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Abstract

Despite the recent boom in large-scale object detection,
the long-standing goal of localizing every object in the im-
age remains elusive. The current best object detectors can
accurately detect at most a few object instances per image.
However, manually labeling objects is quite expensive.

This paper brings together the latest advancements in
automatic object detection and in crowd engineering into a
principled framework for accurately and efficiently localiz-
ing the objects in an image. Our proposed image annota-
tion system seamlessly integrates multiple computer vision
models with multiple sources of human input in a Markov
Decision Process. The system is light-weight and easily ex-
tensible, performs self-assessment, and is able to incorpo-
rate novel objects instead of relying on a limited training
set. It will be made publicly available.

1. Introduction

The field of large-scale object detection has leaped for-
ward in the past few years [20, 41, 11, 43, 56, 23, 49], with
significant progress both in techniques [20, 41, 49, 43] as
well as scale: hundreds of thousands of object detectors can
now be trained directly from web data [8, 15, 11]. The ob-
ject detection models are commonly evaluated on bench-
mark datasets [41, 16], and achievements such as 1.9x im-
provement in accuracy between year 2013 and 2014 on
the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [41] are very encouraging. However, taking a
step back, we examine the performance of the state-of-the-
art RCNN object detector trained on ILSVRC data [20] on
the image of Figure 1: only the 6 green objects out of the
100 annotated objects have been correctly detected.

The question we set out to address in this paper: what
can be done to efficiently and accurately detect all ob-
jects in an image given the current object detectors? One
option is by utilizing the existing models for total scene
understanding [34, 58, 33] or for modeling object con-

Figure 1. This cluttered image has 100 annotated objects shown
with green, yellow and pink boxes. The green boxes correspond
to the 6 objects correctly detected by the state-of-the-art RCNN
model [20] trained on the ILSVRC dataset [41]. (The about 500
false positive detections are not shown.) Yellow boxes loosely cor-
respond to objects that are annotated in current object detection
datasets such as ILSVRC. The majority of the objects in the scene
(shown in pink) are largely outside the scope of capabilities of cur-
rent object detectors. We propose a principled human-in-the-loop
framework for efficiently detecting all objects in an image.

text [59, 14, 42, 45]. However, this is still currently not
enough to go from detecting 6 to detecting 100 objects.

Our answer is to put humans in the loop. The field
of crowd engineering has provided lots of insight into
human-machine collaboration for solving difficult problems
in computing such as protein folding [39, 9], disaster relief
distribution [18] and galaxy discovery [36]. In computer vi-
sion with human-in-the-loop approaches, human interven-
tion has ranged from binary question-and-answer [5, 6, 55]
to attribute-based feedback [38, 37, 32] to free-form object
annotation [54]. For understanding all objects in an im-
age, one important decision is which questions to pose to
users. Binary questions are not sufficient. Asking users to
draw bounding boxes is expensive: obtaining an accurate
box around a single object takes between 7 seconds [25] to
42 seconds [47], and with 23 objects in an average indoor
scene [21] the costs quickly add up. Based on insights from
object detection dataset construction [35, 41], it is best to
use a variety of human interventions; however, trading off
accuracy and cost of labeling becomes a challenge.
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We develop a principled framework integrating state-of-
the-art scene understanding models [20, 31, 1, 21] with
state-of-the-art crowd engineering techniques [41, 35, 10,
44, 27] for detecting objects in images. We formulate the
optimization as a Markov Decision Process. Our system:

1. Seamlessly integrates computer and human input,
accounting for the imperfections of both sources. [5,
25] One of the key components of our system, in con-
trast to prior work, is the ability to incorporate feed-
back from multiple types of human input and from
multiple computer vision models (Section 4.1).

2. Is open-world, by integrating novel types of scenes
and objects instead of relying only on information
available in a limited training set (Section 4.2).

