this Online Appendix, and
get the following first-order conditions: for all k and all t, it holds that Lk(t) = 0, where Lk
is defined as follows.

If k indexes an exclusive signal, then

Lk(t) := U0αke
−rt + V0βke

−t

+ λ0

(
2σ2

kuk(t) + γ2βk

∫ ∞
0

U(j)e−|j−t| dj

)
+ λ1σ

2
k

∫ ∞
0

e−rτ [uk(t+ τ) + uk(t− τ)] dτ

+ λ1βk
γ2

2

∫ ∞
0

e−rτ
∫ ∞

0
U(j)e−|j+τ−t| dj dτ

+ λ1βk
γ2

2

∫ ∞
0

e−rτ
∫ ∞

0
U(j)e−|t+τ−j| dj dτ

+ βke
−t

K0∑
i=1

λr,i

∫ ∞
0

e−rτzi(τ) dτ

+ U0βk

[
2e−rt

r(1− r2)
− e−t

r(1− r)

] K0∑
i=1

λr,i
βiγ

2

2
.
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If k indexes a nonexclusive signal, then

Lk(t) := U0αke
−rt + V0βke

−t

+ λ0

(
2σ2

kuk(t) + γ2βk

∫ ∞
0

U(j)e−|j−t| dj

)
+ λ1σ

2
k

∫ ∞
0

e−rτ [uk(t+ τ) + uk(t− τ)] dτ

+ λ1βk
γ2

2

∫ ∞
0

e−rτ
∫ ∞

0
U(j)e−|j+τ−t| dj dτ

+ λ1βk
γ2

2

∫ ∞
0

e−rτ
∫ ∞

0
U(j)e−|t+τ−j| dj dτ

+ βke
−t

K0∑
i=1

λr,i

∫ ∞
0

e−rτzi(τ) dτ

+ U0βk

[
2e−rt

r(1− r2)
− e−t

r(1− r)

] K0∑
i=1

λr,i
βiγ

2

2

+ λr,kU0σ
2
k

e−rt

r
.

We first obtain conditions on uk when k indexes an exclusive signal. In a similar fashion as
in the case of public exclusive information structures, we obtain that

Lk(t)− L′′k(t) = αkU0(1− r2)e−rt

+ 2λ0σ
2
k[uk(t)− u′′k(t)] + 2λ0γ

2βkU(t)

+ λ1σ
2
k

∫ ∞
0

e−rτ [uk(t+ τ) + uk(t− τ)] dτ

− λ1σ
2
k

∫ ∞
0

e−rτ
[
u′′k(t+ τ) + u′′k(t− τ)

]
dτ

− λ1σ
2
k

[
−re−rtuk(0) + u′k(0)e−rt

]
+ λ1γ

2βk

∫ ∞
0

e−rτU(t+ τ) dτ

+ U0βk
2e−rt

r

K0∑
i=1

λr,i
βiγ

2

2
.

Let
pk(t) = Lk(t)− L′′k(t),
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and let

Jk(t) =

∫ ∞
0

e−rτ [uk(t+ τ) + uk(t− τ)] dτ,

J(t) =
K∑
i=1

βiJi(t).

Observe that
J ′′k (t) = −2ruk(t) + r2Jk(t),

and, inserting Jk in pk:

pk(t) = αkU0(1− r2)e−rt + 2λ0σ
2
k(uk(t)− u′′k(t)) + 2λ0γ

2βkU(t)

+ 2rλ1σ
2
kuk(t) + λ1(1− r2)σ2

kJk(t) + λ1γ
2βkJ(t) + U0βk

2e−rt

r

K0∑
i=1

λr,i
βiγ

2

2
.

After differentiation, we get

p′′k(t) = r2αU0(1− r2)e−rt + 2λ0σ
2
k

[
u′′k(t)− u′′′′k (t)

]
+ 2λ0γ

2βU ′′(t)

+ 2rλ1σ
2
ku
′′
k(t) + λ1(1− r2)σ2

k

[
−2ruk(t) + r2Jk(t)

]
+ λ1γ

2βk
[
−2rU(t) + r2J(t)

]
+ r2U0βk

2e−rt

r

K0∑
i=1

λr,i
βiγ

2

2
.

Finally, let
qk(t) = p′′k(t)− r2pk(t).

We have
qk(t) = 2λ0σ

2
k

[
u′′k(t)− u′′′′k (t)

]
− r22λ0σ

2
k

[
uk(t)− u′′k(t)

]
+ 2λ0γ

2βkU
′′(t)− 2r2λ0γ

2βkU(t)

+ 2rλ1σ
2
ku
′′
k(t)− 2r3λ1σ

2
kuk(t)

− 2rλ1σ
2
k(1− r2)uk(t)

− 2rλ1γ
2βkU(t).

(OA.81)

We must have qk(t) = 0 for all k and all t, and this defines a differential equation that uk
must satisfy.
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Now, let k denote the index of a nonexclusive signal. We have:

Lk(t)− L′′k(t) = αkU0(1− r2)e−rt + 2λ0σ
2
k

[
uk(t)− u′′k(t)

]
+ 2λ0γ

2βkU(t)

+ λ1σ
2
k

∫ ∞
0

e−rτ [uk(t+ τ) + uk(t− τ)] dτ

− λ1σ
2
k

∫ ∞
0

e−rτ
[
u′′k(t+ τ) + u′′k(t− τ)

]
dτ

− λ1σ
2
k

(
−re−rtuk(0) + u′k(0)e−rt

)
+ λ1γ

2βk

∫ ∞
0

e−rτU(t+ τ) dτ

+ U0βk
2e−rt

r

K0∑
i=1

λr,i
βiγ

2

2
+ (1− r2)λr,kU0σ

2
k

e−rt

r
.

Compared to the case of exclusive signals, we note the presence of one additional term in
the expression for Lk(t)− L′′k(t). However, this term being a constant factor of e−rt, the
chain of transformations we used for the case of exclusive signals continues to yield the
same equation (OA.81). Hence, the differential equation obtained for uk, by setting qk = 0
when k denotes a nonexclusive signal, is the same as when k denotes an exclusive signal.

Thus, multiplying (OA.81) by βk
2σ2
k

and summing over k’s, we get

K∑
k=1

βk
2σ2

k

qk(t) = λ0(U ′′(t)− U ′′′′(t))− r2λ0(U(t)− U ′′(t)) + λ0γ
2mβU

′′(t)

− λ0r
2γ2mβU(t) + rλ1U

′′(t)− rλ1U(t)− rλ1γ
2mβU(t).

As U is bounded, we can discard the positive roots. We conclude that U has the form

U(t) = C1e
−
√
r(r+λ1/λ0)t + C2e

−κt, (OA.82)

for some constants C1 and C2.
Since

∑
k
βk
2σ2
k
qk = 0, U is the solution of a homogeneous linear differential equation,

whose characteristic polynomial has roots ±
√

1 + γ2mβ = ±κ and ±
√
r(r + λ1/λ0) (recall

our assumption that λ1/λ0 > −r).
Next, let us fix an arbitrary pair (i, j) with i 6= j, define ζij(t) = 2(βiσ

2
i uj(t)−βjσ2

jui(t)).
We have

βipj(t)− βjpi(t) = λ0(ζ ′′ij(t)− ζ ′′′′ij (t))− r2λ0(ζij(t)− ζ ′′ij(t)) + rλ1ζij(t)
′′ − rλ1ζij(t),

and since βipj − βjpi = 0 must hold, we obtain a homogeneous linear differential equation
that ζij must satisfy. The roots of the characteristic polynomial are ±1 and ±

√
r(r + λ1/λ0).
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As ζij is bounded, we can discard the positive roots. We conclude that ζij has the form

ζij(t) = C ′1e
−
√
r(r+λ1/λ0)t + C2e

−κt + C ′2e
−t, (OA.83)

for some constants C ′1 and C ′2.
Putting together (OA.82) and (OA.83), it holds that

uk(t) = D1,ke
−
√
r(r+λ1/λ0)t +D2,ke

−κt +D3,ke
−t, (OA.84)

for some constants D1,k, D2,k and D3,k. We can anticipate that D3,k = 0, because U does
not include a term e−t.

Determination of the Constants

Let

δ =

√
r

(
r +

λ1

λ0

)
.

We plug the general form of uk from (OA.84) into the expression for Lk. For both exclusive
and nonexclusive signals Sk, Lk can be written in the form of a sum of three exponential
terms, namely

Lk = L1,ke
−δt + L2,ke

−κt + L3,ke
−t + L4,ke

−rt,

where the constant factors L1,k, L2,k, and L3,k depend on the primitives of the model,
as well as on the constants D1,k, D2,k and D3,k. Asserting that Lk = 0 is equivalent to
L1,k = L2,k = L3,k = 0.

We solve for the constant factors D1,k, D2,k and D3,k, k = 1, . . . ,K, as well as the vari-
ables λ0, λ1, λr,k, using both the first-order condition that Lk = 0, and also the constraints
G1(u, τ) = e−τ and Hk(u, τ) = βk(1− e−τ ).

First, we note that for both exclusive and nonexclusive signals Sk, the term L4,k is

2
(
λ0

(
r2 − κ2

)
+ λ1r

) (
γ2βk

∑
i=1K βiD2,i −

(
κ2 − 1

)
σ2
kD2,k

)
(κ− 1)(κ+ 1)(κ− r)(κ+ r)

.

