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Abstract. We consider the task of learning visual connections between
object categories using the ImageNet dataset, which is a large-scale
dataset ontology containing more than 15 thousand object cl asses. We
want to discover visual relationships between the classes that are cur-
rently missing (such as similar colors or shapes or textures). In this work
we learn 20 visual attributes and use them in a zero-shot transfer learning
experiment as well as to make visual connections between semantically
unrelated object categories.

1 Introduction

Computer vision has traditionally focused on object categories: object classi�ca-
tion, object segmentation, object retrieval, and so on. Recently, there has been
some interest in transitioning from learning visual nouns (whether object cate-
gories, such as cars or pedestrians, or object parts, such as\wheel" or \head")
to visual adjectives (such as \red" or \striped" or \long") w hich can be used
to describe a wide range of object categories [1{6]. Learning visual attributes
has been shown to be bene�cial for improving performance of detectors [3] but
especially for transferring learned information between object categories. For ex-
ample, learning the color \red" or the pattern \striped" fro m a series of training
images can then be used to recognize these attributes in a variety of unseen
images and object categories [1, 3].

The term \attribute" is de�ned in Webster's dictionary as \a n inherent char-
acteristic" of an object, and various types of attributes have been explored in
the literature: appearance adjectives (such as color, texture, shape) [1{5, 7], pres-
ence or absence of parts [1, 4, 6] and similarity to known object categories [1, 5,
6]. Attributes have also been broken up into (1) semantic, i.e., those that can be
described using language [1, 4, 7], and (2) non-semantic butdiscriminative [3] or
similarity-based [5, 6]. In this paper, we focus on semanticappearance attributes.

Attributes and parts-based models are particularly important when building
large-scale systems, where it is infeasible to train an object classi�er indepen-
dently for each object class. Given a su�ciently rich dataset of learned adjectives,
new categories of objects can be recognized simply from a verbal description con-
sisting of a list of the attributes [1, 3] or a verbal description in combination with
just a few training examples [3].

In this paper, we consider learning multiple visual attributes on ImageNet [9],
which is a large-scale ontology of images built upon WordNet[8]. It contains more
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Fig. 1. The goal of our work is to build visual connections between obj ect categories.
We focus on the large-scale ImageNet dataset which currently uses WordNet [8] to
provide a semantic hierarchy provides a semantic hierarchy of categories. Discovering a
visual hierarchy would be useful for a variety of tasks; for exam ple, targeted retrieval.

than 11 million images representing more than 15 thousand concepts. While the
dataset already provides useful structure and connectionsbetween object classes
through the hierarchical semantic ontology of WordNet, we want to learn visual
relationships or hierarchies between the classes (see Figure 1). We begin by
describing the existing connections within the ImageNet dataset in Section 2,
and discussing prior work for attribute learning in Section 3. In Section 4 we
describe our approach to obtaining ground truth human labeling of attributes.
We then learn 20 visual attributes on the ImageNet data and present results on a
number of tasks in Section 5. We conclude and discuss future work in Section 6.

2 Learning visual connections in ImageNet

The ImageNet dataset [9] contains representative images for more than 15 thou-
sand image categories, orsynsets as they are called in WordNet.1 Recently,
bounding box annotations have been released for some of the categories, making
it easier to perform object categorization or attribute learning. However, the
dataset remains highly challenging, with lots of variety within the synsets, as
shown in Figure 2.

Noun hierarchies such as WordNet have been very successfully used in natural
language processing. However, the WordNet noun hierarchy is far from visual; for
example, human-made objects within ImageNet are organizedby their high-level
purpose and animals are organized by their evolutionary relation, and as a result
the sibling synsets are often very far from each other in appearance (see Figure 2).
Evolutionary hierarchies are fundamental in genomics and evolutionary biology,
but for computer vision, it would be more useful to be able to derive a hierarchy
of (or at least a set of relations between) object categoriesthat's based on visual
adjectives or attributes of objects, rather than their evolutionary relation.