3. Automatically trades off density, precision and cost
of labeling. Different scenarios might have unique re-
quirements for the detected objects. Our system pro-
vides a principled way of detecting the important ob-
jects under the specified constraints (Section 4.4).

4. Is light-weight and easily extensible. Over time, as
computer vision models become more accurate and
novel crowdsourcing tools reduce the human time and
cost, the framework will effortlessly incorporate the
latest advances to continue providing the optimal la-
beling approach. All code will be publicly available.

We provide insights into seven types of human interventions
tasks using data collected from Amazon Mechanical Turk
(Section 5.2), and experimentally verify that our system ef-
fectively takes advantage of multiple sources of input for
localizing objects in images (Section 5.3) while accurately
self-monitoring (Section 5.4).

2. Related work

Recognition with humans in the loop. Among the most
similar works to ours is the approaches which combine
computer vision with human-in-the-loop collaboration for
tasks such as fine-grained image classification [5, 6, 12,
55], image segmentation [25], attribute-based classifica-
tion [30, 38, 3], image clustering [32], image annota-
tion [50, 51] or object labeling in videos [54]. Methods
such as [5, 6, 12, 55] jointly model human and computer
uncertainty and characterize human labeling cost versus la-
beling accuracy, but only incorporate a single type of user
response and terminate user labeling when budget is ex-
ceeded. Works such as [25, 13, 50] use multiple modalities
of user feedback, with varying costs, and accurately model
and predict the success of each modality. However, they
do not incorporate iterative improvement in labeling. We

build upon these approaches to integrate multiple modali-
ties of crowdsourcing annotation directly with state-of-the-
art computer vision models in an iterative framework, alter-
nating between computer vision optimization and additional
human labeling as needed, for the challenging task of dense
object labeling.
Better object detection. Methods have been developed
for training better object detection models with weakly
supervised data [40, 22, 48, 8, 23, 15]. Active learn-
ing approaches has been developed to improve object de-
tectors with minimal human annotation cost during train-
ing [30, 52]. Some object detection frameworks even
automatically mine the web for object names and exem-
plars [8, 11, 15]. All of these approaches can be plugged
into our framework to reduce the need for human annota-
tion by substituting more accurate automatic detections.
Cheaper manual annotation. Manual annotation is be-
coming cheaper and more effective through the devel-
opment of crowdsourcing techniques such as annotation
games [53, 12, 29], tricks to reduce the annotation search
space [13, 4], designing more effective user interfaces [47,
54], making use of weak user supervision [25, 7] and deter-
mining the minimum number of workers required for accu-
rate labeling [44]. These innovations are important in our
framework for minimizing the cost of human labeling when
it is needed to augment computer vision. Approaches such
as [10, 44, 27, 57] use iterative improvement to perform a
task with highest utility, defined as accuracy of labeling per
human cost. Methods such as [60] can be used to predict
where human intervention is needed. We draw upon these
works to provide human feedback in the most effective way.

3. Problem formulation
We present a policy for efficiently and accurately detect-

ing objects in a given image. There are three inputs to the
system. The first input is an image to annotate. The second
input is a utility function, mapping each image region and
class label to a real value indicating how much the system
should care about this label: some objects in the image may
be more important than others [46, 24, 2]. For example, if
the goal is to label as many unique objects as possible then
the utility would be the number of correct returned bound-
ing boxes that correspond to unique object instances.

The third input is a set of constraints on the annota-
tion. There are three possible constraints: (1) utility: hav-
ing specified the utility function, the requester can set the
desired utility value for the image labeling; (2) precision:
after the system returns a set of N bounding box annota-
tions with object names, if NC of them are correct detec-
tions then precision is NC

N ; (3) budget: in our formulation,
budget corresponds to cost of human time although meth-
ods such as [54] can be applied to also incorporate CPU
cost. The requester may specify up to two constraints.



Figure 2. Overview of our system. Given a request for labeling
an image, the system alternates between updating the image an-
notation and soliciting user feedback through human tasks. Upon
satisfying the requester specifications, it terminates and returns a
image with a set of bounding box annotations.