By assumption, we have (
λ0

(
r2 − κ2

)
+ λ1r

)
6= 0,

which, together with L4,k = 0, implies that

γ2βk
∑
i=1K

βiD2,i −
(
κ2 − 1

)
σ2
kD2,k = 0,
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so that, for every k,

D2,k = a
βk
σ2
k

. (OA.85)

Second, we have, for both exclusive and nonexclusive signals Sk,

L3,k =
γ2U0βk

2(r − 1)r

K0∑
i=1

βiλ2,i + βk

K0∑
i=1

ζiλ2,i

+
2σ2

k

(
λ0

(
r2 − 1

)
+ λ1r

)
r2 − 1

D3,k +
γ2βk

(
λ0

(
r2 − 1

)
+ λ1r

)
(τ − 1) (r2 − 1)

K∑
i=1

βiD1,k

+
γ2βk

(
λ0

(
r2 − 1

)
+ λ1r

)
(κ− 1) (r2 − 1)

∑K
i=1 βiD2,k

+ V0βk,

for some expression ζi (whose expression is lengthy and therefore omitted). Thus, as

λ0

(
r2 − 1

)
+ λ1r 6= 0,

solving for D3,k in the equation L3,k = 0 yields that D3,k is proportional to βk/σ
2
k. Moreover,

the term e−t vanishes in (OA.82), which yields the equality

K∑
k=1

βkD3,k = 0,

which, in turn, implies D3,k = 0.
We have thus identified two factors. Therefore, we may already write

uk(t) = D1,ke
−τt + a

βk
σ2
k

e−κt.

Using this simplified expression for uk, we also get

ζk =
γ2βk(τ + r + 2)

2(τ + 1)r(r + 1)(τ + r)

K0∑
i=1

βiD1,i +
σ2
k

r(τ + r)
D1,k

+
aβk

(
γ2mβ(κ+ r + 2) + 2(κ+ 1)(r + 1)

)
2(κ+ 1)r(r + 1)(κ+ r)

.

Given this simplification in the expression for uk, we now get to the remaining equations
that characterize the unique solution to the problem. These are the equations (OA.86a)–
(OA.86e) below. The numerator of L4,k for an exclusive signal Sk must be zero, which
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yields the equation

0 = −γ2U0βk(r − τ)(r − κ)

K0∑
i=1

βiλ2,i − λ1r
(
r2 − 1

)
σ2
k(r − κ)D1,k

+ r(r − τ)
(
aλ1βk

(
γ2mβ − r2 + 1

)
+
(
r2 − 1

)
U0αk(r − κ)

)
+ γ2λ1rβk(r − κ).

(OA.86a)

The numerator of L4,k for a nonexclusive signal Sk must be zero, which yields the equation

0 = −γ2U0βk(r − τ)(r − κ)

(
K0∑
i=1

βiλ2,i

)
+ (r − τ)

((
r2 − 1

)
U0σ

2
k(r − κ)λ2,k + aλ1rβk

(
γ2mβ − r2 + 1

)
+ r

(
r2 − 1

)
U0αk(r − κ)

)
− λ1r

(
r2 − 1

)
σ2
k(r − κ)D1,k + γ2λ1rβk(r − κ)

K∑
i=1

βiD1,k.

(OA.86b)
Because L3,k = 0, we must have

0 =
γ2U0βk

2(r − 1)r

K0∑
i=1

βiλ2,i + βk

K0∑
i=1

ζiλ2,i

+
βk
(
aγ2mβ

(
λ0

(
r2 − 1

)
+ λ1r

)
+ (κ− 1)

(
r2 − 1

)
V0

)
(κ− 1) (r2 − 1)

+
γ2βk

(
λ0

(
r2 − 1

)
+ λ1r

)
(τ − 1) (r2 − 1)

K∑
i=1

βiD1,k.

(OA.86c)

The public constraint, i.e., the equation G1(u, τ) = e−τ , also yields an equation that
involves a sum of three exponential terms, and can be written as

G1e
−δτ +G2e

−τ = e−τ ,

where G1 and G2 are constant factors obtained by plugging the expression derived for uk
above into the definition of the function G(u, τ), and by simplifying the resulting expressions,
using κ2 = 1 + γ2mβ.

We must have G1 = 0, which yields the equation

0 =
a
(
τ2 + γ2 (−mβ)− 1

)
(τ2 − 1) (τ + κ)

K∑
k=1

βiD1,i +
γ2

2τ − 2τ3

(
K∑
k=1

βiD1,i

)2

+
1

2τ

K∑
k=1

σ2
iD

2
1,i.

(OA.86d)
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We then incorporate the constraint of nonexclusivity, Hk(u, τ) = βk(1 − e−τ ), for every
nonexclusive signal Sk. After plugging the expression obtained for uk just obtained, the
term G2,k(u, τ) is expressed as a sum of three exponentials and a constant term:

Hk(u, τ) = Hk,1e
−δτ +Hk,2e

−τ +Hk,3.

Because Hk,2 = 0, it holds that, for every nonexclusive signal index k,

D1,k =
γ2βk

(τ2 − 1)σ2
k

K∑
k=1

βiD1,i. (OA.86e)

Finally, we must also have G2 = 1, which yields

1

2
γ2U0

(
−
∑K

k=1 βiD1,i

τ − 1
−
amβ

κ− 1

)
+ 1 = 0, (OA.86f)

where we note that

U0 =
amβ

κ+ 1
+

1

τ + 1

K∑
k=1

βiD1,i.

However, we will not use (OA.86f). As will be verified, equations (OA.86a)–(OA.86e) yield a
unique candidate u, up to the scalar constant a which is pinned down by (OA.86f), and this
candidate satisfies the first-order condition, and the public and nonexclusivity constraints.

Throughout, we use the notation

ρβ :=
mn
β

mβ
.

We describe (cnk , c
e
k, λr,k, λ0) as a function of λ1 and δ; then, λ1 as a function of δ; finally,

we define δ as one of the positive roots of some polynomial.
First, we briefly sketch how to solve the system, then state the solution.

1. First, we solve (OA.86a), (OA.86b) for ck, taking the sum
∑K

k=0 ckβk as a parameter.

We multiply each by βk, and add them up, giving us an affine equation for
∑K

k=0 ckβk,
which we solve for.

2. Using the solution for each ck, we obtain an expression for each of them, which is a
function of λ1, λ0 and

∑K0
k=0 βkλr,k.

3. We plug the formula for ck, k ≤ K0 in (OA.86c), which yields an equation for each
λr,k (as a function of λ1, λ0 and

∑K0
k=0 βkλr,k).

4. Taking
∑K0

k=0 βkλr,k as a parameter, we solve for each λr,k, multiply by βk, add them

up, which gives us an affine equation for
∑K0

k=0 βkλr,k, which we solve for.
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5. We plug back into each of our formulas for ck and λr,k, and obtain a solution for each
of them, as a function of λ0, λ1 and δ only. Using that λ0 = rλ1

δ2−r2 , we may eliminate
λ0 altogether, and obtain the formulas for ck and λr,k given below.

We then turn to (OA.86d) and (OA.86e). Substituting for ck and λr,k, (OA.86e) becomes
a quadratic expression for λ1 (and independent of λ0), while (OA.86d) is quadratic in λ1

and affine in λ0. Using that λ0 = rλ1
δ2−r2 , this becomes another expression that is quadratic

in λ1 and independent of λ0. We may eliminate the quadratic term by taking the weighted
average of these two quadratic expressions, thereby obtaining an equation that is affine in
λ1. Solving it gives us λ1 as a function of δ only, given below. Using that λ0 = rλ1

δ2−r2 , the
formula for λ0 follows. Plugging these two formulas into either quadratic expression gives
us a condition that δ must satisfy, which turns out to be precisely P (δ)P ∗(δ) = 0, with P
as defined below, and P ∗ a product of polynomials of degree no larger than two that admit
no real roots.

The above procedure yields the solution

cnk =
C1,k

Rk
, cek =

C2,k

Rk
,

where k is the index of a nonexclusive or an exclusive signal, and C1,k, C2,k and Rk are
given by

C1,k =
(
κ2 − 1

)
βk(δ − r)

(
mαβ

(
r2 − 1−

(
κ2 − 1

)
ρβ
)

+ (κ+ r)
(
(κ+ 1)λ1 (ρβ − 1) +mn

αβ(κ− r)
))
,

C2,k = (r−δ)
(
(κ+1)βk

(
(δ−1)

(
(r+1)mαβ(δ−κ+1−r)+(κ+r)

(
(δ+1)λ1 +mn

αβ(r−δ)
))

+
(
κ2 − 1

)
ρβ ((κ− 1)mαβ − λ1(κ+ r))

)
+ (δ − κ)αkmβ(κ+ r) ((κ+ 1)ρβ(δ + κ− r − 1)− (δ − 1)(r + 1))

)
,

Rk = (κ+ 1)σ2
k

(
(1− δ)mαβ(δ − r)

(
r2 − 1−

(
κ2 − 1

)
ρβ
)

+ (r − κ)(κ+ r)
(
λ1

((
κ2 − 1

)
ρβ − δ2 + 1

)
+ (δ − 1)mn

αβ(δ − r)
))
.

The Lagrangian coefficients λr,k are given by

λr,k =
L2,k

R′k
,

where

L2,k = r
(
(κ+ 1)βk

(
(r + 1)mαβ(δ − r) + (κ+ r)

(
λ1(δ + κ) +mn

αβ(r + 1− δ − κ)
))

+ αkmβ(κ+ r) ((κ+ 1)ρβ(δ + κ− r − 1) + (1− δ)(r + 1))
)
,

R′k = σ2
kmβ(κ+ r) ((δ − 1)(r + 1)− (κ+ 1)ρβ(δ + κ− r − 1)) .
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Finally,

λ0 =
rλ1

δ2 − r2
.

