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ABSTRACT
We study strategies for scalable multi-label annotation, or for
efficiently acquiring multiple labels from humans for a col-
lection of items. We propose an algorithm that exploits corre-
lation, hierarchy, and sparsity of the label distribution. A case
study of labeling 200 objects using 20,000 images demon-
strates the effectiveness of our approach. The algorithm re-
sults in up to 6x reduction in human computation time com-
pared to the naı̈ve method of querying a human annotator for
the presence of every object in every image.
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INTRODUCTION
Consider building an AI system which is able to navigate a
user’s photo album and automatically find all pictures which
contain a cat but not a dog, pictures which show both a table
and a chair, or pictures which have a boat, sky, and sheep.
Building such a system requires first collecting a training set
of images with known annotations: each of the images in the
training set needs to be labeled with the presence or absence
of a dog, cat, table, and all other objects of interest. In another
domain, consider building a system which automatically rec-
ommends songs to users based on their preferences. Creat-
ing this requires collecting a large training set of songs hand-
annotated by humans with many musical attributes. A key
component of building both of these systems is doing multi-
label annotation, or acquiring multiple labels from humans
for a collection of items.

A key challenge for multi-label annotation is scalability. Sup-
pose there are N inputs which need to be annotated with the
presence or absence of K labels. A naı̈ve approach would
query humans for each combination of input and label, re-
quiring N ×K queries. However, in real life applications N
and K can be very large and the cost of this exhaustive ap-
proach quickly becomes prohibitive. For example, state-of-
the-art computer vision algorithms use thousands or millions
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Figure 1. Multi-label annotation becomes much more efficient when con-
sidering real-world structure of data: correlation between labels, hier-
archical organization of concepts, and sparsity of labels.

of images for training and evaluation [7] and are interested in
determining the presence of 10,000 or even up to 100,000 ob-
ject classes [6]. The number of queries required in this case is
1,000,000 images× 100,000 objects, which costs $10 million
even in the optimistic setting of perfect workers who label at
a cost of 10 cents per 1,000 annotations.

In this paper we study strategies for scaling up multi-label an-
notation, i.e. obtaining labels with a cost substantially smaller
than that of the exhaustive naı̈ve approach. This technique
is important in multiple domains, such as labeling actions in
videos [11], news article topics [15], functional classes of
genes [8], musical attributes or emotions in songs [12], se-
mantic classes of scenes [2], product categories customers are
likely to buy [21], and categories of web pages [18]. While
the problem of acquiring one label has been well studied [20,
9, 22, 19, 16, 5], to our knowledge the challenge of large-
scale multi-label annotation has not been addressed before.

We exploit three key observations for labels in real world ap-
plications (illustrated in Figure 1).

Correlation. Subsets of labels are often highly correlated.
Objects such as a computer keyboard, mouse and monitor fre-
quently co-occur with each other in images. Topics such as
economy and finance often co-occur in news articles. Simi-
larly, some labels tend to all be absent at the same time. For
example, all objects that require electricity are usually absent
in pictures taken outdoors. This suggests that we could poten-
tially “fill in” the values of multiple labels by grouping them
into only one query for humans. Instead of checking if dog,
cat, rabbit etc. are present in the photo, we check them as a
group animal. If the answer is no, then this implies a no for
all categories in the group.

Hierarchy. The above example of grouping dog, cat, rab-
bit etc. into animal has implicitly assumed that labels can be
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grouped together and humans can efficiently answer queries
about the group as a whole. This brings up our second key
observation: humans organize semantic concepts into hierar-
chies and are able to efficiently categorize at higher semantic
levels [17], e.g. humans can determine the presence of an an-
imal in an image as fast as every type of animal individually.
This leads to substantial cost savings.

Sparsity. The values of labels for each item tend to sparse,
i.e. an image is unlikely to contain more than a dozen types
of objects, a small fraction of the tens of thousands of object
categories. This enables a rapid elimination of many objects,
filling no for many labels very quickly. With a high degree of
sparsity, an efficient algorithm can have a cost which grows
logarithmically with the number of objects instead of linearly.