Connections based on the visual attribute such as \striped" are missing:
striped animals (zebras, raccoons, tigers), striped insects (hairstreak buttery),

1 We use the terms \synset" and \object category" interchangeab ly.
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Edible fruit subtree
Fig synset Pineapple synset Mango synset Kiwi synset

Fig. 2. Example images of synsets that are direct descendants of the edible fruit synset.
First, the high variability within each of the four synsets ma kes classi�cation on this
dataset very challenging. Second, the four object classes are sibling synsets in WordNet
since they are all children of the \edible fruit" synset; howe ver, visually they are quite
di�erent from each other in terms of color, texture and shape.

striped owers (buttery orchid, moosewood tree), striped vegetables (cushaw,
watermelon), striped �sh (black sea bass, lion�sh) and inanimate objects such
as striped fabric are not related within ImageNet. To the best of our knowl-
edge, previous work on attributes has focused on making connections within
a much more narrow set of object categories (such as animals [1, 6], cars [3, 4]
or faces [5]). We are interested in discovering visual relations between all cate-
gories of ImageNet, from fruits to animals to appliances to fabrics. We show in
Section 5.4 that our algorithm indeed manages to do that.

3 Related work

Ferrari and Zisserman [2] proposed learning attributes using segments as the ba-
sic building blocks. They distinguish between unary attributes (colors) involving
just a single segment and binary attributes (stripes, dots and checkerboards)
involving a pattern of alternating segments. Since their method relies on obtain-
ing a near-perfect segmentation of the pattern, in practiceit's di�cult to apply
to challenging natural images { for example, the stripes of atiger are very dif-
�cult to segment out perfectly, and the orange background stripes would often
get merged into a single segment, contrary to what their attribute classi�cation
algorithm expects.

Yanai and Barnard [7] learned the \visualness" of 150 concepts by performing
probabilistic region selection for images labeled as positive and negative examples
of a concept, and computing the entropy measure which represents how visual
this concept is. They evaluated their algorithm on Google search images, and also
considered each image to be a collection of regions obtainedfrom segmentation,
but didn't consider the pairwise relationship between the regions.

Recently, Lampert et al. [1] considered the problem of object classi�cation
when the test set consists entirely of previously unseen object categories, and the
transfer of information from the training to the test phase occurs entirely through
attribute text labels. They introduced the Animal with Attr ibutes dataset with
30,000 images annotated with 50 classes. They are interested in performing zero-
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shot object classi�cation (where the object classes in the training and test sets
are disjoint) based on attribute transfer rather than learning the attributes them-
selves or building an attribute hierarchy. Interestingly, some of their attributes
are not even fundamentally \visual" (for example, \strong" or \nocturnal"), but
were nevertheless found to be useful for classi�cation [1].One interesting thing to
point out in relation to our work is that ImageNet already has subtrees for some
of their adjectives, such as edible, living, predator/prey/scavenger, young, do-
mestic, male/female, even insectivore/omnivore/herbivore. While many of their
other attributes are animal-speci�c, such as \has paws," and thus not as useful
in our setting for making connections between a broad range of object categories,
we were inspired by their list in creating our own.

Farhadi et al. [3] worked on describing objects by parts, such as \has head,"
or appearance adjectives, such as \spotty." They wanted to both describe unfa-
miliar objects (such as \hairy and four-legged") and learn new categories with
few visual examples. They distinguished between two types of attributes: seman-
tic (\spotty") and discriminative (dogs have it but cat don' t). Similarly, Kumar
et al. [5] considered two types of attributes for face recognition: those trained to
recognize speci�c aspects of visual appearance, such as gender or race, and \sim-
ile" classi�ers which represent the similarity of faces to celebrity faces. We focus
on semantic attributes in the current work, but argue that ul timately discrimi-
native and comparative attributes are necessary because language is insu�cient
to precisely describe, e.g., the typical shape of a car or thetexture of a �sh.

Rohrbach et al. [6] use semantic relationships mined from language to achieve
unsupervisedknowledge transfer. They found that path length in WordNet i s a
poor indicator of attribute association (for example, the \ tusk" synset is very
far from the \elephant" synset in the hierarchy, making it im possible to infer
that elephants would have tusks). They show that web search for part-whole re-
lationships is a better way of mining attribute annotations for object categories.
In our work, we also explore using WordNet to mine attribute associations, but
consider using the WordNet synset de�nitions rather than path length.

Most recently, Farhadi et al. [4] discussed creating the right level of abstrac-
tion for knowledge transfer. They learned part and categorydetectors of objects,
and described objects by spacial arrangement of their attributes and the inter-
action between them. They focused on �nding animal and vehicle categories not
seen during training, and inferring attributes such as function and pose. They
learn both the parts that are visible and not visible in each image.