The goal of the system is to label the objects in the image
under these constraints. The output is a set of bounding box
annotations with object names. On one end of the spectrum
the requester can set the maximum budget to zero, and ob-
tain the best computer vision annotation of the image. On
the other end she can set an infinite budget but specify 100%
desired precision and 17 annotated objects per image, which
will produce a policy for dense accurate labeling similar to
that of the SUN dataset [59].

4. Method

Given a request for labeling objects in an image subject
to some constraints, the system annotates the image using
both computer vision and user input (Figure 2). It alternates
between updating the image annotation state (Section 4.1)
and getting feedback from human tasks (Section 4.2). The
system terminates upon achieving a labeling that satisfies

the request (Section 4.3). Until then it continues selecting
the optimal human feedback (Section 4.4).

For the rest of this paper, we distinguish the requester
(the person who wants the image annotated) from the users
(the people doing the human labeling tasks).

4.1. Image annotation state

To effectively label objects in an image, our system uses
information from both image appearance I and user feed-
back U . The system maintains five types of estimates:

1. Classification: P (cls(C)|I,U) for an object class C is
the probability that this object is present in the image

2. Detection: P (det(B,C)|I,U) for a bounding box B
and object class C is the probability that box B is a
good bounding box around an instance of class C

3. Another instance: P (moreinst(B, C)|I,U) for a set
of bounding boxes B and an object class C is the prob-
ability that there are other instances of class C in the
image beyond those contained in B

4. Another class: P (morecls(C|I,U)) for another object
class in the image beyond the classes in set C

5. New object: P (newobj(B)|I,U) for a bounding box
B is the probability that there is an object in this box
which has not yet been named in the current annotation

The last three values are not commonly used in computer
vision systems but are important when soliciting user feed-
back: for example, if there is likely to be another instance of
an object class in the image, the user can be asked to draw
one. Additional sources of information such as relative ob-
ject layout can also be incorporated into the model.

We now describe how to use computer vision and then
user information to estimate these probabilities.

4.1.1 Computer vision input

We incorporate four types of computer vision information
into our system. The first two are straight-forward: image-
level classifiers, providing P (cls(C)|I) for every object
class C and object detectors, providing P (det(B,C)|I)
for box B and class C. These models can be learned us-
ing a variety of computer vision methods [20, 17, 31, 23].
We use non-maximum suppression on the output of object
detectors to (1) avoid multiple detections around the same
instance, and (2) reduce the computational burden.

The third type of input is an empirical distribution on
number of object instances in images. It provides the
probability P (moreinst|n) of there being more instances
of an object class given the image is known to contain at
least n instances of this class. If our system is consider-
ing the set B boxes for class C and we let nc(B, C) be the



number of these boxes that are correct, then E[nc(B, C)] =∑
B∈B P (det(B,C)|I). Rounding n := E[nc(B, C)] to the

nearest integer, we compute

P (moreinst(B, C)|I) =
{

P (cls(C)|I) if n = 0
P (moreinst|n) else

The fourth type of input, an empirical distribution on the
number of object classes is incorporated similarly.

The final type of input is an “objectness” measure, pro-
viding the probability P (obj(B)|I) corresponding to the
likelihood of any generic object being contained in box
B [1]. We compute the probability of there being an unan-
notated object in the box as the probability of there be-
ing some object in the box but it is not any of the exist-
ing guesses C. Assuming that the likelihood of this box to
contain an object is independent of the current set of object
detectors, we compute (implicitly conditioning on I):

P (newobj(B)) = P (obj(B))
∏
C

(1− P (det(B,C))) (1)

When asked to produce a labeling of the image, the
system takes advantage of these computer vision proba-
bilities combined with user input in Section 4.1.2 to re-
turn a set of optimal object detections with probabilities
P (det(B,C)|I,U) in Section 4.3.