It is time to define λ1 given δ, namely

λ1 =
rQ1Q2

(δ + r)(r + κ)(1 + κ)δ1
, (OA.87)

where
Q1 = (δ + 1)

(
δ2 − r

)
− (κ− 1)ρβ

(
r(δ + κ+ 1)− δ2

)
,

and

Q2 =
(
κ2 − 1

)2
(1− ρβ)m2

αβ

(
(κ+ 1)ρβ(2δ + κ− 1) + (δ − 1)2

)
+ 2

(
κ2 − 1

)
mαβm

e
αβ

(
r2 − κ2

) (
(κ+ 1)ρβ(2δ + κ− 1) + (δ − 1)2

)
+ (κ+ r)2

(
mβm

e
α ((κ+ 1)ρβ(r + 1− δ − κ) + (δ − 1)(r + 1)) 2

+ (κ+ 1)(me
αβ)2

(
(κ+ 1)ρβ(r + 1− δ − κ)2 + (1− δ)2(κ− 2r − 1)

))
,

and
δ1 = d0 + d1δ + d2δ

2 + d3δ
3 + d4δ

4 + d5δ
5 + d6δ

6,

with

d0 = −r2
((
κ2 − 1

)
ρβ

+1
) (

(κ−1) (ρβ−1)mαβ

(
2(κ+1)+(κ+1)ρβ

(
−
(
−2κ2 +r(r+2)+2

))
+r(κ+r+2)

)
+me

αβ(κ+ r)
(
(κ+ 1)ρβ

(
2κ2 − 2κ(r + 1) + r

)
+ κ(r + 2)− r

))
,

d1 = r2
((
κ2 − 1

)
ρβ + 1

) (
(κ− 1) (ρβ − 1)mαβ ((r + 1)(κ+ r)− 4κ(κ+ 1)ρβ)

+me
αβ(κ+ r) (ρβ(−κ(4κ+ 1) + 3κr + r + 1) + (κ− 1)(r + 1))

)
,

d2 = r
(
(κ− 1) (ρβ − 1)mαβ

(
κ

+(κ+1)ρβ
(
5κ−2

(
κ2−1

)
ρβ(−2κ+2r+1)+κ2(r+1)+κr(r+2)−r(r(r+3)+9)−4

)
+ r(3κ+ r(κ+ r + 3) + 5) + 2

)
+me

αβ(κ+ r)
(
κ

+ ρβ
(
κ(κ(κ+ 5)− 2) +

(
κ2 − 1

)
ρβ
(
κ(4κ− 1) + 2r2 − (7κ+ 1)r − 1

)
− (κ− 3)r2 +(

κ
(
κ2 + κ− 10

)
− 2
)
r − 2

)
+ (κ− 1)r2 + 3κr + r + 1

))
,

d3 = me
αβ(κ

+ r)
(
ρβ
(
2(κ− 1) +κ2

(
−4r2 + r+ 1

)
+κr

(
r2 + r+ 6

)
+κ3(3r− 1)− r(r(r+ 5) + 2)

)
+ (κ− 1)(−r − 1)

(
r2 + 1

)
+ (κ− 1)(κ+ 1)ρ2

β(κ+ r(5κ− 4r − 1)− 1)
)

− (κ− 1) (ρβ − 1)mαβ

(
(r + 1)

(
r2 + 1

)
(κ+ r)

− (κ+ 1)ρβ
(
κ− κr2 + 4

(
κ2 − 1

)
rρβ + κ2(3r − 1) + (r + 5)r

))
,
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d4 = −me
αβ(κ+ r)

(
−κ

+ ρβ
(
κ
(
κ2 +κ+ 2

)
+ (3κ− 1)r2 + (κ− 1)(κ+ 1)ρβ(κ− 2r− 1)−

(
4κ2 +κ+ 5

)
r− 2

)
+ r(κ+ κr + r + 3) + 1

)
− (κ− 1) (ρβ − 1)mαβ

(
−κ

+ (κ+ 1)ρβ
((
κ2 − 1

)
ρβ + κ2 + κ− 2r2 − 3(κ+ 1)r + 1

)
+ r(κ+ r(κ+ r + 3) + 3)

)
,

d5 = (κ− 1) (ρβ − 1)mαβ ((r + 1)(κ+ r)− 4κ(κ+ 1)ρβ)

+me
αβ(κ+ r) (ρβ(−κ(4κ+ 1) + 3κr + r + 1) + (κ− 1)(r + 1)) ,

d6 = me
αβ(κ+ r) (−(κ+ 1)ρβ − κ+ 2r + 1)− (κ− 1) (ρβ − 1)mαβ ((κ+ 1)ρβ + κ− r) .

Finally, we are left with pinning down δ. Namely, δ must be one of the roots (if any) of the
polynomial P , defined as

P (x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6,

with

a0 = r2
((
κ2 − 1

)
ρβ + 1

) (
(κ+ r)2

(
mβm

e
α

((
κ2 − 1

)
ρβ + 1

)
+
(
κ2 − 1

)
(me

αβ)2
)

− 2(κ− 1)κmαβm
e
αβ(κ+ r + 1)(κ+ r)− (κ− 1)2 (ρβ − 1)m2

αβ(κ+ r + 1)2
)
,

a1 = 2r2
((
κ2 − 1

)
ρβ + 1

) (
(κ+ r)2

(
mβm

e
α ((κ− 1)ρβ + 1) + (κ− 1)(me

αβ)2
)

+ (1− κ)mαβm
e
αβ(2κ+ r + 1)(κ+ r)− (κ− 1)2 (ρβ − 1)m2

αβ(κ+ r + 1)
)
,

a2 = r
(
2(κ− 1)mαβm

e
αβ(κ+ r)

(
(1− κ)ρβ

(
r2− 2κ(κ+ 1) + r

)
+ κ

(
r2 + r+ 2

)
+ κ2(r+ 2)

− r(r + 1)
)

+ (κ+ r)2
(
mβm

e
α ((κ− 1)ρβ + 1) ((κ− 1)ρβ(r − 2κ− 2) + r − 2)

+ (κ− 1)(me
αβ)2 ((κ− 1)ρβ(r − 2κ− 2)− κ(r + 2) + r − 2)

)
+ (κ− 1)2 (ρβ − 1)m2

αβ(κ+ r + 1)
(
2
(
κ2 − 1

)
ρβ + r2 + κ(r + 2) + r + 2

))
,

a3 = r
(
2(κ+ r)2

(
mβm

e
α ((1−κ)ρβ ((κ−1)ρβ +κ+ 3)−2)− (me

αβ)2
(
(κ−1)2ρβ +κ2−1

))
+ 4(κ− 1)mαβm

e
αβ(κ+ r)

((
κ2 − 1

)
ρβ + κ(κ+ r + 1) + 1

)
+ 2(κ− 1)2 (ρβ − 1)m2

αβ

((
κ2 − 1

)
ρβ + κ(κ+ 2) + r2 + 2(κ+ 1)r + 2

))
,

a4 = −(κ− 1)2 (ρβ − 1)m2
αβ

((
κ2 − 1

)
ρβ + 2κ+ 1

)
+ (κ+ r)2

(
(κ−1)(me

αβ)2 ((κ−1)ρβ + 2)−mβm
e
α ((κ−1)ρβ + 1) (ρβ(1−κ) + 2r−1)

)
+ 2(κ− 1)mαβm

e
αβ(κ+ r) ((κ− 1)ρβ(r − κ) + r − 2κ) ,

a5 = 2(κ+ r)2
(
mβm

e
α ((κ− 1)ρβ + 1) + (κ− 1)(me

αβ)2
)

− 2(κ− 1)mαβm
e
αβ(2κ+ r + 1)(κ+ r)− 2(κ− 1)2 (ρβ − 1)m2

αβ(κ+ r + 1),

a6 = mβm
e
α(κ+ r)2 − 2(κ− 1)mαβm

e
αβ(κ+ r)− (κ− 1)2 (ρβ − 1)m2

αβ.
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OA.11.2 Verification of Optimality

We verify that the candidate for optimal ratings just obtained is optimal. As in the
other three cases, we use the auxiliary setting introduced in Section OA.5, but we redefine
the principal’s instantaneous payoff.

We introduce the extra state variables Λ, Λr1, . . . ,Λ
r
K0

, with initial value

Λ0 = 0,

Λrk,0 =
1

r

∫
s≤0

e−r(t−s) dSk,s,

and which evolve according to

dΛ0 = −rΛt dt+ Yt dt,

dΛrk,t = −rΛrk,t dt+
1

r
[dSk,t − αkAt dt] .