4 Building and labeling an attribute dataset

In order to learn and evaluate attribute labels, we �rst need to obtain ground
truth annotations of the images. [6] discusses various datamining strategies;
however, it focuses on parts-based attributes, mining for relations such as \leg
is a part of dog" or \dog's leg." WordNet provides a de�nition for every synset
it contains; since we are instead interested in appearance-based attributes, we
considered two strategies: mining these de�nitions directly (which is di�erent
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than the path length discussed in [6]), and manual labeling (which was the
approach of [1, 4]).

WordNet synset de�nitions are not well-suited for mining vi sual adjectives
for several reasons. First, the mined adjectives don't necessarily correspond to
visual characteristics of the full object and require understanding of the object
parts (e.g., animals with a \striped tail"). Second, the min ed adjectives often
need to be understood in the context of other adjectives in the de�nition (e.g.,
a ower described as \yellow or red or blue"). Also, sometimes the adjectives
are extremely di�cult to detect visually (e.g., a ag is de�n ed as \rectangular"
but usually doesn't look rectangular in the image). However, since ImageNet
is a very large-scale dataset, mining for attributes in thisvery simple way can
help restrict attention to just a subset of the ImageNet data which is likely to
contain a su�cient amount of positive examples for each attribute. To construct
the dataset of 384 synsets that we use for our experiments, for every attribute
we searched for all synsets (from among those with availablebounding box an-
notations) which contained this attribute in either the syn set name or the synset
de�nition, and included that synset along with all of its sib lings in the training
set. The motivation for including the siblings was to provide a rich enough set
of negative examples that are likely to di�er from the positi ve synsets in only
a few characteristics, and speci�cally in the characteristic corresponding to the
mined attribute. For example, if a zebra is characterized asa \striped" equine,
it's reasonable to infer that other equines, such as horses,are not striped.

In order to obtain the ground truth data we use workers on Amazon Me-
chanical Turk (AMT) to label 25 images randomly chosen from each synset. We
present each worker with 106 images (25 each from 4 di�erent synsets plus 6
randomly injected quality control images) and one attribut e, and ask to make a
binary decision of whether or not this attribute applies to t he image. For color
attributes (black, blue, brown, gray, green, orange, pink,red, violet, white and
yellow), we ask whether a signi�cant part of the object (at least 25%) is that
color. For all other attributes (furry, long, metallic, rec tangular, rough, round,
shiny, smooth, spotted, square, striped, vegetation, wet,wooden), we ask if they
would describe the objectas a wholeusing that attribute.

Each image is labeled by 3 workers, and we consider an image tobe positive
(negative) if all workers agree that it's positive (negative); otherwise, we consider
it ambiguous and don't include it in our training sets. Unfor tunately, for 5 of our
attributes (blue, violet, pink, square and vegetation) we did not get su�cient
positive training data (at least 75 images) to include them in our experiments.

We analyze the overlap between the mined synsets and the human labeling
in Table 1. We consider a synset to be labeled positive for an attribute by
AMT workers if more than half of its labeled images are unanimously labeled
as positive. Interestingly, some obvious annotations suchas \green salad" or
\striped zebra" were not present in the human labels. This shows that data
obtained from AMT can be extremely noisy, and that better quality control
and/or more annotators are needed. Currently we are only considering an image
to be a positive or negative example if it is labeled unambiguously; while this
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gives us good precision in our training set, the recall is much lower than we
would like, and thus the number of training examples for eachattribute is low
despite the large dataset size. Overall, we have 384 synsets� 25 images per
synset = 9600 images labeled with 20 attributes, with 4% of all labels being
positive, 68% negative, and 28% ambiguous.

Attr. WN Both AMT
Green salad, sukiyaki, absinthe green lizard, grass sunower, bonsai

Rectang. ag, sheet, towel box bench, blackboard, cabinet
Round feline, pita, shortcake ball, button, pot basketball, drum, Ferris wheel

Spotted cheetah, gira�e, pinto jaguar garden spider, strawberry, echidna
Striped aardwolf, zebra garden spider, skunk, basketball
Wooden cross, popsicle marimba cabinet, pool table, ski
Yellow grizzly, yolk, honey sunower margarine

Table 1. Examples of synsets labeled positive by mining WordNet de�nit ions (\WN"),
by both WordNet and AMT labelers (\Both"), and just by AMT lab elers (\AMT").

5 Experiments

We have described the procedure for obtaining 384 imageNet synsets, all of which
have bounding box annotations released, with 25 images within each labeled as
positive, negative or ambiguous for each of 20 attributes. In this section we show
classi�cation and retrieval performance of attribute classi�ers trained using this
data, as well as apply these classi�ers to a simple transfer learning task following
the framework of Lampert et al. [1]. Finally, we show the visual links that were
discovered between distant ImageNet synsets.

