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Many applications involve reasoning about a complex sys
tem that evolves over time. Standard frameworks, suc
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Abstract

Continuous time Bayesian networks (CTBNS)
describe structured stochastic processes with
finitely many states that evolve over continuous
time. A CTBN is a directed (possibly cyclic) de-
pendency graph over a set of variables, each of
which represents a finite state continuous time
Markov process whose transition model is a
function of its parents. We address the prob-
lem of learning the parameters and structure of
a CTBN from partially observed data. We show
how to apply expectation maximization (EM)
and structural expectation maximization (SEM)
to CTBNSs. The availability of the EM algorithm
allows us to extend the representation of CTBNs
to allow a much richer class of transition dura-
tions distributions, known gshase distributions
This class is a highly expressive semi-parametric
representation, which can approximate any dura-
tion distribution arbitrarily closely. This exten-
sion to the CTBN framework addresses one of
the main limitations of both CTBNs and DBNs
— the restriction to exponentially / geometri-
cally distributed duration. We present experi-
mental results on a real data set of people’s life
spans, showing that our algorithm learns rea-
sonable models — structure and parameters —
from partially observed data, and, with the use of
phase distributions, achieves better performance
than DBNSs.
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even the same variable can change quickly in some con-
ditions and slowly in others. In such systems, attempts to
model the system as evolving over uniform discrete time
intervals either lead to very coarse approximations, or re-
quire that the entire trajectory be modelled at a very fine
granularity, at a high computational cost. This problem
is even more acute in a learning setting, when little prior
knowledge might exist about the rate of evolution of differ-
ent variables in the system.

Another approach is to model such systems as evolving
over continuous time. For discrete state systems, such
representations include event history analysis (Blodsfel
et al., 1988; Blossfeld & Rohwer, 1995) and Markov pro-
cess models (Duffie et al., 1996; Lando, 1998). Nodelman
et al. (2002) extend these representations with ideas from
the framework of Bayesian networks, to defo@ntinuous
time Bayesian networks (CTBNSs) a structured represen-
tation for complex systems evolving over continuous time.

An important task for any model is constructing it. One
approach for acquiring models that fit the domain is by
learning them from data samples. Nodelman et al. (2003)
present an algorithm for learning a CTBN — both struc-
ture and parameters — from fully observed data. However,
in many real-world applications, we obtain only partial ob-
servations of the trajectory. This issue is likely to be even
more acute when learning continuous time models where
it is difficult to observe everything all the time. Therefpre
learning networks from partially observed data is an impor-
tant problem with real-world significance.

In this paper, we provide an algorithm, based on the Ex-
pectation Maximization (EM) algorithm (Dempster et al.,
1977), for learning CTBN parameters from partially ob-
servable data. We also provide an extension, based on
structural EM (Friedman 1997; 1998), for learning the net-
work structure from such data. Our algorithm also provides

f¢s with a solution to one of the major limitations of both

as hidden Markov models (HMMs) (Rabiner & Juang,CT_BN and DBN models_— their use of a.transitio.n mpdel
1986) and dynamic Bayesian networks (DBNs) (Dean gWwhich gvolves expo_nenually (qr geometrically) VYIth. time.
Kanazawa, 1989), discretize time at fixed intervals, knowr|" Particular, we build on the rich class phase distribu-

as time slices, and then model the system as evolving didions (Neuts 1975; 1981), showing how to integrate them

cretely from one time slice to the next. However, in many/Nt@ @ CTBN model, and how to use our EM algorithm to

systems, there is no natural time granularity: Some varilearn them from data. We present results of our learning al-

ables evolve quickly, whereas others change more S|0W|)/7;orithm on real world data related to people’s life histeyie



and show that our learned CTBN model with phase distri-the behavior ofX'. A complete trajectory can be specified
bution transitions is a better model of the data than bothas a sequence of states of X, each with an associated

learned DBN and learned CTBN models. duration. This means we observe every transition of the
system from one state to the next and the time at which it
2 EM for Markov Processes occurs. In contrast, a partially observed trajectorg D

_ o can be specified as a sequencsudisystems; of X, each
We begin by reviewing the process of EM for homo- yth an associated duration. A subsystem is simply a non-
geneous Markov processes, on which our algorithm folampty subset of states af, in which we know the system
CTBNs is strongly based. Variants of this problem havestayed fur the duration of the observation. Some transition
been addressed by various auth_ors, including Sundberg partially observed — we know only that they take us
(1974;1976), Dembo and Zeitouni (1986), Asmussen et alrom one subsystem to another. Transitions from one state
(1996), and Holmes and Rubin (2002). Our presentation igy another within the subsystem are wholly unobserved —
based on the formulation of Asmussen et al. (1996). hence we do not know how many there are nor when they
occur.

o . _ Note that momentary observation of the state of the sys-
A finite state, continuous time, homogeneous Markov prO'tem, or point evidencecan also described in this frame-

cessX; with state spac&/al(X) = {z1,...,z,} is de-  work. In particular, in the sequence of observed subsys-
scribed by an initial distributio®$ and ann x n matrixof  tems, durations can zero.