4.1.2 Incorporating user input

Types of user input. Besides computer vision information,
our image labeling system also considers responses from
human users. The set U of user responses consists of five
types of binary answers: U(cls(C)) are the responses about
object C being in the image, (2) U(det(B,C)) are the re-
sponses about a single instance of object C tightly bound
by box B, (3) U(moreinst(B, C)) are the responses about
set B covering all instances of class C, (4) U(morecls(C))
are the responses about set C covering all object classes in
the image, and (5) U(obj(B)) are the responses about B
containing a single object.

Two things are important to note. First, the goal is to
keep the set U as small as possible: many objects and
bounding boxes will not require any user feedback. Sec-
ond, while the user feedback is incorporated in the model in
the form of binary variables, the actual human actions and
responses are much more complex (Section 4.2). For exam-
ple, a user may be asked to draw a bounding box for class
C, and then the new box B′ is added to the list of boxes un-
der considerations, and U(det(B′, C)) is updated to include
a single positive response uk = 1.
Joint computer vision and user input model. To com-
bine computer vision with human input, we adopt the model
of [5]. Considering an event E such as “there is an object
of class C in the image” or “there are no more instances of

Figure 3. Two of the user interfaces for our human annotation
tasks. Other UIs and design details are in supplementary material.

class C beyond those in B boxes,” the model estimates the
probability this event given image appearance I and the set
of user responses U = {uk} as

P (E|I,U) ∝ P (E|I)
∏
k

P (uk|E) (2)

This model makes two standard assumptions: first, noise
in user responses is independent of image appearance, so
P (U|I, E) = P (U|E), and second, different user re-
sponses are independent from each other, so P (U|E) =∏

k P (uk|E). [5] We learn the true positive and true neg-
ative rates P (uk = 1|E = 1) and P (uk = 0|E = 0) for
each task from humans (Section 5.2).

In contrast to prior approaches, our set of user inputs U
contains multiple types of information, not all of which may
be relevant to estimating the probability of every event E.
However, each user input uk affects the probability of mul-
tiple events. We provide details in supplementary material.

4.2. Human tasks

In our goal to build a human-machine collaboration sys-
tem for annotating objects in an image, so far we described
the strategy for combining computer vision and user input
to obtain an image labeling. Now we consider the set of
human tasks which the model can utilize to improve this la-
beling. One important property of our model is that it will
automatically find the best question to pose from among the
available options, so there’s no harm in adding extra tasks.

Table 1 presents the seven tasks we consider. For each
question we pose to the users (first column), we can esti-
mate the expected probability of the event being positive
using the models of Section 4.1 (second column). Binary
feedback from the task is incorporated into the image an-
notation model in Section 4.1.2 (third column). Figure 3
shows a few of our UIs.

4.3. Optimal annotation

In the process of annotating an image, the system needs
to decide which of the human tasks to choose at each step (if
any). To do so, we first formalize the requester constraints
on precision and utility from Section 3.



Human task Estimated probability
of positive

Update if pos answer /
Update if neg answer

Verify-image: does the image contain an object of
class C?

P (cls(C)|I,U) 1 → U(cls(C))
0 → U(cls(C))

Verify-box: is box B tight around an instance of
class C?

P (det(B,C)|I,U) 1 → U(det(B,C))
0 → U(det(B,C))

Verify-cover: are there more instance of class C
not covered by the set of boxes B?

P (moreinst(B, C)|I,U) 1 → U(moreinst(B, C))
0 → U(moreinst(B, C))

Draw-box: draw a new instance of class C not
already in set of boxes B.