In this paper we propose algorithmic strategies that exploit
the above intuitions. The key is to select a sequence of queries
for humans such that we achieve the same labeling results
with only a fraction of the cost of the naı̈ve approach. The
main challenges include how to measure cost and utility, how
to construct good queries, and how to order them. We present
a theoretical analysis and a practical algorithm.

We then perform a case study using our approach on a task
of labeling 200 objects in 20,000 images, a total of 4 million
labels. We describe our system setup in detail and discuss
various design heuristics, including how to frame cost effec-
tive queries posted to humans. Experiments demonstrate that
our approach is much more scalable than the naı̈ve approach.

RELATED WORK
Acquiring labels as a crowdsourcing task has been exten-
sively studied. The key challenge is making efficient use
of resources to achieve quality results. A growing body of
work has studied how to estimate worker quality [9], how
to combine results from multiple noisy annotators [20, 22,
19], how to model the trade-off between quality and cost [5],
how to merge machine and human intelligence [10], as well
as how to select the next best item to label [16]. However,
they only focus on the single-label case. Multi-label annota-
tion has been practiced in many crowd-powered systems. For
example, PlateMate [14] tags all foods in each photo for nu-
trition estimation. VizWiz [1] labels the presence of objects
in images to help blind users. These systems, however, do not
address the scalability issue of a large number of labels.

Our framework of optimizing the sequence of queries to fill in
values relates to general strategies using iterative steps [13] to
limit the search space. For example, Branson et al. study how
to select questions for multi-class image classification [4];
this is a special case of our setting where only one class can
be present in an image. Our work also draws on research on
multi-label classification in crowdsourcing [3]. We exploit a
given label hierarchy to rapidly eliminate labels, whereas pre-
vious work has no access to a hierarchy and cannot issue high
level queries outside the label set. Instead, this previous work
achieves speed-ups by modeling label co-occurrences.

APPROACH
We first describe a meta algorithm for multi-label annotation,
and then customize to make it more efficient. For clarity of
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Figure 2. Our algorithm dynamically selects the next query to efficiently
determine the presence or absence of every object in every image. Green
denotes a positive annotation and red denotes a negative annotation.
This toy example illustrates a sample progression of the algorithm for
one label (cat) on a set of images.

exposition and without any loss of generality we use the task
of labeling images with the presence of objects as a running
example. Here each label represents the presence or absence
of an object and takes a value of yes or no. We assume that
all labels are binary since any multi-valued label can be rep-
resented as a set of mutually exclusive binary labels.

Algorithm. Our meta algorithm (Algorithm 1) poses a se-
quence of queries to humans. Each query allows us to fill in
values for some labels. We stop when all values are filled. A
few sample iterations of the algorithm are shown in Figure 2.

Input: An item to be labeled
Output: K labels, each label +1 or −1
Set values of all K labels to 0 (i.e. missing);
while any values are 0 do

Select a query Q from possible queries Q;
Obtain an answer A to query Q from humans;
Set values of some labels to +1 or −1 given answer A;

end
Algorithm 1: The meta algorithm for multi-label annotation

In the naı̈ve instantiation of this meta algorithm, we issue one
query for each label (i.e. is there a dog in the image). This
is clearly not scalable as the cost is O(NK) for N items and
K labels. The key to scalability is using additional queries
that may fill in multiple values (e.g. if there is no animal with
four legs, we know there is no dog and no cat and no rabbit in
the image). Moreover, we can exploit the fact that the meta
algorithm allows dynamic selection of the next query based
on the current available information.

A good query should fill in as many values as possible and is
easy for humans to answer. In other words, we would like to
pick a question with the most utility in filling in the values per
unit of cost. We now make the two notions precise.