transitionintensities

2.1 Homogeneous Markov Processes

For each trajectory[i] we can consider a spadé[i] of

Gz Quizs Qryz, possible completions of that trajectory. Each completion
Qrozy  —Gus ' Quow, hli] € H]Ji] specifies, for each transition offi], which
Qx = : : . : ) underlying transition ofX' occurred and also specifies all
: : ' : the entirely unobserved transitions &. Combiningo|i]
Qeney Genze *70 "qen andhl[i] gives us a complete trajectosy [i] over X. Note

whereg,,, is the intensity of transitioning from state ~ that, in a partially observed trajectory, the number of pos-
to stater; andq,, = Z#i Gz.z,;- The intensityy,, gives sible unobserved transitions is unknown. Moreover, there
the “instantaneous probability” of leaving stateand the ~ are uncountably many times at which each transition can
intensityg., ., gives the ‘instantaneous probability’ of tran- take place. Thus, the set of possible completions of a par-
sitioning fromz; to ;. More formally, asAt — 0, tial trajectoryo is, in general, the union of a countably in-
finite number of spaces, which are real-valued spaces of
Pr{X(t + At) =z | X(t) = i} = qz,a,At, fOri #j  ynbounded dimension. Nevertheless, the notion of all pos-
Pr{X({t+At)=a; | X(t) =a;} = 1 — ¢, At . sible completions is well-defined. We can define the set

. _ . . DT = {oT[1],...,07[w]} of completions of all of the
The transient behavior ok, is as follows. VariableX  partial trajectories irD.

stays in stater for time T' exponentially distributed with
parameter,. The probability density functiorf for X,
remaining atr is f (g, t) = guexp(—g.t) fort > 0,and  gxample 2.1 Suppose we have a proce¥swhose state
the expected time of transitionl_sqz. Upon transitioning, space is VALY) = {y1,y2} x {21, 22}. Consider the fol-
X shifts to stater” with probability g, /.. lowing exampler of a fully observed trajectory over the
The distribution over transitions aX factors into two time interval[0,2): X starts in(y;, z2) at time0; at time
pieces — exponential fovhenthe next transition occurs (.5 it transitions to (i, z»); at time 1.7 it transitions to
and multinomial forwherethe state transitions, i.e., the (y2, 21).
next state. The natural parameters @réor the exponen-  Note we can writd-, z;) for the subsystem consisting of
tial d_|str|put|_0n ?‘”dgm/ = oo’ /Qe, @' # x for the multi-  ho states(yi, z;) and (y2, 2;). An example partially ob-
nomial distribution. served trajectoryr over the interval0,2) is: X starts in
The distribution over the state of the proceésat some (-,z1); at time 1.7 it transitions to (-, z;). Note thato™
future timet, Px (t), can be computed directly fro®x.  is a completion ofr. Another possible completion ofis:
If PY is the distribution oveX at time O, then X starts in(y», z;) at time0; at time 1.0 it transitions to
Prt) = P§ exp(Qut) | (y1,21); at time}.? it trans.itions to(y1, 2z2). . -
We can describe a partially observed trajectarywith
whereexp is matrix exponentiation. point evidence attime.7 and1.8: X startsin(, -); attime
0.7 we observé., z5); from time0.7 to 1.8 we observeX in
(-,-); attimel.8 we observeX in (-, z1); from time1.8 on,
For a Markov process(, our data are a set of partially We observeX in (-,-). Note thato* is also a completion
observed trajectorie® = {o[1],...,o[w]} that describe ©0fc”.

2.2 Incomplete Data



2.3 Expected Sufficient Statistics and Likelihood sufficient statistics with respect to the posterior proligbi
density over completions of the data given the observations
and the current model. For simplicity, we omit the explicit
dependence on the parametgfsg”*. Our analysis follows

the work of Asmussen et al. (1996), who utilize numerical
integration via the Runge-Kutta method. Holmes and Ru-
bin (2002) provide an alternative approach using the eigen-

The sufficient statistics of a set of complete trajectofes

for a Markov process ar€[z] — the total amount of time
thatX = z, andM [z, 2'] — the number of time& transi-

tions fromz to 2. If we let M[z] = >, M|z, 2] we can

write the log-likelihood forX (Nodelman et al., 2003):

(x(q,0 :D") =tx(q:D") +(x(0:D") value decomposition of the intensity matrix.
=Y " (M[2]In(g:) — ¢.T[x]+ > M[z,2']In(faer)) . 3.1 Notation
x o/ #x

In order to compute the expected sufficient statistics over

Letr be a probability density over each completifi] D, we compute them for each partially observed trajectory
which, in turn, yields a density over possible completions? € D separately and then combine the results.
of the dataDT. We can write the expectations of the A partially observed trajectory is given as a sequence
sufficient statistics with respect to the probability densi  of IV subsystems so that the state is restricted to subsystem
over possible completions of the daféz], M|z, '], and S during intervallt;,¢;11) for 0 < i < (N — 1). Without
M z]. These expected sufficient statistics allow us to writeloss of generality, we assume thabegins at time 0 and
the expected log-likelihood fak as ends at time- soty = 0 andty = 7.