P (moreinst(B, C)|I,U) 1 → U(det(B′, C)) for drawn box B′

0 → U(moreinst(B, C))

Verify-object: is box B tight around some object? P (obj(B)|I,U) 1 → U(obj(B))
0 → U(obj(B)

Name-box: If box B is tight around an object
other than the objects in C, name the object

P (newobj(B, C)|I,U) 1 → U(det(B,C′)) for named class C′

0 → U(obj(B))

Name-image: Name an object in the image be-
sides the known objects C

P (morecls|I,U) 1 → U(cls(C′)) for named class C′

0 → U(morecls(C))
Table 1. Human annotations tasks and the resulting influence on the annotation model. Details are in Section 4.2.

Consider the object detections Y = (Bi, ci, pi)}Ni=1 of
bounding box, class label, and probability tuples, with pi =
P (det(Bi, Ci)|I,U). Given the provided utility function f :
B × C → [0, 1] mapping the set of bounding boxes with
class labels to how much the user cares about this label, we
compute the expected utility of a labeling Y ⊆ Y as

E[Utility(Y )] =
∑
i∈Y

pif(Bi, Ci) (3)

using the linearity of expectation. The simplest case is valu-
ing all detections equally at f(B,C) = 1 ∀B,C, making
utility equal to the number of correct detections.

Similarly, the expected precision of labeling Y ⊆ Y is

E[Precision(Y )] =
E[NumCorrect(Y )]

N
=

∑
i∈Y pi

N
(4)

Given the available set Y , the system tries to satisfy the
requester constraints. If target precision P ∗ and utility U∗

are requested, the system samples detections from Y into Y
in decreasing order of probability while E[Precision(Y )] ≥
P ∗. We define Precision(∅) = 1 so this is always achiev-
able. Since expected utility increases with every additional
detection, this will correspond to the highest utility set Y
under precision constraint P ∗. If E[Utility(Y )] ≥ U∗, the
annotation is complete. Otherwise, more human tasks are
requested (Section 4.4).

If target precision P ∗ (or utility U∗) and budget B∗ are
requested, then we run the annotation system of Section 4.4
until budget is depleted, and produce the set Y as above
under the precision constraint P ∗ (or utility constraint U∗).

4.4. Task selection

The final component of our approach is automatically
selecting the right human tasks to best improve the image
annotation state. We quantify the tradeoff between cost and

accuracy of annotation by formulating it as a Markov de-
cision process (MDP). [28, 10, 44, 27] An MDP consists
of states S, actions A, conditional transition probabilities
between actions P , and expected rewards of actionsR.
States. At each time period of the MDP, the environment is
in some state s ∈ S. In our case, a state S is the set of our
current beliefs about the image described in Section 4.1.
Actions. In an MDP, the system takes an action a ∈ A
from state s, which causes the environment to transition to
state s′ with probability P(s′|s, a). In our setting, the set
of actions A correspond to the set of human tasks that the
system can request, described in Section 4.2.
Transition probabilities. As a result of an action a from
state s, the system move into a new state s′, i.e., we up-
date our current understanding of the objects in the im-
age. Transition probabilities correspond to our expecta-
tions on the outcomes of the task a. For example, suppose
the user is asked to verify if class C is in the image, and
suppose our current estimate P (cls(C)|I, U) = 0.70. In
Section 5.2 we will learn that average user accuracy rates
on this task are P (uk = 1|cls(C) = 1) = 0.87 and
P (uk = 0|cls(C) = 0) = 0.98. We use Bayes’ rule to com-
pute the probability of positive user response as P (uk =
1|I,U) = (0.87)(0.70)+ (1− 0.98)(1− 0.70) = 0.61. We
can precompute the two resulting states s′ (if the user gives
a positive answer) and s′′ (if the user gives a negative an-
swer), and know that they will occur with probabilities 0.61
and 0.39 respectively if this action a is executed.
Rewards. After transitioning from state s to s′ through ac-
tion a, the agent in an MDP receives a reward with expected
value Ra(s, s

′). In our case, the expected reward of an ac-
tion is how much closer the system approached requester
specifications on the labeling task. If user has specified the
expected precision P ∗ then at each state s and s′ we can
compute the maximum number of boxes to return to obtain
labelings Y and Y ′ respectively both with precision at least