Utility. We measure the utility of a query as the expected
number of new values filled in over a distribution of items to
be labeled. Consider an image with k missing labels. Let
y ∈ {−1, 0,+1}k represent the values of those k labels after
using query Q, where −1 means “no,” 0 means “unknown”
and 1 means “yes.” Thus the l1 norm ‖y‖1 is the number of
newly acquired labels. The utility of Q is U(Q) = E‖y‖1.

In practice the utility can be estimated using a “training” set,
i.e. an i.i.d. sample of items with ground truth annotations.1
Suppose we have a set of n training images labeled with the
presence or absence of cats, dogs, and other objects. Let s
be the number of objects of interest which are “animals,” and
consider the high-level query “is there an animal present.” Let
n− be the number of training images with no animals. On
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these images the query yields s new labels since it reveals that
all s animals must be absent. On the other images there are
no new labels since it is still unknown which of the s animals
are present. Thus, the estimated utility is Û(Q) = sn−/n.
This utlity may be high in practice for well-designed queries.
In contrast, consider a low-level query such as “is there a cat
present.” The utility would always be 1, since on every image
it reveals one new label: +1 if there is a cat, −1 otherwise.

Correlation and sparsity of large label sets leads to high utility
of certain queries. For example, when annotating a diverse
set of internet images for the presences of couches, desks,
sofas, and chairs, designing queries with good utility (e.g., is
furniture present?) is easy because the labels are correlated:
most internet images that do not have couches also will not
have desks. High sparsity means potentially more high utility
queries because for most inputs most queries will have a no
answer (e.g., most images will not have most of the objects
being annotated).

Cost. We measure the cost C(Q) of a query Q as the ex-
pected human time it takes to obtain a reliable answer for one
item. First, we can empirically measure the average amount
of time a human takes to answer a query on a small training
set. Next, we might need to consult multiple humans to be
confident in the answer. Here we take the majority voting ap-
proach and assume a Bernoulli process for querying multiple
workers. Again on a small training set we can estimate that
the average worker gives a correct answer with probability
p > 0.5. Then the accuracy of a majority of 2n + 1 votes
is [16]: P̂2n+1 =

∑2n+1
i=n+1

(
2n+1

i

)
pi(1 − p)2n+1−i. Given

an acceptable accuracy threshold 1− ε, we can find the num-
ber of votes needed to reach the threshold, which allows us to
calculate C(Q) as a product of the number of workers needed
and the average time a worker takes to give an answer.

To be more scalable than the naı̈ve method, it is crucial to
find high-utility queries that are also low cost. This is where
the hierarchical structure of the label space helps. Hierarchy
means many high-level (“is there an animal?”) or attribute-
like queries (e.g. “is it red?”) have low time cost because
they are not arbitrary groupings but useful shortcuts in human
cognition.

Selection. In Algorithm 1, the query is selected by maximiz-
ing utility per unit cost, i.e., Q∗ = argmaxQ Û(Q)/C(Q).

EXPERIMENTS
Task and Implementation. We apply this algorithm to the
task of labeling images with the presence or absence of many
object categories. We use 20, 000 images from ImageNet [7]
and Flickr and annotate them with 200 object categories from
accordion to zebra. We manually create a hierarchy of these
objects which contains 56 internal queries, using high-level
categories such as “animals with hooves,” “electronics that
play sound” or “liquid containers.”

We created a user interface shown in Figure 3 for efficient
binary labeling of images. A user is given an object category
1We could in principle estimate the utility conditioned on values of
existing labels. This is beyond the scope of this paper.

Figure 3. The Amazon Mechanical Turk interface for obtaining human
annotations. Here workers are asked to select images which contain a
rabbit, and are shown good and bad example images.

(either one of the target categories or a high-level category)
along with positive and negative example images, and is then
asked to click on all images from a large candidate pool which
contain an instance of this category. We used this interface to
query humans using Amazon Mechanical Turk.