For subsysten®, let Qs be then x n intensity matrix

E,[(x(q,0: D7) =E,[lx(q: D7)+ E,[(x (6 : DT)] Qx with all intensities zeroed out except those correspond-

:Z (Mz]In(g,) — .1 [2]+ Z Mz, 2| n(0,s0)) - ing to transitions within the subsystet(and associated
- vz diagonal elements). For subsystefs S, let Qs, s, be
then x n intensity matrixQ x with all intensities zeroed
2.4 The EM Algorithm out except those corresponding to transitions frémto

We use the expectation maximization (EM) algorithm 5. Not_g that th|s_ means aI! the intensities corresponding
. : - to transitions withinS; and withinSs are also zeroed out.
(Dempster et al., 1977) to find maximum likelihood param- ) o ) )
etersg, @ of X. The EM algorithm begins with an arbitrary ~SOMetimes it is convenient to refer to evidence by pro-
initial parameter assignmeni’, 8°. It then repeats the two  Viding an arbitrary time interval. Let,.;, denote the evi-
steps below, updating the parameter set, until convergenc@€nce provided by over the intervalt,, t2). (So,00.- is
After the kth iteration we start with parameteg§, 6" the evidence provided by all af.) Leto, ... denote the
evidence over the intervéd;, to], andat;:t2 the evidence
over the intervalty, t2).

Let e be a (column):-vector of ones. Let; be ann-

Expectation Step. Using the current set of parameters,
we define for each[i] € D, the probability density

r* (n[i]) = p(hli] | o[i], 4", 8%) (1)  vector of zeros with a one in positigh Let A; ;. be an
o o n X n matrix of zeros with a one in positiop k. (So
We then compute expected sufficient statistitér], A ., — e e/.) Note that all multiplications below are stan-

M{z, '], and M[z] according to this posterior density qarq vector and matrix multiplications as opposed to factor
over completions of the data given the data and the mOdeh]uItiplications.

Maximization Step. Using the expected sufficient statis-

) ] ) Define the vectors; and3;” component-wise as
tics we just computed as if they came from a complete data

set, we se/"t1, 8" to be the new maximum likelihood oy [i] = p(X;- =i,004)
parameters for our model as follows B/ [i] = p(or.r | X+ = 1)
t - T - )
M Mz,a’ . " . . .
M= %; et = % - (2)  where, ifX transitions at, X,- is the value ofX just prior

to the transition, an&,+ the value just afterward. (If there
The difficult partin this algorithm is the Expectation Step. is no transition,X;,- = X,+.) Moreover, recall that.,
As we discussed, the space over which we are integratingzpresents the evidence over interjalt) not includingt
is highly complex, and it is not clear how we can computeand o,-., represents evidence over interyal7) not in-
the expected sufficient statistics in a tractable way. Thigludingt¢. Thus, neither of these vectors include evidence
problem is the focus of the next section. of a transition at time. We also define the vectors

3 Computing Expected Sufficient Statistics ay[i] = p(X; =4, 00.4+)

. . Bili] = plowr | Xe =i
Given ann-state homogeneous Markov process with 2 (2r | Xe = 4)
intensity matrixQ x, our task is to compute the expected both of which include evidence of any transition at titne



3.2 Expected Amount of Time of trajectorys. Following the derivation in Asmussen
et al. (1996), we consider discrete time approximations of
MTj, k] and take the limit as the size of our discretization
goes to zero, yielding an exact equation. For 0, let

The sufficient statistid’[j] is the amount of time thak
spends in statg over the course of trajectory. We can
write the expectation of'[j] according to the posterior
probability density given the evidence as

T/e—1
E[T[j]] = / p(X: | 00 )esdt Ml k] = D U Xue = j, X(eynye = b} -
0 t=0
N—-1 tit1
= / (Xt | 007 )ejdt Note that our discrete approximation is dominated by the
i=0 i actual value, i.e |M.[j, k]| < M[j, k], and also that as |
1 Nzl ot 0, M.[j, k] — M]j, k]. Hence, by dominated convergence
= Z / p(Xt, 007 )ejdt . for conditional expectations, we have
p(UOZT) i=0 Yt
The constant fraction at the beginning of the last line serve E[M[j, k] = im E[M.[j, k]] .
to make the total expected time over ABum tor. €l0
We must show how to compute the above integrals over
intervals of constant evidence. Lt w) be such an in-  This last expectation can be broken down as
terval, and letS be the subsystem to which the state is re-
stricted on this interval. Then we have T/e—1 .
w . / p(Xte =17 X(tJrl)e = ka 00:7’)
E[Mj k)= > .
p(X¢, 00.)e;dt ©) — p(oo:r)
= / (X, 00:4) A jplopr | Xy)dt Note that, fore small enough, we observe at most one tran-
Y sition per interval. Thus, each of the intervals in the sum
:/ aup(Xe, 0ot | Xo) A (X, Ot | Xi) Byt falls into one of two categories: either the interval congai
v ' v ' v a (partially observed) transition, or the evidence is camist
v over the interval. We treat each of these cases separately.
= / oty exp(Qs(t — v)) A, exp(Qs (w — 1)), dt . _ S¢ harately
v Let [te, (t + 1)e) be an interval containing a partially ob-