5.1 Implementation

We represent each image using three types of normalized histogram features:
(1) color histogram of of quantized RGB pixels using a codebook of size 50, (2)
texture histogram of quantized SIFT descriptors at multipl e levels using a code-
book of size 1000 [10, 11], and (3) shape histogram of quantized shape-context
features [12] with edges computed using thePb edge detector [13, 14] using a
codebook of size 500. Each of the three feature histograms was normalized inde-
pendently to have L1 unit length. We use an SVM with a histogram intersection
kernel [15, 16], which in our experiments signi�cantly outperforms both the linear
and RBF kernels. We use a holdout set to determine the regularization.

5.2 Learning image attributes

First, we train the classi�ers to recognize each attribute individually and evaluate
the generalization performance. All images in our trainingset are labeled by 3
AMT workers, and we consider an image to be a positive (negative) example of
an attribute if all subjects agree that this is a positive (negative) example. We
use 5-fold cross-validation, making sure that no synset appears in multiple folds.

Some classi�ers, such as those corresponding to the color attributes, general-
ize quite well in this setting. We point out the two main chall enges we face when
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(a) (b)

Fig. 3. (a) Performance of attribute classi�ers (as measured by the area under the ROC
curve) sorted by attribute type. The average performance of e ach type is reported in
parentheses. (b) Some example images labeled by the human subjects as \striped."
This shows the di�cultly of learning a good \striped" classi �er on this dataset.

training the attribute classi�ers. First, the \pattern" cl assi�ers corresponding to
\striped" and \spotted" attributes perform poorly as a resu lt of the great vari-
ety of the exemplars (see Figure 3(b) for examples of \striped" images). There
is a lack of training data especially in light of this variety (only 99 images were
labeled as \striped" and 146 as \spotted"). As the number of object categories
increases, so does the variety of appearances of certain attributes, and thus the
amount of training data collected should be su�cient to account for this.

Second, the two texture attributes \rough" and \smooth" su� er from ambi-
guity as evidenced by the lack of labeling consensus. The labelersunanimously
agreed on only 66% of the images in the dataset when labeling with the \smooth"
attribute, and 72% when labeling with the \rough" attribute . In contrast, for
every other attribute the annotators unanimously agreed onmore than 79% of
the images. As a result, whether an image was labeled as a positive or negative
training example for \rough" or \smooth" was largely depend ent on the speci�c
set of labelers assigned to it. Such attributes require further re�nement and/or
better de�nitions during the labeling process.

In Figures 4-6 we show qualitative retrieval results using the trained clas-
si�ers. Note that many of the top correctly retrieved images were not used in
the quantitative evaluation because they were not unanimously labeled by the
labelers. This further reinforces the need for more rigorous labeling procedures.

5.3 Transfer learning using attributes

We use the learned classi�ers in a small-scale transfer learning experiment fol-
lowing the Direct attribute prediction (DAP) model of Lampe rt et al. [1]. Briey,
we are givenL test classesz1;:::;L not seen during training, and M attributes,
where the test classes are annotated with binary labelsal

m for each classl and
attribute m. In our experiments we considerL = 5 test classes: chestnut, green
lizard, honey badger, zebra, and spitz, andM = 20 attributes described above.
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furry rectangular

metallic orange

Fig. 4. Visualization of four of the learned attributes (for the oth er attributes, see
Figures 5 and 6). For each attribute, the 5 rows represent the 5 training folds, and
each row shows the top 8 images retrieved from among all synsets that didn't appear
in that fold's training set. The border around each image cor responds to the human
labeler annotation (green is positive, red is negative, yellow is ambiguous).

The synset-level annotations come from AMT human labelers.2 We use 25 im-
ages per object class as above, Given an imagex, the DAP model de�nes the
probability of this image belonging to classz as

p(zjx) =
X

a2f 0;1gM

p(zja)p(ajx) =
p(z)
p(az )

MY

m =1

p(az
m jx)

where p(az
m jx) is given by the learned attribute model, p(z) is assumed to be a

uniform class prior, andp(az ) is the prior on seeing an example with the same set
of attributes as the ground truth for the target class z, computed from training
data assuming a factorial distribution over attributes. Im age x is assigned to
classc(x) using:

c(x) = arg max
l =1 ;:::;L

MY

m =1

p(azl
m jx)

p(azl
m )