We let the principal’s instantaneous payoff function be defined as

Ht = c′(At)− φ1Yt(Yt − νt)

− φ2Yt

(
Yt

1 + r
− Λt

)
+

K0∑
k=1

φ3,k

(
βk(κ

2 − 1)

2mβr(1 + r)
− YtΛrk,t

)
,

where φ1 is the fraction with numerator

mαβ(r − δ)
(
ραβ(δ − 1)(r + κ)((r2 − δ)(κ− 1) + r(1 + 3δ + 3κ+ δκ))

+ ρβ(κ2 − 1)(δ2 + r(4 + 3r + r2 − δ2))− 4r(r + 1)(δ2 − 1)
)

+λ1(κ+ 1)(r+κ)
(

2r(δ2− 1)(δ+ 1)− ρβ(κ− 1)((r2 + δ2)(δ+κ) + 2r(1 + δ− δ2 +κ))
)
,

and denominator

(r + 1)(r − δ)(r + δ)(κ− 1)(r + κ)((r + 1)(δ − 1) + ρβ(1 + r − δ − κ)(κ+ 1)),

with, as in the first half of this proof, ρβ := mn
β/mβ and ραβ := mn

αβ/mαβ. Additionally,

φ2 :=
(r + 1)(r2 − δ2)

r + δ2
φ1,

φ3,k := r
αk
σ2
k
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−
r(1 + κ)

(
mαβ(1 + r)(−r + δ) + (r + κ)(mn

αβ(1 + r − δ − κ) + (δ + κ)λ1)
)

(r + κ)(mβ(1 + r)(δ − 1) +mn
β(1 + r − δ − κ)(1 + κ))

βk
σ2
k

,

where λ1 is defined by Equation (OA.87) in the first half of this proof. In the remainder of
this proof, we also use the following notation:

Φ3,α :=

K0∑
k=1

αkφ3,k

= rmn
α −

r(1 + κ)
(
mαβ(1 + r)(−r + δ) + (r + κ)(mn

αβ(1 + r − δ − κ) + (δ + κ)λ1)
)

(r + κ)(mβ(1 + r)(δ − 1) +mn
β(1 + r − δ − κ)(1 + κ))

mn
αβ ,

Φ3,β :=

J0∑
k=1

βkφ3,k

= rmn
αβ −

r(1 + κ)
(
mαβ(1 + r)(−r + δ) + (r + κ)(mn

αβ(1 + r − δ − κ) + (δ + κ)λ1)
)

(r + κ)(mβ(1 + r)(δ − 1) +mn
β(1 + r − δ − κ)(1 + κ))

mn
β .

The value of ∆ is defined as in Section B.3.1.
Compared to the benchmark confidential exclusive setting, the principal’s payoff includes

2 +K0 penalty terms. The penalty terms φ1Yt(Yt − νt) and φ2Yt

(
Yt

1+r − Λt

)
play the same

role as in the public exclusive case: they ensure that the optimal transfer of the principal
remains close to a public market belief (however, the two penalty factors φ1 and φ2 differ

from the public exclusive case). The penalty terms −φ3,k

(
βk(κ2−1)

2mβr(1+r) − YtΛ
r
k,t

)
, one for

each nonexclusive signal Sk, ensure that the optimal transfer is close to a market belief
that incorporates the relevant information of the nonexclusive signals (compared to the
confidential nonexclusive setting, only one state variable per signal is required).

The principal’s problem is an optimal control problem whose state variables are: the
agent’s estimate of his ability ν, the agent’s continuation transfer J , and the aforementioned
state variables associated with the public and nonexclusive constraints. The state variables
evolve as follows:

dJt = (rJt − Yt) dt+

K∑
k=1

(
ξβ
mβ

κ− 1

1 + r

βk
σ2
k

+ Ck

)
[dSk,t − (αkAt + βkνt) dt] ,

dνt = −κνt dt+
κ− 1

mβ

K∑
k=1

βk
σ2
k

[dSk,t − αkAt dt] ,

dΛt = (−rΛt + Yt) dt,

dΛrk,t = −rΛrk,t dt+
1

r
[dSk,t − αkAt dt] , k = 1, . . . ,K0.
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As in previous cases, ξβ :=
∑

k βkCk and Ck :=
∫
τ≥0 e

−rτuk(τ) dτ.
As in the proof of the baseline exclusive setting detailed in Section se:excluconf, the

principal’s problem reduces to finding a stationary linear contract (A, Y ), along with
processes Ĉk, k = 1, . . . ,K, such that, for all t, the principal maximizes

E

[∫ ∞
t

ρe−ρ(s−t)Hs ds

∣∣∣∣ Rt]
subject to:

1. Incentive compatibility: c′(At) = ξ̂α :=
∑

k αkĈk.

2. The evolution of the agent’s belief ν,

dνt = −κνt dt+
κ− 1

mβ

K∑
k=1

βk
σ2
k

[dSk,s − αkAs ds] .

3. The evolution of the agent’s continuation transfer J ,

dJt = (rJt − Yt) dt+
K∑
k=1

(
ξ̂β,t

γ2

(1 + κ)(1 + r)

βk
σ2
k

+ Ĉk,t

)
[dSk,t − (αkAt + βkνt) dt] ,

with ξ̂β :=
∑

k βkĈk.

4. The evolution of the state Λ,

dΛt = (−rΛt + Yt) dt.

5. The evolution of the states Λrk, for k = 1, . . . ,K0,

dΛrk,t = −rΛrk,t dt+
1

r
[dSk,t − αkAt dt] , ∀k = 1, . . . ,K0.

6. The following transversality conditions

lim
τ→+∞

E[e−ρτJt+τ | Rt] = 0, and

lim
τ→+∞

E[e−ρτJ2
t+τ | Rt] = 0.

Using dynamic programming without imposing linearity or stationarity of the transfer
processes, and assuming that the principal’s value function V is jointly twice continuously
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differentiable, the HJB equation is:

ρV = sup
y,c1,...,cK

ρξ̂α − ρφ1y(y − ν)− ρφ2y

(
y

1 + r
− Λ

)

+ ρ

K0∑
k=1

φ3,k

(
βk(κ

2 − 1)

2mβr(1 + r)
− yΛrk

)
+ (rJ − y)V J − νV ν + (−rΛ + y)V Λ

+

K0∑
k=1

(
−rΛrk +

βk
r
ν

)
V r
k +

V JJ

2

K∑
k=1

σ2
k

(
ξ̂β
mβ

κ− 1

1 + r

βk
σ2
k

+ Ck

)2

+
V Jν ξ̂β(κ− 1)(κ+ r)

mβ(1 + r)
+
V νν(κ− 1)2

2mβ
+

K0∑
k=1

V Jr
k

r

(
ξ̂β(κ− 1)βk
mβ(1 + r)

+ σ2
kck

)

+

K0∑
k=1

V νr
k

r

(κ− 1)βk
mβ

+

K0∑
k=1

V rr
kk

2r2
σ2
k.

As in Section OA.9 which proves the optimal rating of the nonexclusive confidential
case, we have used a short superscript/subscript notation for the (partial) derivatives of V ,
where we use superscripts to denote the variables (ν, J,Λ,Λr), and subscripts to denote the
index of the variable Λr. Besides, we abuse notation by using ξ̂α and ξ̂β to denote

∑
k αkck

and
∑

k βkck, respectively.
We conjecture a quadratic value function V of the form

V (J, ν,Λ,Λr) = a0 + aJJ + aνν + aΛΛ + aJνJν + aJΛJΛ + aνΛνΛ

+ aJJJ2 + aννν2 + aΛΛΛ2 +

K0∑
k=1

(
arkΛ

r
k + aJrk JΛrk + aνrk νΛrk + aΛr

k ΛΛrk
)

+
∑

1≤k≤j≤K0

arrkjΛ
r
kΛ

r
j .

After substituting this quadratic expression into the HJB equation, we solve for the
optimal control variables y, c1, . . . , cK . The right-hand side of the resulting equation is
a sum of two quadratic functions, one in y, the other in (c1, . . . , cK). These quadratic
functions are strictly concave when the following second-order conditions are satisfied:

φ1 +
φ2

1 + r
> 0 and aJJ < 0. (OA.88)

We will later verify that, if the principal’s discount rate is low enough, the second-order
conditions hold. If the second-order conditions hold, then the first-order conditions yield
the values of the optimal control variables, which in turn allow us to identify the coefficients
of the quadratic value function.
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As for the public exclusive case studied in Section OA.8, there are two sets of coefficients
that satisfy the equations of the first-order conditions. However, only one solution gives a
state J that satisfies the transversality conditions. It is therefore the solution that we keep.

It is helpful to introduce the following variables:

φ̄ := (1 + r)φ1 + φ2,

ρ̄ :=
√
φ̄(2r + ρ)((1 + r)(2r + ρ)φ1 − (2− ρ)φ2),

= (1 + r)

√
φ̄φ1(2r + ρ)(2δ2 + rρ)

r + δ2
,

ϕ̄± := ρ̄+ (2r ± ρ)φ̄.