Human task TP TN Cost
Verify-image: class C in image? 0.87 0.98 5.34s
Verify-box: class C in box B? 0.77 0.93 5.89s
Verify-cover: more boxes of C? 0.75 0.74 7.57s
Draw-box: draw new box for C 0.72 0.84 10.21s
Verify-object: B some object? 0.71 0.96 5.71s
Name-object: name object in B 0.75 0.92 9.67s
Name-image: name object in img 0.98 0.88 9.46s

Table 2. Human annotations tasks with the corresponding accuracy
rates and costs. Detailed explanations of each task are in Table 1.
TP column is the true positive probability of user answering “yes”
(or drawing a box, or writing a name) when the answer should in
fact be “yes.” For the open-ended tasks we also need to estimate
the probabilities of the given answer being correct: these prob-
ability are draw-box 0.71, name-object 0.94, name-image 0.95.
TN column is the true negative probability of the user correctly
answering “no.” Cost column is median human time in seconds.

P ∗. The reward should then be defined as

Ra(s, s
′) =

E[Utility(s′)]−E[Utility(s)]

cost(a)
(5)

However, this is quite difficult to optimize in practice since
the function is highly discontinuous. Instead we evaluate a
continuous estimate of the average expected utility over dif-
ferent levels of precision (similar to average precision over
different levels of recall in object detection).1

Optimization. Given the transition probabilities and ex-
pected rewards, at each step the system chooses the action
a∗(s) that maximizes the value V (s), which is computed
recursively as

a∗(s) = argmax
a

{∑
s′

Pa(s, s
′)(Ra(s, s

′) + V (s′))

}
V (s) =

∑
s′

Pa∗(s)(s, s
′)(Ra∗(s)(s, s

′) + V (s′)) (6)

We optimize Equations 6 with 2 steps of lookahead to
choose the next action. [10] This is often sufficient in prac-
tice and dramatically reduces the computational cost.2

5. Experiments
We evaluate both the accuracy and cost of our proposed

system which labels objects in images by combining mul-
tiple computer vision models with multiple types of hu-
man input in a principled framework. We begin by de-
scribing the experimental setup (Section 5.1), then discuss
the challenges of designing the variety of human tasks and
collecting accurate error rates for them (Section 5.2). We

1We treat budget constraints as rigid, soRa(s, s′) = − inf if the cost
of action a is less than the remaining budget.

2Note that doing 1 step of lookahead is not sufficient because some
tasks in Table 1 do not directly influence the labeling.

then show that having multiple human tasks is important
for reducing cost and increasing accuracy of labeling (Sec-
tion 5.3) and conclude by proving that our system is capable
of self-monitoring and able to return labelings according to
requester specifications (Section 5.4).

5.1. Setup

We perform experiments on the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) detection
dataset [41]. The dataset consists of 400K training images,
20K validation images and 40K test images. The validation
and test images are fully annotated with all instances of 200
object classes ranging from accordion to zebra. Since test
set annotations are kept hidden by the challenge organizers,
we split the validation set into two sets (val1 and val2) and
evaluate on val2 following [19].
Computer vision input. We use publicly available code
and models as computer vision input. The object detec-
tors are pre-trained RCNN models released by [19]. Im-
age classifiers are convolutional neural network (CNN)
classifiers trained with Caffe [26] on ILSVRC2013 de-
tection training set (full images, no bounding box la-
bels) [23]. Detections and classifications with probabil-
ity less than 0.1 are discarded. 3 The probability dis-
tribution for P (moreinst|n inst) is computed empirically
for all classes jointly on the val1 set. The probability
P (morecls|n classes) is from [21]. Objectness probabilities
are extracted using the code of [1].
Human-computer interaction. Setting up a system that
integrates computer vision knowledge with human input re-
quires finding common ground between the two. One nec-
essary decision is what bounding box is considered a correct
detection. In object detection, a bounding box is commonly
considered correct if its intersection over union (IOU) with
a ground truth box is greater than 0.5. [41, 16] However,
training humans to visually inspect a bounding box with
IOU of 0.3 and distinguish it from one with IOU 0.5 is sur-
prisingly difficult (Figure 4). In our experiments we choose
0.7 as the target IOU as the halfway point between the tar-
gets of object detection and human annotation.4