served transition at timg. We observe only that we are

. The code accompanying Asmussen et al. (1996) is ea??ansitioning from one of the states.8fto one of the states
ily extendable to this more general case and can computg]c g

. ] i+1. We can calculate the contribution of this interval
:)hrgea:b(')l'\;ﬁs”:‘rt]eegt]rrs dvtlg\t/g(raseRsu?r?ee;:tl:rt\?alr?gtgr?%l?;if;)(;lr:?to the expected sufficient statistics (ignoring the cortstan
steps each of which has a constant number of matrix mul-/p(oo”)) as
tiplications. Thus, the main factor in the complexity ofghi
algorithm is the number of steps which is a function of theP(Xte = J, X(t+1)e = k, 00:7)
step size. Importantly, the integration uses a step size tha = p(Xic = j, 00.te)P(X(t41)e = K, Opest41)e | Xie = J)
is adaptiveand not fixed. The intensities of tl@s matrix
represent rates of evolution for the variables in the cluste
so larger intensities mean a faster rate of change which usu- .
ally requires a smaller step size. We begin with a step siz@S ¢ | 0, we have the_probe}b|llty_ of th? state an_d the ev-
proportional to the inverse of the largest intensityQn . Idence up to, bgt_ not '”C'“(?'F‘g’_t'”“@' times the instan-
The step size thus varies across different subsystems aﬁﬁneous probab|I|'F3_/ of transmor_ung from_ stateo statef, :
is sensitive to the current evidence. Also, following Presd!mes the probablllty_ Of the_ ewden_c_e Q'Ve” the state just
etal. (1992), we use a standard adaptive procedure that aﬂl_fterti. Thus, at the limit, this transition’s contribution is
lows larger steps to be taken when possible based on error
estimates. o ejgirerB) = qrag A B . (4)

We can calculate the total expected tin¥e[7’[j]], by
summing the above expression over all intervals of constant Now consider the case when we are within an interval

evidence. [v,w) = [t;,t;+1) Of constant evidence — i.e., it does not
contain a partially observed transition and will generally
be of length much larger than Let At = w — v and let
The sufficient statistidV/[j, k] (j # k) is the number of S be the subsystem to which the state is restricted on this
times X transitions from state to statek over the course interval. Ase grows small, the contribution of this interval

p(a(t+1)5:7 | X(t+1)e = k) .

3.3 Expected Number of Transitions



to the sum (again, ignoriny/ p(co..)) is

At/e—1 .
Z p(Xv+t5 = ijv+(t+l)e = ka UO:T)

t=0
At/e—1
= Z Z p(va UO:v)p(Xerte = ja Oy:vtte | Xv)
t=0 X,,Xw

Barometer Concentration

p(Xv+(t+1)e = ka Gv+t€:v+(t+1)e | Xv+t5 = .])

p(Xwa 0v+(t+1)€:w | Xv+(t+1)€ = k)p(awiT | Xw)
At/e—1

= Zt:o a, exp(Qste)e;
e;p(Xv+(t+l)ea Gv+t€:v+(t+1)e | Xv+t5)ek
e, exp(Qs(w — (v + (t +1)€)))B,, -

As in the case with observed transitionsgds0, the mid-
dle term becomes;,dt, the instantaneous probability of
transitioning. Sincexp(Qgt) is continuous, we can ex-
press the limit as a sum of integrals of the form

Figure 1: Drug effect network

guestion is not a transition time), one can simply remove
the subsystem transition intensity matriQg; s, ,) from

the calculation. For example, as time 0 andre not tran-
sition times, we have

w
ij/au exp(Qs(t —v))Ajkexp(Qs(w — )B,,dt (5) ar =y exp(Qsy (T —in-1))
! Bo = exp(Qs, (t1 — 0))By, -
We have one such term for each interval of constant ev- | ¢
idence. Essentially we are integrating the instantaneou\é\/e can also compute
probabl_hty of trans_|t|0n|ng from statg tp k: over th_e in- a,, = ay, exp(Qs, (tie1 — )
terval given the evidence. Note that this is very similar to L
the form of Eq. (3) — the only difference is the matg; j, Br, = exp(Qs; (tiv1 — ti))ﬁtH] :
and the t(-amqjk. o o We can then write the distribution over the state of the sys-
To obtain the overall sufficient stqtlstlcs, we have a sUMga i at timet given all the evidence as
with two types of terms: a term as in Eq. (4) for each ob-
served transition, and an integral as in Eq. (5) for each in- 1

terval of constant evidence. The overall expression is PXy =jlo0r) = p(ao:T)at R4.iPr -
N-—-1
din . 4 CTBNs
Po0) 2 culiab]
A We can now extend the EM algorithm to continuous time

N-bowy exp(Qs(t — v)) Ak Bayesian networks which are a factored representation for
+ E b o) dt
2 /J ( x exp(Qs(w — 1)), ) homogeneous Markov processes.