We then get:
aJ = aν = aΛ = ark = 0, ∀k = 1, . . . ,K0,

and

aJJ = − (2r − ρ)ρ

8r2(r + 1)

(
ϕ̄−(2r − ρ) + 4φ1rρ(r + 1) + φ2(−2r − 2r2 − ρ+ 3rρ)

)
,

aJν =
(2r − ρ)ρϕ̄−

(
2φ1ϕ̄+r

2(1 + r + ρ) + Φ3,β(2ρ̄(r + 1)− ϕ̄+(2 + 2r + ρ))
)

4r3(r + 1)(ρ̄+ 2φ̄+ ρφ̄)ϕ̄+
,

aJΛ =
(2r − ρ)ρ(ρ̄ρ+ (2r + ρ)(φ2 + rφ2 − ρφ̄))

4r2(r + 1)
,

aνν =

[
16(r2 − (1 + ρ)2)2φ2

1 +
8d1(1− r + ρ)φ1Φ3,β

r3ϕ̄+
+
d2Φ2

3,β

r6ϕ̄+

]

× ρφ̄

16(r + 1)(2 + ρ)(ρ̄+ 2φ̄+ ρφ̄)2
,

aνΛ =
ρ2(2ρ̄− ϕ̄+)

(
− 2φ1ϕ̄+r

2(1− r + ρ) + Φ3,β(ϕ̄+(−2r + ρ) + 2φ̄ρ(r + 1))
)

4r3(r + 1)(ρ̄+ 2φ̄+ ρφ̄)ϕ̄+
,

aΛΛ =
ρ3(− ρ̄+ (1 + r)(2r + ρ)φ1 − (1− r − ρ)φ2)

8r2(1 + r)
,

where the constants for the term aνν are given by

d1 = (1 + r + ρ)
(
ϕ̄−(4r2 − ρ2)(1 + r + ρ) + ρ2(1− r + ρ)(2ρ̄− ϕ̄+)

)
+

4r(r + 1)ρ(ρ̄− ϕ̄+)

ρ̄+ 2φ̄+ ρφ̄

(
− φ2(r + 1)(2r + ρ) + 2φ̄(r − 1)2 + ϕ̄+(2 + ρ)

)
,
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d2 =
(

2ρ̄ρ2(1− r + ρ) + ϕ̄−(4r2 − ρ2)(1 + r + ρ)− ϕ̄+ρ
2(1− r + ρ)

)2

− 16r2(r + 1)ρ(ρ̄− ϕ̄+)

ρ̄+ 2φ̄+ ρφ̄

(
− φ2(r + 1)(2r + ρ) + 2φ̄(r − 1)2 + ϕ̄+(2 + ρ)

)
× (2ρφ̄+ 2rρφ̄− 2rϕ̄+ + ρϕ̄+).

Next, for 1 ≤ k ≤ K0,

aJrk = −
ρ(4r2 − ρ2)ϕ̄−φ3,k

4r2ϕ̄+
,

aνrk =
ρ2(ρ̄− ϕ̄+)

(
Φ3,β(− 2φ̄ρ(1− r + ρ) + ϕ̄−(2r − ρ)) + 2φ1ϕ̄+r

2(1− r + ρ)
)
φ3,k

2r3(ρ̄+ 2φ̄+ ρφ̄)ϕ̄2
+

,

aΛr = −
ρ3(ϕ̄+ − 2ρ̄)φ3,k

4r2ϕ̄+
.

Finally,

arrkj =


(1+r)ρ3(ϕ̄+−ρ̄)φ3,kφ3,j

2r2ϕ̄2
+

if k < j,

(1+r)ρ3(ϕ̄+−ρ̄)φ23,k
4r2ϕ̄2

+
if k = j.

The constant term a0 is unwieldy and irrelevant for the sequel. Therefore, it is omitted.
Having derived the expressions for aJJ , let us briefly return to the second-order conditions.

Let us assume φ1 > 0, which can be verified. The first of the second-order conditions given
by (OA.88) is

φ1 +
φ2

1 + r
=

φ̄

1 + r
=
r(r + 1)

r + δ2
φ1 > 0,

and, as ρ→ 0,
aJJ

ρ
→ −(r + δ)2

2r

(
φ1 +

φ2

1 + r

)
< 0.

Therefore, for ρ close enough to zero, the second-order conditions are satisfied.
The controls are then expressed as follows. If k > K0, i.e., if Sk is an exclusive signal,

then

ck(J, ν,Λ,Λ
r) =

1

ζ

(
4r2(r + 1)αk
(2r − ρ)σ2

k

+
2dβ(r + 1)(κ− 1)βk
mβ(r + κ)2(2r − ρ)σ2

k

−
(r + 1)(2r + ρ)ϕ̄−φ3,k

rϕ̄+

)
,
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while if k ≤ K0, i.e., if Sk is a nonexclusive signal,

ck(J, ν,Λ,Λ
r) =

1

ζ

(
4r2(r + 1)αk
(2r − ρ)σ2

k

+
2dβ(r + 1)(κ− 1)βk
mβ(r + κ)2(2r − ρ)σ2

k

)
,

where

ζ := ϕ̄−(2r − ρ) + (2r + ρ)(rφ1 + r2φ1 − φ2) + φ̄(−2r2 + 3rρ),

dβ := −2mαβr
2(1 + 2r + κ) +

(r + κ)(2r − ρ)ϕ̄−(Φ3,β(2ρ̄− ϕ̄+) + φ1ϕ̄+r(1 + r + ρ))

(ρ̄+ 2φ̄+ ρφ̄)ϕ̄+
.

Finally,

y(J, ν,Λ,Λr) =


bJ

bν

bΛ

br

 ·

J
ν
Λ
Λr

 ,
where

bJ =
(2r − ρ)ϕ̄−

4rφ̄
,

bν =
(− r2 + (1 + ρ)2)φ1

ρ̄+ 2φ̄+ ρφ̄
+

2ρ̄ρ(r + 1) + ϕ̄+(2r + 2r2 − 2ρ− ρ2)

2r2(ρ̄+ 2φ̄+ ρφ̄)ϕ̄+
Φ3,β,

bΛ =
ρ(ϕ̄+ − 2ρ̄)

4rφ̄
,

br = −(1 + r)ρ(2r + ρ)

2rϕ̄+
φ3.

In the above equations, φ3 = (φ3,1, . . . , φ3,K0).
Plugging these controls back into the equations of evolution for the state variables, we

obtain a (3 +K0)-dimensional stochastic differential equation:

d


Jt
νt
Lt
Λr
t

 = M


Jt
νt
Lt
Λr
t

+
K∑
k=1


ξ̂β(κ−1)βk
mβ(r+1)σ2

k
+ Ĉk

κ−1
mβ

βk
σ2
k

0
ek/r

 [dSk,t − αkAt dt] ,
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where

M =


r − bJ −bν − ξ̂β κ+r

r+1 −bΛ −(br)ᵀ

0 −κ 0 0
bJ bν bΛ − r (br)ᵀ

0 0 0 −rIK0


In these equations, IK0 denotes the K0 ×K0 identity matrix, and ek ∈ RK0 is the vector
with one in the k-th component and zeros elsewhere. The matrix M has four eigenvalues,
−δρ,−κ,−r,−(r − ρ), where

δρ :=
ρ̄− ρφ̄

2φ̄
.

These eigenvalues are distinct and negative for sufficiently small ρ > 0 if the second-order
conditions (OA.88) are satisfied. Therefore, we can write

Jt
νt
Λt
Λr

 =
K∑
k=1

∫
s≤t

(
f δke
−δρ(t−s) + fκk e

−κ(t−s) + f rke
−r(t−s) + fρk e

−ρ(t−s)
)

[dSk,t − αkAt dt] ,

for some (3 +K0)-vectors f δk , f
κ
k , f

r
k , f

ρ
k (k = 1, . . . ,K0) that can be expressed in closed form

as a function of the parameters of the model (as in the other cases, the expression for ρ > 0
is lengthy and thus omitted). It follows that

Yt =
K∑
k=1

∫
s≤t

uk(t− s) [dSk,t − αkAt dt] ,

with
uk(τ) = F δk e

−δρτ + F κk e
−κτ + F rk e

−rτ + F ρk e
−(r−ρ)τ .

In the limit as ρ→ 0, each factor converges, the first exponential to an exponential with
rate −δ and the last two to a single exponential with rate −r and factor F rk + F ρk . For
nonexclusive signals Sk, k ≤ K0, we have

F δk → adn
βk
σ2
k

,

F κk → a
βk
σ2
k

,

F rk + F ρk → 0,
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while for the exclusive signals Sk, k > K0,

F δk → a

(
ce
βk
σ2
k

+ de
αk
σ2
k

)
,

F κk → a
βk
σ2
k

,

F rk + F ρk → 0,

where dn, ce, de and δ > 0 are defined as in Part I of this proof.
The scaling factor is

a = −
(r + 1)(r − δ)(r − κ)(κ− 1)Φ3,β

2mβr(δ + 1)(r + δ)(δ − κ)φ̄

−
mαβr(r + 1)2(κ− 1)

mβ(r + δ)(δ − κ)(r + κ)φ̄

+
(r + δ2)(r − κ)(κ− 1)

2mβr(1 + δ)(δ − κ)
.

The limit of ξ̂α as ρ→ 0 is

c′(A) = −(r + 1)Φ3,α

(r + δ)2φ̄
−
mαβ(r + 1)(r − δ)(κ− 1)Φ3,β

mβ(δ + 1)(r + δ)2(r + κ)φ̄

+
r(r + 1)(mαmβ(r + κ)2 −m2

αβ(κ− 1)(1 + 2r + κ))

mβ(r + δ)2(r + κ)2φ̄

+
mαβ(r + δ2)(κ− 1)

mβ(1 + δ)(r + δ)(r + κ)
.

As in the other cases, we observe that, as ρ→ 0, the value obtained for c′(A) corresponds
to the conjectured optimum of the original model, and the optimal transfer Y corresponds
to the conjectured optimal market belief of the optimal rating of the original model.

Back to the Original Model

We now conclude the verification. The arguments are similar to those of the public
exclusive setting explained in Section OA.8. Therefore, we skip the details.

Let (A∗, Y ∗) be the incentive-compatible contract defined by Y ∗ as the market belief of
the conjectured optimal rating of the original setting, given by the linear filter described at
the end of Part I, and A∗t the associated conjectured optimal action.