The higher IOU further reduces the accuracy of auto-
mated object detection, from 34.1% mAP with IOU of 0.5
and non-maximum suppression (nms) of 0.3 as in [19] to
18.7% mAP with IOU of 0.7 and nms of 0.5.

5.2. Learning human accuracy rates

To incorporate human input into our image labeling sys-
tem, we need to compute the expected outcome of an action

3Details about probability calibration are in supplementary material.
4When human annotators are used to collect object detection datasets,

the average difference in bounding boxes for the same instance between
two annotators is about 5 pixels on each side. [41] For an 200x200 pixel
object, this corresponds to approximately 0.90 intersection over union.
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Figure 4. Bounding boxes with increasing intersection over union
(IOU) with the optimal tight box. Training human annotators to
make binary decision on whether or not a bounding box is a good
detection is quite difficult; this the primary contributor to human
error rates. Guidance such as “the object occupies more than half
the bounding box” is confusing since objects like corkscrews (bot-
tom row) occupy a small area even at perfect IOU.

(Section 4.2). To do so, we collect user accuracy rates for
each human task of Table 1. We assume that user error is de-
pendent only on the type of task (for example, on the clarity
of instructions or the effectiveness of filtering spam work-
ers) and not on the exact question: i.e., a user is equally
likely to misclassify a cat as she is to misclassify a hammer.

To compute the error rates, we need a positive and nega-
tive set of examples for each task to estimate the true posi-
tive and true negative rate of user responses. In most cases
we generated these sets directly from ILSVRC val1 im-
ages and annotations.5 We showed the generated positive
and negative sets of questions for each task to workers on
AMT. Quality control was done by planting a few “gold
standard” questions and preventing users from submitting
if they didn’t achieve expected accuracy on those questions.

The accuracy rates and costs (in median human
time [13]) are reported in Table 2. By far the biggest source
of error is getting users to make binary decisions on tasks
with a bounding box: the average accuracy is 0.92 for
image-level tasks (verify-image and name-image) and 0.81
for the box-level tasks. For the open-ended tasks (draw-box,
name-object, name-image) we needed to compute both the
probability that the user answers the question affirmatively
(i.e., attempts to draw a box) as well as as the probability
that the user is correct. For name-object and name-image
we manually verified the responses on 100 images each.
Some common mistakes were misclassifications (calling a
sheep “goat” or a cello “violin”) and annotations that were
too general (e.g., “food”) despite instructions.

5.3. Evaluating multiple sources of input

We evaluate our system on 2216 images of val2 that con-
tain at least 4 ground truth object instances using the human
accuracy rates collected in Section 5.2 to simulate the real-
world labeling scenario. Incorporating computer vision and
human tasks into one coherent object annotation framework

5Details about generating these sets are in supplementary material.

provides significant improvements over using computer vi-
sion or human input in isolation. Further, we show that mul-
tiple types of human tasks are necessary for optimal benefit.

Figure 6(a) shows the average utility of a labeling as a
function of budget (human labeling time). The utility func-
tion is defined as the number of correct detections in this
case. Average utility is computed by averaging across mul-
tiple levels of precision on each image and then across all
images in the dataset. For the purposes of simulation, since
only the 200 object categories in the image are known, we
omit the verify-object and name-object tasks.