) 4.1 Continuous Time Bayesian Networks
3.4 Computinga; and 3,

We briefly review continuous time Bayesian networks as

One method of computing, and 3, is via a forward- 5 esented in Nodelman et al. (2003). A CTBN repre-
backward style algorithm (Rabiner & Juang, 1986) over thesgnytg 5 stochastic process over a structured state space

entire trajectory to incorporate evidence and get distribu consisting of assignments to some set of local variables
tions over the state of the system at every time X = {X1, X, ..., X3, ).
We have already defined the forward and backward prob- \ve model the joint dynamics of these local variables by

ability vectors,a; and3;. To initialize the vectors, we 1qyying the transition model of each local variable to be a
simply letay be the initial distribution over the state and 14 rkov process whose parameterization depends on some

B = e, avector of ones. To update the vectors from theirg, qet of other variablél. The key building block is a
previously computed values, we calculate conditional Markov process

i, = oy, exp(Qg, (tiv1 — 1)) Qs,5,44 Definition 4.1 A conditional Markov processY is an
By, = Qs, s, exp(Qs, (tis1 — )8y, inhpmogene_ous Markov process vyhose intensity matrix
varies with time, but only as a function of the current val-
To exclude incorporation of the evidence of the transitionues of a set of discrete conditioning variablgs Its inten-
from either forward or backward vector (or if the time in sity matrix, called aconditional intensity matriXCIM), is



written Q x|y and can be viewed as a set of homogeneousvrite the expected log-likelihoo, [¢(q,8 : D*)] as a
intensity matricedQ x|, — one for each instantiation of sum of terms (one for each variahk) in the same form
valuesuto U. 1 asEq. (6), except using the expected sufficient statistics

The parameters &) x|u areq |, = {¢zju : « € Val(X)} Tlxlu], M[z,2'[u], andM [z[u].

andf x|y = {0z u : 7,2 € Val(X),z # 2"},

We can now combine a set of conditional Markov pro-
cesses to form a CTBN: The EM algorithm for CTBNs is essentially the same as
for homogeneous Markov processes. We need only spec-
ify how evidence in the CTBN induces evidence on the in-
duced Markov process, and how expected sufficient statis-
tics in the Markov process give us the necessary sufficient

4.3 EM for CTBNs

Definition 4.2 A continuous time Bayesian network
over X consists of two components: artial distribution
PY%, specified as a Bayesian netwafkover X, and a

continuous transition modedpecified as statistics for the CTBN.

e A directed (possibly cyclic) grapfi whose nodes are A CTBN is a homogeneous Markov process over the joint
X1,..., Xk Pag(X;), often abbreviatedJ,, denotes  state space of its constituent variables. Any assignment of
the parents ofX; in G. values to a subset of the variables forms a subsystem of

« A conditional intensity matrixQ x, u, , for each vari- the CTBN — it restricts us to a subset of the joint state
ableX; € X.1 ' space (as shown with binary “variable®” and Z in Ex-

ample 2.1). Just as before, our evidence can be described

Example 4.3 Figure 1 shows the graph structure for a5 5 sequence of subsystesiys each with an associated
a modified version of the drug effect CTBN networky, ation.

from Nodelman et al. (2002) modelling the effect of a drug
a person might take to alleviate pain in their joints. There have the forn[z|u] and [z, z/|u]. We can thus replace
are nodes for the uptake of the drug and for the resultingE (2) in the maximization s:[e of'EM with:
concentration of the drug in the bloodstream. The concen- a P |
tration is affected by how full the patient’s stomach is. The g = Mzlu], gkt _ Mz.a'|u] @)
pain may be aggravated by changing pressure. The model zlu ™ Tlz[u]? za’|u Mlzlu] -