Let M̂ be a confidential information structure with nonexclusive signals Sk, k ≤ K0,
associated with market belief Ŷ and stationary action Â; (Â, Ŷ ) is then a well-defined
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incentive-compatible stationary linear contract. We want to show that c′(A∗) ≥ c′(Â).
Let (A(ρ), Y (ρ)) be the optimal incentive-compatible stationary linear contract defined

as the optimal solution above, as a function of the discount rate of the principal ρ, with
V (ρ) the corresponding principal’s expected payoff.

Let V ∗ be the expected payoff for contract (A∗, Y ∗), and V̂ be the expected payoff for
contract (Â, Ŷ ). As ρ → 0, by a direct extension of the argument used in Section OA.8,
ρV ∗ → c′(A∗) and ρV̂ → c′(Â).

For every ρ ∈ (0, r), the inequalities ρV (ρ) ≥ ρV̂ = c′(Â) must hold. However, as ρ→ 0,
it holds that c′(A(ρ)) → c′(A∗), and the linear filter of Y (ρ) converges pointwise to the
linear filter of Y ∗. By an argument similar to the one in the exclusive public setting of
Section OA.8, this implies that ρV (ρ) − ρV ∗ → 0 as ρ→ 0, so ρV (ρ) → c′(A∗) and hence
c′(A∗) ≥ c′(Â).

OA.12 Proof of Proposition 5.5

For a rating process Y with linear filter {uk}k, let

V`(t) =
K∑
k=1

αk,`uk(t),

for ` = 1, . . . , L. The extension of Equation (32) of Lemma B.3 to the multiaction setting is
immediate: the equilibrium actions A1, . . . , AL are pinned down by the first-order conditions

c′(A`) =
Cov [θt, Yt]

Var [Yt]

∫ ∞
0

e−rtV`(t) dt, ∀` = 1, . . . , L. (OA.89)

As in the baseline model, the equilibrium action is constant.
The rater seeks to maximize the discounted expected output, which is equivalent to

maximizing the drift of the output process,

L∑
`=1

α1,`A`,

over linear filters {uk}k that define the rating process Y by

Yt =
K∑
k=1

∫
s≤t

uk(t− s) dSk,s,

subject to (OA.89). With quadratic costs, using without loss a normalized factor c = 1,

IV.68



this optimization problem reduces to maximizing

Cov [θt, Yt]

Var [Yt]

L∑
`=1

α1,`

∫ ∞
0

e−rtV`(t) dt. (OA.90)

Let

αk =

∑L
`=1 α1,`αk,`∑L
`=1 α1,`

.

Maximizing (OA.90) is the same as maximizing

Cov
[
θt, Ỹt

]
Var

[
Ỹt

] ∫ ∞
0

e−rtṼ (t) dt, (OA.91)

over {uk}k, where

Ỹt :=

K∑
k=1

∫
s≤t

uk(t− s) dS̃k,s,

and

Ṽ (t) :=
K∑
k=1

αkuk(t).

Note that the objective (OA.91) is the equilibrium marginal cost of the fictitious setting,
under the confidential information structure generated by the rating process Ỹ .

Thus, the linear filter of the optimal confidential rating for the original setting is the
same as the linear filter of the optimal confidential rating for the fictitious setting.
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Part V

Complements for Appendix B

OA.13 Proof of Proposition B.1

If Y is a belief for a confidential information structure M, then Yt = µt, with µt =
E∗[θt | Mt] = E∗[θt | µt], the second equality follows from the law of iterated expectations.
As the pair of variables (θt, Yt) is Gaussian, we apply the projection formulas to get

E∗[θt | Yt] =
Cov[θt, Yt]

Var[Yt]
(Yt −E∗[Yt]),

and thus Cov[θt, Yt] = Var[Yt] and E∗[Yt] = 0.
Conversely, if Cov[θt, Yt] = Var[Yt] and E∗[Yt] = 0, then the projection formula implies

E∗[θt | Yt] = Yt. If Yt = E∗[θt | Yt], then Y is the belief µ for the confidential information
structure induced by Y , Mt = σ(Yt).

OA.14 Proof of Lemma B.2

We note that the concept of equilibrium, presented in Definition 3.1, depends on the
worker’s information only through the set of worker strategies, and so remains valid without
modification. The same observation applies to the proofs of Proposition 3.4 and Lemma
B.3, which does not depend on the specific information available to the worker, because the
optimal effort level specified by the equilibrium turns out to be independent of the history
of realizations, and so independent of the worker’s information.

OA.15 Proof of Proposition B.5

In this section, R = {Rt}t≥0 is the natural augmented filtration generated by X, and
let F be the natural augmented filtration generated by the pair (θ,X).

Note that if Y is as in the theorem statement, Y is a Gaussian process as well. Let
assume, without loss, that the worker exerts zero effort, and that E[Yt] = 0 for every t. In
this case,

Xt = Z1,t +

∫ t

0
θs dt.

The proof makes use of the following lemma.

Lemma OA.1 Fix T > 0 and let ξ be a square-integrable predictable process adapted to R
defined over [0, T ]. Suppose that there exists a function f(s, t) defined on {(s, t) ∈ [0, T ]2 :
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s ≤ t}, continuously differentiable in t, that satisfies the uniform Lipschitz continuity
condition ∣∣∣∣∂f∂t (x, z)− ∂f

∂t
(y, z)

∣∣∣∣ ≤M |x− y|,
for some M and all triples (x, y, z), and such that for every s < t,∫ t

s
E[ξx | Rs] dx = f(s, t).

Then,

E

[∫ T

0
(ξx − ∂f(x, x)/∂t)2 dx

]
= 0.

Proof of Lemma OA.1. Let us consider a sequence {ξk}k of simple processes (as defined,
for example, in Karatzas and Shreve (1991), Chapter 3), such that

E

[∫ T

0
(ξkx − ξx)2 dx

]
→ 0.

That ξ is square integrable and progressively measurable guarantees existence of such a
sequence.

For every integer k ≥ 0, let {(ski , tki ]}i be a subdivision of the interval (0, T ] such that

lim
k→+∞

max
i
|tki − ski |= 0,

and
ξkx = E

[
ξkx | Rski

]
.

The Cauchy-Schwarz inequality implies

1

5
E

[∫ T

0

(
ξx −

∂f

∂t
(x, x)

)2

dx

]
=

1

5
E

[∑
i

∫ tki

ski

(
ξx −

∂f

∂t
(x, x)

)2

dx

]

≤ E

[∑
i

∫ tki

ski

(
ξx − ξkx

)2
dx

]

+ E

[∑
i

∫ tki

ski

(
ξkx −E

[
ξkx | Rski

])2
dx

]

+ E

[∑
i

∫ tki

ski

(
E
[
ξkx | Rski

]
−E

[
ξx | Rski

])2
dx

]
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+ E

[∑
i

∫ tki

ski

(
E
[
ξx | Rski

]
− ∂f

∂t
(ski , x)

)2

dx

]

+ E

[∑
i

∫ tki

ski

(
∂f

∂t
(ski , x)− ∂f

∂t
(x, x)

)2

dx

]
.

Let us show that each term converges to zero. First, by choice of the sequence of simple
processes, we immediately get

lim
k→+∞

E

[∑
i

∫ tki

ski

(
ξx − ξkx

)2
dx

]
= 0.

Also, by choice of the subdivisions, we immediately get

E

[∑
i

∫ tki

ski

(
ξkx −E

[
ξkx | Rski

])2
dx

]
= 0.

Then, the hypothesis that, for every s < t, we have∫ t

s
E[ξx | Rs] dx = f(s, t)

implies that t 7→ f(s, t) is absolutely continuous when t ≥ s, and thus for almost every
ω ∈ Ω and almost every t ≥ s,

E[ξt | Rs] dx =
∂f

∂t
(s, t).

In turn, this last equality implies

lim
k→+∞

E

[∑
i

∫ tki

ski

(
E
[
ξx

∣∣∣ Rski ]− ∂f

∂t
(ski , x)

)2

dx

]
= 0.

Next, we observe that by Jensen’s inequality,(
E
[
ξx − ξkx

∣∣∣ Rski ])2
≤ E

[(
ξx − ξkx

)2
∣∣∣∣ Rski

]
,

which after integration implies∫ tki

ski

(
E
[
ξx

∣∣∣ Rski ]−E
[
ξkx

∣∣∣ Rski ])2
dx ≤

∫ tki

ski

E

[(
ξx − ξkx

)2
∣∣∣∣ Rski

]
dx,
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and so, by the law of iterated expectations,

E

[∑
i

∫ tki

ski

(
E
[
ξx

∣∣∣ Rski ]−E
[
ξkx

∣∣∣ Rski ])2
dx

]
≤ E

[∑
i

∫ tki

ski

(
ξx − ξkx

)2
dx

]
.

Finally,

E

[∑
i

∫ tki

ski

(
∂f

∂t
(ski , x)− ∂f

∂t
(x, x)

)2

dx

]
≤M

∑
i

|tki − ski |3→ 0.

Hence, each term converges to zero, which naturally implies

E

[∫ T

0

(
ξx −

∂f

∂t
(x, x)

)2

dx

]
= 0,

and concludes the proof.

We now return to the main proof of Proposition B.5.

Let T > 0. In most of the proof, we work on the finite horizon [0, T ].
Let the process L be defined by Lt = −

∫ t
0 θs dZ1,s, and H be the Doléans-Dade

exponential of L, i.e.,

Ht = exp

(
Lt −

1

2

∫ t

0
θ2
s ds

)
.