The object detectors alone have average utility of 0.95
objects per image. Adding in just the verify-image and
verify-box tasks improves the utility 1.5x after 4.5 min-
utes of labeling. In contrast, a system with all human tasks
achieves this utility after 45 seconds. Further, the full sys-
tem (containing both computer vision and all human tasks)
continues to improve in utility over time, obtaining 5.98 av-
erage utility after 600 seconds of labeling: 6.2x higher than
object detection alone. The draw-box tasks helps correct
missed detections, and write-name tasks corrects missed
image classifications. Removing the write-name task re-
duces the utility slightly to 5.51 at 10 minutes of labeling.

The importance of computer vision input is apparent
early in the annotation process. After 30 seconds of an-
notation, the computer+human method (with all tasks) out-
performs the utility of the human-only method (with all
tasks) by 1.92x. This means that given 30 seconds of hu-
man annotation time per image, adding in computer vision
input can almost double the accuracy of the human labeling.
However, given a budget of 5 minutes the benefits of com-
puter vision will become less significant and the human-
only method will perform comparably to the joint method.

Figure 5 shows results of our labeling system.

5.4. Respecting requester constraints

One of the key aspects of our system is the ability to
allow the requester to provide constraints on the desired an-
notation (Section 3). After the annotation process (600 sec-
onds), we queried the system for image annotations at 0.5
precision; 0.519 of the returned objects were indeed correct
detections. We repeated the process at 0.1 intervals up to 0.9
precision; the model returned detections with an average of
0.041 higher precision than queried. Thus, the system is
well-calibrated and we can do requester queries.

Figure 6(b) plots requested budget (x-axis) and requested
precision (colored lines) versus the utility of returned label-
ing. We observe that, given the same budget, requesting a
higher level of precision causes the system to be more cau-
tious about returned detections and thus results in lower-
utility labelings.After incorporating 5 minutes of human in-
put and requesting a labeling at 0.9 precision the system
will return on average 4 correctly labeled objects.
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Figure 5. Some example results from our system integrating computer vision with multiple types of user feedback to annotate objects.
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Figure 6. Quantitative evaluation of our system. (a) Computer vision+human (CV+H) method outperforms both CV-only and H-only
methods; details in Section 5.3. (b-d) Quality of returned labeling as a function of requester constraints; details in Section 5.4.

Instead of specifying the desired budget and precision,
the requester can also specify the desired budget and utility.
However, this may not be feasible in all cases, as shown in
Figure 6(c). For example, obtaining a utility of 3 objects
labeled after 60 seconds of labeling is feasible in only 50%
of the images. For the images where it is feasible, however,
we can refer to Figure 6(d) to get the expected precision of
the labeling. In this case, the expected precision is 21.2%.

Providing this detailed analysis of the tradeoff between
precision, utility and budget can help requesters interested
in obtaining a dense labeling of objects in an image a-priori
estimate the quality of the labeling given the scope of their
problem and their constraints.

6. Conclusions
We presented a principled approach to unifying multiple

inputs from both computer vision and humans to label ob-
jects in images. We conclude with several take-home mes-

sages. First, from the computer vision perspective, object
detectors are considered to have correctly detected an object
if they return a loose bounding box (IOU 0.5) and accu-
racy drops rapidly when a tighter bounding box is required.
However, this is problematic for higher-level applications
(such as integrating detectors with human feedback).

From a crowd engineering perspective, we demon-
strated that it is worthwhile to combine multiple tasks in
a principled framework. One interesting observation is that
the verify-cover task (asking if all instances of an object
class are already labeled in the image) inspired by ILSVRC
data collection process [41] turned out in practice to have al-
most no impact on the labeling accuracy as it was selected
by the model less than 0.1% of the time. This confirmed
more of the intuitions of the later COCO [35] dataset that
asking slightly more complex human tasks (such as putting
a dot on the object rather than merely asking if the object in
the image, or drawing the bounding box around an unanno-



tated instance rather than merely asking if one exists) may
be more efficient.

Finally, from an application developer perspective, we
show that even though computer vision is not yet ready to
detect all objects, we have a principled way of labeling all
objects in a scene, trading off precision, utility and budget.
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