contains a cycle, indicating t_hat Whethef a person is hunThe expectation step of EM can, in principle, be done by
gry depends on how full their §tomach IS, which Oleloend?Iattening the CTBN into a single homogeneous Markov
on whether or not they are eating, which in turn OIepenOISprocess with a state space exponential in the number of
on whether they are hungry. variables and following the method described above. In
this case, we can compuféz|u] by summing up all of the
expected sufficient statistids[;] for any statej consistent
Extending the EM algorithm to CTBNs involves making with X = z, U = u. Similarly, M z|u] can be computed
it sensitive to a factored state space. Our incomplete dat@y summing up all ofM[j, k] for statej consistent with
D, are now partially observed trajectories describing thex = z, U = u andk consistent withX = 2/, U = u.
behavior of a dynamic system factored into a set of state However, as the number of variables in the CTBN grows,
variablesX . that process becomes intractable, so we are forced to use
As shown by Nodelman et al. (2003), the log-likelihood approximate inference. The approximate inference algo-
decomposes as a sum of local log-likelihoods for each varirithm must be able to compute approximate versions of
able. Specifically, given variabl&, let U be its parent set  the forward and backward messages3,,. It must also
in V. Then the sufficient statistics @+ for our model are  be able to extract the relevant sufficient statistics — them-
T'[x|u], the total amount of time that’ = = while U =u,  selves a sum over an exponentially large space — from the
and M [z, 2’ |u], the number of time& transitions fromz approximate messages efficiently.

Recall that, in a CTBN, the expected sufficient statistics

4.2 Expected Log-likelihood

to z" while U = u. If we let M[z[u] = >, Mz, 2'[u] A companion paper (Nodelman et al., 2005) provides a
the likelihood for each variabl& further decomposesas | ster graph inference algorithm which can be used to per-
(x(q,0 : D) =tlx(q: D)+ lx(0: D) form this type of approximate inference. For each segment
[ti, t;+1) Of continuous fixed evidence, we construct a clus-
_ Z ZMMU] 1(¢au) — ofu- Tlz|u] ter graph c_iata structure, whosg node§ cprre_spond to clus-
- ters of variable€’;, each encoding a distribution over the

trajectories of the variableg; for the duration[t;, ¢;11).
A message-passing process calibrates the clusters. We can
+ Mz, «'|u] In(6,, . (6 i
zu: Z Z [, [l 0 (0arja) © then extract from the clusté}, both beliefs about the mo-
mentary state of the variabl€g at timet; andt; 1, as well
By linearity of expectation, the expected log-likelihood as a distribution over the trajectories @f during the in-
function also decomposes in the say way, and we caterval. The former provide a factored representation of our

T z'Fx



forward message, , , and backward messagk , and are _ T . Epen
incorporated into the cluster graphs for the adjoining-clus ® NS .y
ter in a forward-backward message passing process. The ® L h
cluster distributions are represented as local intensday m .
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statistics over familiesy;, U;, as above. This, this algo-
rithm allows us to perform the steps required for the E-step, -
and the M-step can be performed easily as described above. e

@) (b)

4.4 Structural EM for CTBNs

. Figure 2: (a): Phase transition diagrams for (i) a single expo-
We can also learn structure from incomplete data by applyhegr]]tiaI phase, (ii) an Erlang (chain), (iii) a mixture, arig) @

ing the structural EM (SEM) algorithm of Friedman (1997) |oop. (b): The probability density of the first time to leavate 1
to our setting. We start with some initial graph structure(the phase distribution), for three example binary vagakith 3
GO, initial parameterg?, 0, and dataseb. phases for both states. All examples have an expected tirhe of

At each iteration, as with SEM for Bayesian networks, wetO leave state 1.

choose between taking a step to update the parameters and . o
taking a step to modify the structure. phase. That is, we enter a phaseand then leave in time
. exponentially distributed with the parametgrassociated
Parameter Update Step. Run the EM algorithm, com- P y . P & )

: .- o ) with that phase. We can view the process as moving over a
puting new expected sufficient statistics and updating th%lirected possibly cyclic graph, consisting of these phase
parameters as. |.n Eg. ). _ Thus, we can create combinations of chains, mixtures, and
Structure Modification Step. Using the current parame- |oops of such exponentially distributed phases linked to-
terization and expected sufficient statistics, chooseugstr gether in a variety of ways. We spend some amount of time
tu_re modification that increases the score. SEM is usegoing from one phase to another, but eventually we leave
with a variety of scores, most commonly the BIC score orthe set of phases altogether. The distribution over when we

the Bayesian score with expected sufficient statistics as ileave such a system of phases is callptiase distribution

real. In both cases, the score can be written in terms of €Xyample 5.1 Consider a 4-state homogeneous Markov
pected sufficient statistics, allowing SEM to be used withprocess PHwith intensity matrix

our algorithm above.

SEM leaves unspecified the issue of how many greedy T 2 s qu
Qe = g21 —q2 q23 q24

search steps one takes before recomputing the expected @1 G2 —qs Q34
sufficient statistics and parameters. Nodelman et al. (003 0 0 0 0
showed that, for CTBNSs, structure search for a fixed num- . .