2 Out of 100 class-attribute labels, 18 were ambiguous, meaning that less than half the
images within that class were unanimously annotated as either positive or negative
for that attribute by all 3 workers. We manually disambiguat ed the annotations.
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black brown

gray green

long red

rough round

Fig. 5. Continuation of Figure 4 visualizing the learned attributes .
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shiny smooth

spotted striped

wet white

wooden yellow

Fig. 6. Continuation of Figures 4 and 5 visualizing the learned attri butes.
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We apply this model to our learned classi�ers and report our result in Ta-
ble 2. The main source of errors is the zebra class, which relies on the poorly
generalizing \striped" attribute (see results in Figure 3).

chestnut : brown,smooth 0.52 0.16 0.12 0.12 0.08

green lizard : green, long 0 0.84 0 0.12 0.04

honey badger : black, gray, rough, furry 0.32 0 0.60 0.04 0.04

zebra : black, white, striped, smooth 0.36 0.08 0.40 0.08 0.08

spitz : white, furry 0.08 0 0.36 0.08 0.48

Table 2. On the left are the animal classes and the corresponding human attribute
annotations, and on the right is the confusion table from the transfer learning exper-
iments. The rows of the confusion table are the ground truth l abels and the columns
are the classi�er outputs.

5.4 Synset-level connections

Given the attribute classi�ers we can now consider making synset-level connec-
tions within ImageNet, which was the main objective of our work. For each
attribute, we have 5 learned classi�ers, one for each of the 5folds. We �t a sig-
moid to the output of each classi�er to obtain normalized probabilities [15, 17].
We run each classi�er on all images that were not part of its training set synsets.
For each test synset, we compute the median con�dence score of the classi�er
on images within that synset. Figures 7 and 8 show the top returned synsets.

There are various interesting observations that could be made about the re-
trieved synsets. \Green," \white" and \round" classi�ers d iscover connections
between synsets which are very far apart in the WordNet hierarchy { for exam-
ple, salad, which is a node 6 levels deep under the \food, nutrient" subtree of
ImageNet, green lizard, which is 13 levels deep under the \animal" subtree, and
bonsai, which is 9 levels deep under the \tree" subtree. Similarly, the \white"
classi�er connects various breeds of dogs as well as Persiancats, sails, and sheets.
The round classi�er connects, e.g., basketball, ramekin, which is \a cheese dish
made with egg and bread crumbs that is baked and served in individual �reproof
dishes" [8], and egg yolk.

More interesting is to look at attributes such as \long," whi ch are more
contextual and relative, and see the kinds of synsets that were learned. It is not
immediately clear that the classi�er is picking up on the synsets that human
would classify as \long," although bottles and forks de�nit ely are.

Finally, \striped" and \wet" discovered some interesting c onnections { even
though it is extremely di�cult to learn the high variability of stripes in natural
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green
salad (.84), green lizard (.73), bonsai (.52), pesto (.43), saute (.37), daisy (.30)
pot-au-feu (.12), salsa (.12), roughage (.11), cow (.11)

white
kuvasz (.70), Saint Bernard (.67), clumber (.65), wirehair ( .62), foxhound (.60)
sheet (.49), gerbil (.48), Persian cat (.48), sail (.45), bu llterrier (.43)

round
egg yolk (.75), basketball (.68), button (.63), goulash (.5 6), basket (.49),
ramekin (.47), ball (.42), pot (.42), veloute (.39), miso (.3 7)

long
kirsch (.83), sail (.77), rorqual (.74), police van (.72), for k (.69), rack (.67),
killer whale (.58), window (.54), transporter (.50), pool ta ble (.49)

striped
barn spider (.36), daisy (.17), zebra (.17), echidna (.16), backboard (.13),
drum (.12), coloring (.12), roller coaster (.12), bridge (. 11), colobus (.11)

wet
rorqual (.59), sidecar (.55), orangeade (.53), an (.52), screwdriver (.47), killer
whale (.44), bowhead (.43), maraschino (.41), dugong (.40), porpoise (.40)

Fig. 7. This �gure shows the top 10 synsets that were returned by the al gorithm as
the most representative for a subset of the attributes (see Figure 8 for the remainder).
The number in parenthesis represents the median probabilit y assigned to images within
that synset by the attribute classi�er.

scenes, zebras and echidnas were retrieved, as well as \garden spiders," which
actually often do look striped upon inspection even though it is not a common
example that humans would think of as a striped insect. The \wet" classi�er
especially was able to pick up on some very promising connections: besides just
learning that the ocean tends to be wet and thus marine animals are likely wet,
it also made the connection to cocktail drinks such as sidecar and screwdriver.