We used an early pilot of this algorithm to obtain ground truth
annotations on this data, with stringent quality control but po-
tentially suboptimal cost. This allows us to evaluate our algo-
rithm in a controlled setting through simulation. We estimate
key simulation parameters (worker confusion matrix, worker
response time per image for each query) through real AMT
experiments with a sample of 100 images per category, each
image labeled 3 workers. Query utility is estimated by the
algorithm on the fly using the training set (we use a 10%-
90% training-test split). In simulation we enforce a minimum
worker accuracy of 75% after filtering of spammers.

Query construction. Before our algorithm can automatically
perform query selection, we need to provide a pool of candi-
date queries. We can leverage general knowledge bases such
as WordNet, or specialized ones such as the product taxon-
omy from eBay. These databases can provide high-level con-
cepts or attributes as candidate queries.

If manual query construction is necessary (e.g. to augment
an existing pool), we provide simple heuristics. As discussed
above, there are two key components of good queries: high
utility and low cost. For high utility the query should be
broad in scope (e.g., “is there an animal?”, “is there furni-
ture?”, ”is it sharp?”). To be low cost, the query should be
easy for the average human to answer using just salient in-
formation in the input. For example, queries such as “are
there school supplies?”, “motorized vehicles?”, “things used
to open cans/bottles?” took up to 3 times longer on average
than simple queries such as “is there a bug?”, “ a canine?”, “a
ball?”. Generally, queries should avoid requiring the user to
do additional inference beyond the provided input.

Query construction may involve significant effort, but it is a
one-time, fixed investment: the label set for a particular ap-
plication is relatively static, whereas the items to label can
be dynamic and infinitely many. The cost saved in label-
ing many items can easily outweigh the fixed, upfront cost
of query construction. Moreover, our method is designed to
minimize the effort of query construction as it automatically
selects the most effective queries.
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Query: Is there a...2 Utility (num labels) Cost (secs)
mammals that have claws or fingers 12.0 3.0
living organisms 24.8 7.9
mammals 17.6 7.4
creatures without legs 5.9 2.6
land and avian creatures 20.8 9.5

Table 1. The most useful queries at the first iteration of our algorithm.
Utility is the expected number of new values for object labels as a result
of this query. Cost is the human time needed to obtain the answer with
≥ 95% expected accuracy. Usefulness of a query is utility per unit cost.

Thresh Accuracy F1 score Cost savingNaı̈ve Ours Naı̈ve Ours
95.0 99.64 99.75±0.00 75.67 76.97±0.16 3.93±0.00
90.0 99.29 99.62±0.00 60.17 60.69±0.39 6.18±0.01
85.0 99.25 99.62±0.00 59.09 60.46±0.39 6.11±0.01

Table 2. Our algorithm obtains superior accuracy compared to the
naı̈ve brute force approach while being more computationally efficient.
Thresh is a parameter of the algorithm (please see text for details).

Some examples of highest-utility queries at the first iteration
of our algorithm are shown in Table 1.

Large-scale evaluation. We compare our algorithm to the
baseline approach that queries a human for every object in
every image (Table 2). We use 3 metrics: (1) accuracy, or
the total percentage of correct labels, (2) F1-score, or the har-
monic mean of precision and recall on labels from all cat-
egories, and (3) reduction of human annotation time of our
algorithm compared to the baseline. Error bars are the result
of 5 simulations. Threshold is the acceptable level of accu-
racy; it determines the number of workers needed for each
query. Our algorithm obtains up to 6× savings compared to
the naı̈ve approach while maintaining superior accuracy.

DISCUSSION AND CONCLUSION
Our algorithm works well in cases where the natural distribu-
tion of labels satisfies our assumptions, i.e. when the labels
are correlated, sparse, and naturally form a hierarchy. If, on
the other hand, the distribution of labels is dense and indepen-
dent, there is little for our algorithm to exploit. In real world
scenarios, though, and as validated by our experiments, ex-
ploiting the label distribution can yield significant savings.
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