. ... Ifthe intensities of states 1, 2, and 3 are non-zero, then re-
ber of parents per node can be done in polynomial time, I : :

Thus, it is possible, in this setting, to find the globally gardiess of the initial phase, Rhwill end up in state 4 and
! Y ’ oo remain there. Thus, state 4 is called alnsorbingstate and
optimal structure given the current parametrization in the . :
structure modification step. If one does this, SEM forthe others are callettansientstates. We call the transient

CTBNs becomes an iterated optimization algorithm Withstatesphasesand the distribution over when Rieaches

N state 4 is called @hasadistribution. In this particular case
a full maximization step for both structure and parameters; :
it has 3 phases. If we wanted to encode a chain 2 — 3,

we would have all off-diagonal entries equal to 0, except
q12, q23, q34. If we wanted to encode a loop, we would also
allow ¢3; # 0. Figure 2 shows some simple distribution
Shapes that can be formed with 3 phases. Note that, while
a chain distribution always begin in phase 1 and ends in
some final phasg, general phase distributions might start
and end in any phase (e.g., the mixture distribution shown).

5 Complex Duration Distributions

An important limitation to the expressive power in contin-
uous time Bayesian networks has been the restriction t
modelling durations in a single state as exponential distri
butions over time. With the extension of the EM to CTBNSs,
we can now address this limitation.

Definition 5.2 A phase distribution op phasess defined
5.1 Phase Distributions as the distribution over time when a homogeneous Markov
process with a single absorbing state apdtransient

Phase distributionare a rich, semi-parametric class of dis- phases reaches absorption (Neuts 1975; 1981).

tributions over durations, that use the exponential distri
tion as a building blcok. A phase distribution is modeled We can specify a-phase distribution with g x p matrix,

as a set ophasesthrough which a process evolves. Each Qp, by including only the subsystem of transient phases
of these phases is associated with an exponential distribwvithout losing any information. The rows of the new inten-
tion, which encodes the duration that a process stays in thaity matrix will have a (possibly) negative row sum, where



the missing intensity corresponds exactly to the intensity The child of a variable with complex durations sees only
with which we leave the entire system. the state of its parent and so does not, in general, depend on
Phase distributions with a single phase are simply expothe current phase of a parent. There are a number of design
nential distributions. The general class is highly expreschoices to make in implementing phase distributions for
sive: any distribution can be approximated with arbitrarydurations in CTBNs. Different choices may be appropriate
precision by a phase distribution with some finite numberfor different applications. One can add phases in a uniform
of phases (Neuts, 1981). A commonly used subclass oay to each state of each variable — as in example 5.3
phase distributions is thErlangians which can be con- Where each state gets three phases. Alternatively, one migh
structed with a chain-structured subsystempophases, allow some states of some variables to be modelled with

where all phases have the same exit intensity. more phases than others.

When the parent instantiation changes, one might allow
5.2 CTBN Durations as Phase Distributions the child in its current state to stay in the same phase or to
One can directly model the distribution in stateof vari- reset. Care must be taken when allowing the child to stay

able X in CTBN A as anyphase distributiorinstead of in the same phase — it requires consistency at least in the
an exponential distribution. This idea is first described?Umber of phases allowed for each state across all parent
by Nodelman and Horvitz (2003) and subsequently ininstantiations. When the phase distribution does not have
Gopalratnam et al. (2005). The former focuses on Erlang distinguished start phase, there is also a choice about the
distributions and the latter on Erlang-Coxian distribngo  distribution over phases with which one enters a state. In
both of which are limited subclasses of general phase dig?articular, there might be a fixed distribution over phases
tributions. In particular neither allow for the exponehtia With which one always enters a particular state or that dis-

phases to be looped. Restriction to subclasses makes leaffiPution might depend upon the previous state or the cur-
ing from data easier; in particular, EM is not required nec-"€nt parentinstantiation.

essary to learn distributions in these classes; howewseth ~ Our observations of a phase-distributed variable are al-
subclasses have several drawbacks, including reduced eways partial in that we might observe the currsteteof
pressivity, especially with small numbers of phases (As-2 variable but never its associateldase We can learn the
mussen etal., 1996). Our method, as itis based on a genef@@rameters for a CTBN with phase distributions using the
EM algorithm, allows the use of general phase distributiond=M algorithm described above by viewing it as a regular
in CTBNSs without restriction. partially observed process.

When using thipphase modellingnethod, the structure . . .
of the intensi?y mzatrix must be altgped by addpttasesas 2.3 Using Hidden Variables
additional rows (and columns). We use the tgghasedo  An alternate method of allowing complex duration distribu-
distinguish additional hidden state in the intensity matri tions for the states of a variablé in CTBN A is to intro-
from states of the variable. Thus, a subsystem of severaluce a special hidden variahléy as a parent of. This
phases is used to implement a single state of a variable. Ihas the advantage of being a very clean way to add expres-
this context there is no absorption and the “final” transitio sive power to CTBNs. Without this technique, the parents
of the phase distribution is the transition of the variable t of X must be other variables that we are modelling in our
its the next state. domain which means that the intensities which control the
Example 5.3 To make a binary variablé/’ have the du- €velution of X' can only change when a regular modelled
ration in each of its 2 states bErlangian-3distributions ~ variable changes. The addition of a hidden parent allows us
(with distinct parameters), we write its intensity matrix a to describe more complex distributions over trajectories o
X by allowing the intensities which control the evolution
of X to change more frequently.