The Novikov condition is satisfied on [0, T ] (e.g., Corollary 3.5.13 of Karatzas and Shreve
(1991)).Therefore, H is a martingale density process for some probability measure Q
equivalent to P on FT . By the Girsanov-Cameron-Martin Theorem (e.g., Theorem 3.5.1 of
Karatzas and Shreve (1991)),

Wt +

∫ t

0
θs ds (= Xt)

is a standard Brownian motion on F , for t ∈ [0, T ], with respect to Q.
We observe that YT is a square-integrable random variable measurable with respect

to RT . In addition, under Q, X is a standard Brownian motion. Thus, invoking the
Martingale Representation Theorem under Q (e.g., see Karatzas and Shreve (1991), Section
3.4), there exists a square-integrable predictable process ξ = {ξt}t∈[0,T ] adapted to R such
that, almost surely with respect to Q,

YT = EQ[YT ] +

∫ T

0
ξt dXt, (OA.92)

where EQ denotes the expectation operator under Q. Since P and Q are equivalent
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probability measures, we immediately have that (OA.92) also holds almost surely under P .
Then, using E[YT ] = 0 and E[dXt] = 0, we get

YT =

∫ T

0
ξt dXt

(in the almost sure sense).
The conditions of the proposition statement imply that

Cov

[
YT ,

∫ t+τ

t
(dXx − θx dx)

∣∣∣∣ Rt] = Cov

[
YT ,

∫ t+τ

t
dZ1,x

∣∣∣∣ Rt]
=

∫ t+τ

t
E [ξx | Rt] dx,

where the equality is obtained using Itô’s isometry, and uses the fact that ξ is adapted to
R and that Z1 remains a standard Brownian motion in the filtration R. We conclude by
application of Lemma OA.1.

OA.16 Proof of Proposition B.6

Here, we prove that the optimal exponential smoothing system dominates any moving
window system under confidential (exclusive) information structures, in the context of two
signals, S1 = X (the output) and S2 = S.6 For simplicity, given that the parameters of the
output process α1 = β1 are normalized to 1, we simply write α for α2, β for β2, σ for σ1

and ε for σ2.
Recall that a moving window system is defined, up to an additive constant, by a

two-parameter rating process

Yt =

∫ t

t−τ
cdXj + (1− c) dSj ,

at time t, which is the market information Mt. The parameters are τ > 0, the size of the
moving window, and c, the relative weight put on the output.

Straightforward calculations yield that, in the stationary equilibrium, equilibrium effort
amw, if positive, satisfies

c′(amw) = γ2(β(1− c) + c)(c+ (1− c)α)
1− e−rτ

r
ρmw, (OA.93)

6We suspect that the result generalizes to more signals, but have not investigated this claim.
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with

ρmw :=
(1− e−τ )

2 (c2τσ2 + γ2 (τ + e−τ − 1) (β − βc+ c)2 + (c− 1)2τε2)
.

Instead, an exponential smoothing system is defined (up to an additive constant) by a
two-parameter rating process

Yt =

∫
j≤t

e−λ(t−j)(cdXj + (1− c) dSj),

at time t, which is the market information Mt. Here, the parameters are λ > 0, the
coefficient of smoothing, and c, as before, the relative weight put on the output.

It is readily verified that, in the stationary equilibrium, equilibrium effort aes, if positive,
satisfies

c′(aes) = γ2(β(1− c) + c)(c+ (1− c)α)
ρes

r + λ
, (OA.94)

with

ρes :=
λ

(λ+ 1)
(
c2σ2 + γ2(β−βc+c)2

λ+1 + (c− 1)2ε2
) .

Our objective is to prove that the maximum over (c, λ) of the right-hand side of (OA.94)
exceeds the maximum over (c, τ) of the right-hand side of (OA.93).

We will prove this pointwise in c. First, note that if (β(1− c) + c)(c+ (1− c)α) ≤ 0,
there is nothing to show. So we are left with showing that

sup
λ>0

min
τ≥0

f(c, τ, λ) ≥ 0,

where

f(c, τ, λ) :=
ρes

r + λ
− 1− e−rτ

r
ρmw.

Let

g =
γ2(β(1− c) + c)2

c2σ2 + (c− 1)2ε2
,

which is clearly nonnegative. Computing f , we obtain

f(c, τ, λ) =
2λr (eτ (τ + (τ − 1)g) + g) eτr − (eτ − 1) (g + λ+ 1) (eτr − 1) (λ+ r)

2r (eτ (τ + (τ − 1)g) + g) (g + λ+ 1)eτr(λ+ r) (c2σ2 + (c− 1)2ε2)
.

The elementary inequality
eτ (τ − 1) + 1 ≥ 0
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implies that
eτ (τ + (τ − 1)g) + g ≥ 0,

and so the denominator of f is positive. We note that the numerator is quadratic in λ,
concave, with

f(c, τ, 0) = (1− eτ ) (g + 1)r (eτr − 1) ≤ 0,

and it is readily verified that also ∂f(c, τ, 0)/∂λ ≥ 0. So it suffices to show the discriminant
τ̃ is positive. A simple calculation shows that this discriminant is quadratic and convex in
g, as

d2τ̃

dg2
= 2 (eτ + eτr (eτ (2(τ − 1)r − 1) + 2r + 1)− 1)2 ≥ 0.

Evaluating the minimum of τ̃ with respect to g, we get

min
g
τ̃ = (x− 1)3xr (xr − 1)2 ((1− x) ((r + 1)xr + r − 1) + rx (xr + 1) lnx) ,

where x := eτ ≥ 1. Hence it remains to argue that

(1− x) ((r + 1)xr + r − 1) + rx (xr + 1) lnx ≥ 0,

or equivalently,
(1− x) ((r + 1)xr + r − 1)

x (xr + 1)
+ r lnx ≥ 0.

This is clearly true for x = 1, and the derivative of the left-hand side with respect to x is

r(x− 1)
(
x2r + 1

)
+ 1− x2r

x2 (xr + 1)2 ,

which is positive because

r(x− 1)
(
x2r + 1

)
+ 1− x2r = r(y

1
2r − 1) (y + 1) + 1− y

≥ r
(

1 +
1

2r
(y − 1)− 1

)
(y + 1) + 1− y

=
1

2
(y − 1)2,

where y := x2r, and we use Bernoulli’s inequality in the second line.
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OA.17 Proof of Lemma B.7

We note that θt and µt are jointly normal, and as µt is the market belief, Cov[θt, µt] =
Var[µt] by Proposition B.1, so applying the projection formulas, we obtain

Var[θt | µt] = Var[θt]−
Cov[θt, µt]

2

Var[µt]
=
γ2

2
−Var[µt].

OA.18 Proof of Proposition B.9

If Y is a belief for a public information structure M, then Yt = µt, where, by definition,
µt = E∗[θt | Mt] = E∗[θt | {µs}s≤t]. The second equality follows from the law of iterated
expectations, using thatM is a filtration and thusMt includes all information about {µs}s≤t.
Conversely, if Yt = E∗[θt | {Ys}s≤t], then Y is the belief µ for the public information structure
that corresponds to the filtration generated by Y ,Mt = σ({Ys}s≤t). This proves the second
part of the proposition.

We now proceed to the proof of the first part. Note that the correlation between θt and
θt+τ satisfies

Corr[θt, θt+τ ] =
Cov[θt, θt+τ ]√

Var[θt]
√

Var[θt+τ ]
= e−τ ,

since, as θ is a stationary Ornstein-Uhlenbeck process with reversion rate 1 and scale γ,

Cov[θt, θt+τ ] =
γ2

2
e−τ , and Var[θt] = Var[θt+τ ] =

γ2

2
.

Let µ be the market belief process induced by some public information structureM. Assume
µ is a linear and stationary rating process. We have E∗[µt] = E∗[θt] = 0. As M is also a
confidential information structure, µ is also a belief for a confidential information structure.
Conditionally on µt, the random variable θt is then independent from every µt−τ , τ ≥ 0,
because µt carries all relevant information about θt. Thus, Cov[θt, µt−τ | µt] = 0. Let
τ ≥ 0. The projection formulas for jointly Gaussian random variables yield

Cov[θt, µt−τ | µt] = Cov[θt, µt−τ ]− Cov[θt, µt] Cov[µt−τ , µt]

Var[µt]
.

Hence,

Cov[µt−τ , µt] = Var[µt]
Cov[θt, µt−τ ]

Cov[θt, µt]
= Var[µt−τ ]

Cov[θt, µt−τ ]

Cov[θt−τ , µt−τ ]
, (OA.95)
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using stationarity of (µ, θ). Writing µt as

µt =

K∑
k=1

∫
s≤t

uµk(t− s)[dSk,s − αkA∗s ds]

for some linear filter {uµ1 , . . . , u
µ
K}, we get, using Cov[θt, θt−τ ] = γ2e−τ/2,

Cov[µt−τ , θt−τ ] =
γ2

2

K∑
k=1

βk

∫ ∞
0

uµk(s)e−s ds, and

Cov[µt−τ , θt] =
γ2

2

K∑
k=1

βk

∫ ∞
0

uµk(s)e−(τ+s) ds = e−τ Cov[µt−τ , θt−τ ].

Plugging these last two expressions into (OA.95), we have

Cov[µt, µt+τ ] = Cov[µt−τ , µt] = Var[µt−τ ]e−τ = Var[µt]e
−τ .