6 Conclusion

In this work we began building a set of visual connections between object cat-
egories on a large scale dataset. Our ultimate goal is to automatically discover
a large variety of visual connections between thousands of object categories.
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black
colobus (.78), siamang (.75), guereza (.73), groenendael ( .71), binturong (.69), chimpanzee (.66),
schipperke (.66), silverback (.63), aye-aye (.54), gorill a (.54), skunk (.53), bowhead (.50)

brown
puku (.82), lechwe (.73), kob (.73), steenbok (.66), sassab y (.65), redbone (.62),
bushbuck (.60), ragout (.59), dhole (.57), chestnut (.56), bovid (.54), sambar (.54)

furry
keeshond (.94), chacma (.93), macaque (.90), grivet (.90), grizzly (.88), gorilla (.88),
baboon (.88), mandrill (.88), koala (.86), simian (.86), gu enon (.85), kit fox (.85)

gray
koala (.42), abrocome (.39), gorilla (.38), grivet (.33), k eeshond (.29), manul (.29),
schnauzer (.29), chacma (.29), viscacha (.28), vervet (.28 ), hominid (.27), otter (.26)

metallic
fork (.72), transporter (.56), roller coaster (.49), stick (.41), wheel (.38), police van (.37),
keyboard (.34), sail (.31), bridge (.31), building (.28), s ki (.25), bowhead (.25)

orange
orangeade (.73), egg yolk (.58), sunflower (.44), strawber ry (.43), fork (.42), maraschino (.42),
casserole (.39), screwdriver (.37), pizza (.35), croquett e (.30), vermouth (.30), moussaka (.29)

rectangular
police van (.90), transporter (.84), cabinet (.61), marimb a (.50), window (.44), varietal (.42),
flag (.38), bridge (.38), kummel (.31), pot (.29), generic ( .28), pool table (.26)

red
shortcake (.70), basketball (.67), catsup (.55), teriyaki (.43), salad (.42), pizza (.37),
chili (.30), flan (.26), ragout (.23), slumgullion (.22), b ordelaise (.20), police van (.18)

rough
fork (.11), ski (.11), transporter (.11), sail (.11), rorqu al (.11), bowhead (.11),
keyboard (.11), cross (.11), killer whale (.11), roller coa ster (.11), narwhal (.11), stick (.11)

shiny
rorqual (.95), bowhead (.82), killer whale (.61), dugong (. 54), narwhal (.52), manatee (.44),
porpoise (.31), police van (.27), kirsch (.27), flag (.21), stick (.21), ski (.20)

smooth
sail (.65), kirsch (.64), varietal (.63), champagne (.62), generic (.61), green lizard (.58),
bottle (.56), egg yolk (.55), window (.55), mallet (.54), po ol table (.53), tower (.53)

spotted
barn spider (.37), zebra (.26), Ferris wheel (.24), cheetah (.19), insectivore (.16), badger (.15),
carnivore (.15), grass (.15), kudu (.14), groundhog (.13), pesto (.12), dik-dik (.12)

wooden
fork (.75), rack (.66), bridge (.54), police van (.52), pool table (.46), table (.43),
kirsch (.42), marimba (.40), squash racket (.36), transpor ter (.35), cue (.35), slivovitz (.27)

yellow
egg yolk (1.00), sunflower (.86), omelet (.70), kedgeree (. 64), flan (.61), tostada (.48),
succotash (.42), pizza (.35), zabaglione (.26), ravigote ( .25), curry (.23), casserole (.21)

Fig. 8. Continuation of Figure 7 showing the visual connections made between synsets.
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Discovering semantic attributes can aid in more intelligent image retrieval: for
example, the user can specify exactly what he's looking for using a known dic-
tionary of attributes instead of visual training examples. More interestingly,
clustering the attributes into categories, such as shape, texture, color, and so
on, and working with non-semantic attributes, can potentially lead to at least
two major advantages. First, this can allow for new ways of object classi�cation
training: instead of showing the algorithm a large variety of cars during training,
one can simply inject a bit of prior knowledge that cars can come in all colors but
shape is the important characteristic. Second, in retrieval, instead of asking to
�nd an image closest to the query, the user can instead specify that he's looking
for something that's close in color to the query image, but round.
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