There are different ways to add a hidden variablg
as a parent ofX. We might forceHx to have no par-
ents, or allow it to have parents in addition % having
parents. However, while adding an explicit hidden vari-
able with clear semantics might be useful, it is important to

three to statew,. Note that when restricted to modelling i . SR .
with Erlang distributions for a fixed number of phases thereallze that all complex duration distributions exprekesib
" through use of hidden variables are expressible by direct

number of free parameters is the same as a regular (expo .
nentially distributed) CTBN. phase modelling of the state. For example, suppdse

has 3 states and has 2 states. Using direct phases, we
Using phase modellinggreatly extends the expressive can rewrite & x 6 intensity matrix forX having 3 phases
power of CTBNs and fits naturally within the existing for each of its 2 states corresponding to the hidden state
CTBN framework. The basic structure of existing algo- of Hx. More generally, we can amalgamate a set of hid-
rithms for CTBNs remains unaltered. den parentd x and.X into a single cluster nod§, whose
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Figure 3:(a) Learning results for drug effect net. (b) Learning resstdr British Household Panel Survey. (c) Learned BHPS ngtw
(200 training points).

parents are the union of’s parents other thall x andthe rameters yields a lower log-likelihood given the amount of
parents ofX x. Each state o now corresponds to a set data at those points. Note that the horizontal axis reptesen
of instantiations ta&S. We can reinterpret the amalgamated the amount of data prior to dropping any of it.

CIM for S (given its parents) as a phase distributionfr  The SEM algorithm worked well in this setting. As noted,
with [Val(H x )| phases per state of. Thus, we can show: removing the restriction on acyclicity allows CTBN struc-

Theorem 5.4 For a fixed number of phases a CTBN  ture search to decompose. Therefore, at each iteration, we
variable X with direct phase modelling for durations, i.e., Performed a full structure search, which provided marked
using| X | - p rows forQxs, is strictly more expressive than improvementover a greedy one-step optimization.

a variable with complex durations modelled by using a hid- We also ran SEM on the British Household Panel Survey
den parentH x with p states. (ESRC Research Centre on Micro-social Change, 2003).

Conversely, many complex duration distributions eX_Th|s data is collectedyearly asking thousands of residents

pressible by direct phase modelling cannot be expresseg{)riIr'tac;?vizggu:h:g]zgit?:ttoe:{ggés tgi:i]r?welzl;(/;;\/\l/eesrg:a
using hidden variables. In particular, the joint behavibr o y av 9 np
Hx andX isrestricted in tha andH x cannot transition 4000 testing examples (each example is a trajectory of a

simultaneously. This corresponds to the constraint@at different person). Because we are employing exact infer-

must have zeros in locations that correspond to a simultas" & We had to keep the variable set small and chose 4 vari-

neous shift in the state of and Hx. No such constraint ables: employ (ternary: student, employed, unemployed),

h T : . married (binary: not married, married), children (ternary
olds in direct phase modelling which means that we hav% 1 24). and smoking (binarv: n K ker). Th
more free parameters to describe the distribution. 1, 24), g ( y- non-smoker, smoker). The

average number of events per person is 5.6.
6 Results We learned structures and parameters for a time-sliced
DBN with a time-slice width of 1 year, a standard CTBN,
We implemented the EM and SEM algorithms describedand a CTBN with 2 phases for every state of every vari-
above. We used exact inference by constructing the flatable. No restrictions were placed on the structure of these
tened state space. While this prevents us from solving larg2 phases (so, in general, they form a loop). In order to
problems, it also keeps the analysis of EM separate froneompare CTBNs to DBNs, we sampled the testing data at
that of approximate inference. To verify our algorithms’ the same yearly rate and calculated the probability of these
correctness, we used the drug effect network from Examsampled trajectories.The results are shown in Figure 3(b).
ple 4.3, where all of the variables were binary-valued, forThe DBN and plain CTBN models are comparable, with
tractability. We sampled increasing numbers of trajectothe DBN doing better with more data due to its increased
ries of 5 time lengths. We ran both EM and SEM, giving flexibility (due to intra-time slice arcs, DBNs have more
the former the true network structure and hiding the strucpotential parameters). However, the phase distributions i
ture from the latter. For each data example, we hid partsrease the performance of the CTBN model; the trajecto-
of the trajectory by selecting time windows of length 0.25ries are approximately twice as likely as with the other two
uniformly at random and hiding the value of one variablemodels. Figure 3(c) shows a learned exponential CTBN
during the window. We kept dropping data in this fashionnetwork. The parameters are interesting. For example, the
until all variables had lost either 1/4 or 1/2 of their tota-t  rate (intensity) with which a person stops smoking given
jectory, depending on the experiment. The results of thesthat they have two or more children is three times the rate at
experiments are shown in Figure 3(a). In some cases SEMhich a childless person quits smoking. The rate at which
outperforms EM because the true structure with learned paa person begins smoking given that they have no children
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