Now, we prove the converse. Let Y be a linear stationary rating process that is a belief
for a confidential information structure, and satisfies

Cov[Yt+τ , Yt] = Var[Yt]e
−τ ,

for every τ ≥ 0. Writing Yt explicitely as

Yt =
K∑
k=1

∫
s≤t

uYk (t− s) (dSk,s − αkA∗s ds) ,

for the linear filter {uY1 , . . . , uYK}, we get, as above,

Cov[Yt−τ , θt] = e−τ Cov[Yt−τ , θt−τ ] = e−τ Cov[Yt, θt],

using the stationarity of (Y, θ), and we have by assumption on Y that

e−τ =
Cov[Yt, Yt−τ ]

Var[Yt−τ ]
=

Cov[Yt, Yt−τ ]

Var[Yt]
.

Therefore,

Cov[θt, Yt−τ | Yt] = Cov[θt, Yt−τ ]− Cov[θt, Yt] Cov[Yt−τ , Yt]

Var[Yt]
= 0.

As θ and Y are jointly Gaussian, it implies that θt and Yt−τ are independent conditionally
on Yt for every τ ≥ 0, so the market belief associated with the public information structure
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that is the filtration generated by Y satisfies

E∗ [θt | {Ys}s≤t] = E∗ [θt | Yt] = Yt.

The conclusion follows from the second part of the proposition, proved above.

OA.19 Proof of Proposition B.11

The proposition has two parts. We begin by the proof of the first part of the proposition.

• If Y is a belief for a confidential information structure M, with nonexclusive signals
S1, . . . , SK0 , then Yt = µt, where, by definition,

µt = E∗[θt | Mt] = E∗[θt | {Sk,s}s≤t,k=1,...,K0 , µt].

Note that the second equality follows from the law of iterated expectations, using
that Mt includes all information about {Sk,s}s≤t,k=1,...,K0 . Conversely, if Yt = E∗[θt |
{Sk,s}s≤t,k=1,...,K0 , Yt], then Y is the belief µ for the confidential information structure
induced by rating Y and the history of signals S1, . . . , SK0 .

• If Y is a belief for a public information structure structure M, with nonexclusive
signals S1, . . . , SK0 , then Yt = µt, where, by definition,

µt = E∗[θt | Mt] = E∗[θt | {Sk,s}s≤t,k=1,...,K0 , {µs}s≤t],

using that M is a filtration and includes all information about {Sk,s}s≤t,k=1,...,K0 .
Conversely, if Yt = E∗[θt | {Sk,s}s≤t,k=1,...,K0 , {Ys}s≤t], then Y is the belief µ for the
public information structure that is the filtration generated by Y and the signals
S1, . . . , SK0 .

We now proceed to the proof of the second part. Let Y be a stationary linear rating
that is the belief of a confidential or public information structure with nonexclusive signals
S1, . . . , SK0 . At a given time t, conditionally on Yt, the random variable θt is independent
from all past nonexclusive signals Sk,s, s ≤ t. That is, Cov[θt, Sk,s | Yt] = 0 for every
k = 1, . . . ,K0, as the market belief Yt carries by assumption all relevant information about
θt that is already contained in the nonexclusive signals. Hence, for every k = 1, . . . ,K0,
every t and every τ ≥ 0,

Cov[θt+τ , Sk,t | Yt+τ ] = 0. (OA.96)

By the projection formulas for jointly Gaussian random variables,

Cov[θt+τ , Sk,t | Yt+τ ] = Cov[θt+τ , Sk,t]−
Cov[θt+τ , Yt+τ ] Cov[Sk,t, Yt+τ ]

Var[Yt+τ ]
.
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By Proposition B.1, Cov[θt+τ , Yt+τ = Var[Yt+τ ]. Thus,

Cov[θt+τ , Yt+τ ] = Cov[θt+τ , Sk,t] ∀k = 1, . . . ,K0,∀t,∀τ ≥ 0. (OA.97)

Conversely, suppose Y is a rating process that is a market belief associated with a confidential
structure which satisfies (OA.97). Reversing the argument above, the equality (OA.96)
must hold. As all random variables involved are jointly Gaussian, given any time t, such
equality implies that conditionally on Yt, the random variable θt is independent from all
past nonexclusive signals Sk,s, s ≤ t, k = 1, . . . , kK0 . Hence, by Proposition B.1

E∗ [θt | {Sk,s}s≤t,k=1,...,K0 , Yt] = E∗[θt | Yt] = Yt,

and it follows from the first part of the proposition, proven at the beginning of this section,
that Y is a market belief for a confidential information structure with nonexclusive signals
S1, . . . , SK0 . If instead Y is a market belief associated with a public structure, then

E∗ [θt | {Sk,s}s≤t,k=1,...,K0 , {Ys}s≤t] = E∗[θt | Yt] = Yt,

and applying again the first part of the proposition, Y is a market belief for a public
information structure with nonexclusive signals S1, . . . , SK0 .
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Part VI

Ancillary Mathematical Results

In this part, we derive the first-order conditions for the type of control problems
considered in the paper by adapting the classical Euler-Lagrange conditions.

Let N,M,K,L, be positive integers. For ` = 1, . . . , L, let F ` : RN
+ → R, and G` :

RK×M → R, where every G` can be written

G`((y1,1; . . . ; yK,1), . . . , (y1,M ; . . . ; yK,M )) = yk,iyk′,i′ ,

for some k, k′, i, i′. In other words, letting

F (x,y1, . . . ,yM ) =
L∑
`=1

F `(x)G`(y1, . . . ,yM ),

we have that F (x, ·) is a quadratic form, and F `(x) are the coefficients.
For every i = 1, . . . ,M , let φi : RN

+ → R+ be a (possibly shifted) projection, in the
following sense: φi((x1; . . . ;xN )) = xj + δ for some j and some δ ≥ 0. Let U be the space of
measurable functions u : R+ → RK that are continuous, integrable and square integrable.

Define G`k,i((y1,1; . . . ; yK,1), . . . , (y1,M ; . . . ; yK,M )) as

∂G((y1,1; . . . ; yK,1), . . . , (y1,M ; . . . ; yK,M ))

∂yk,i
,

and let

Fk,i(x,y1, . . . ,yM ) =

L∑
`=1

F `(x)G`k,i(y1, . . . ,yM ).

We consider the problem of maximizing∫
RN

+

F (x,u(φ1(x)),u(φ2(x)), . . . ,u(φM (x))) dx, (OA.98)

over control functions u ∈ U .
We make the following assumptions:

1. For every `, every u ∈ U , x 7→ F `(x)G`(u(φ1(x)),u(φ2(x)), . . . ,u(φM (x))) is inte-
grable on RN

+ .

2. For every `, i, k, x 7→ F `(x)G`k,i(u(φ1(x)),u(φ2(x)), . . . ,u(φM (x))) is integrable on

RN
+ ∩ {φi = t} for every t.
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3. The map

t 7→
∫
RN

+∩{φi=t}
F `(x)G`k,i(u(φ1(x)),u(φ2(x)), . . . ,u(φM (x))) dx

is piecewise continuous, where the integral is taken with respect to the Lebesgue
measure on RN

+ ∩ {φi = t}.

Compared to standard problems of calculus of variations (see, for example, Burns (2014),
Chapter 3), this optimization problem involves delayed terms and integrals over a domain
whose dimension is unrelated to the dimension of the control. The classical Euler-Lagrange
equations do not hold. However, the argument can be adapted to yield the following
first-order condition.

Proposition OA.1 Assume the control function u∗ ∈ U maximizes (OA.98). Then, for
every k and every t,

M∑
i=1

∫
RN

+∩{φi=t}
Fk,i(x,u

∗(φ1(x)),u∗(φ2(x)), . . . ,u∗(φM (x))) dx = 0.

Proof. For a control function u ∈ U , let

J(u) :=

∫
RN

+

F (x,u(φ1(x)),u(φ2(x)), . . . ,u(φM (x))) dx,

and assume J(u) is maximized for u = u∗.
The proof relies on classical variational arguments. Fix k and let v : R+ → RK , where

we write v = (v1, . . . , vK) and where vk′ = 0 for k′ 6= k, and assume vk is continuous with
bounded support. Let j(ε) = J(u∗ + εv). Differentiating under the integral sign (see, for
example, Theorem 6.28 of Klenke (2014)), we get

j′(0) =

∫
RN

+

M∑
i=1

Fk,i(x,u
∗(φ1(x)), . . . ,u∗(φM (x)))vk(φi(x)) dx.

We observe that j is maximized at ε = 0, and so j′(0) = 0.
Suppose by contradiction that, for some t,

M∑
i=1

∫
RN

+∩{φi=t}
Fk,i(x,u

∗(φ1(x)),u∗(φ2(x)), . . . ,u∗(φM (x))) dx

is nonzero—for example, positive. The sum is piecewise continuous with respect to t, and
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so by continuity,

M∑
i=1

∫
RN

+∩{φi=t′}
Fk,i(x,u

∗(φ1(x)),u∗(φ2(x)), . . . ,u∗(φM (x))) dx

is positive for t′ on an interval to the left or the right of t. Let It be such an interval, and
let vk be a function that is zero outside of It and that is positive inside It. Then

0 <

∫
t′∈It

M∑
i=1

∫
RN

+∩{φi=t′}
Fk,i(x,u

∗(φ1(x)),u∗(φ2(x)), . . . ,u∗(φM (x)))vk(t
′) dx dt′

=
M∑
i=1

∫
RN

+

Fk,i(x,u
∗(φ1(x)),u∗(φ2(x)), . . . ,u∗(φM (x)))vk(φi(x)) dx,

which contradicts j′(0) = 0.
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