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Abstract.  Spatial pyramid matching (SPM) based pooling has been the
dominant choice for state-of-art image classi cation syst ems. In contrast,
we propose a novelobject-centric spatial pooling (OCP) approach, follow-

ing the intuition that knowing the location of the object of i nterest can
be useful for image classi cation. OCP consists of two steps: (1) inferring

the location of the objects, and (2) using the location infor mation to pool

foreground and background features separately to form the image-level
representation. Step (1) is particularly challenging in a t ypical classi ca-

tion setting where precise object location annotations are not available
during training. To address this challenge, we propose a framework that
learns object detectors using only image-level class labed, or so-called
weak labels. We validate our approach on the challenging PASCALO7
dataset. Our learned detectors are comparable in accuracy wth state-

of-the-art weakly supervised detection methods. More importantly, the

resulting OCP approach signi cantly outperforms SPM-base d pooling in
image classi cation.

1 Introduction

Image object recognition has been a major research direction in caputer vision.
Its goal is two-fold: deciding what objects are in an image (classi cation) and
where these objects are in the image (localization). Intuitively, if we know which
objects are present, determining their location should be easier;l@rnatively, if

we know where to look, recognizing the objects should be easier. €hefore, it is
natural to think of these two tasks jointly [1{9].

However, in practice, classi cation and localization are often treaed sepa-
rately. Object localization is generally deemed as a harder problem thn image
classi cation even when precise object location annotations are ailable during
training. In the purely image classi cation setting, it may be seen as adetour to
attempt to localize objects. As a result, current state-of-the-art image classi ca-
tion systems don't go through the trouble of inferring object location informa-
tion [10{14]. Most classi cation systems are based on spatial pyrand matching
(SPM) [15] which pools low-level image features over pre-de ned @rse spatial
bins, with little e ort to localize the objects [10{12].
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Fig. 1. We present object-centric spatial pooling (OCP), a method which rst local-
izes the object of interest and then pools foreground object features separately from
background features. In contrast, Spatial Pyramid Matchin g (SPM) based pooling [15]
(top), the most common spatial pooling method for object cla ssi cation, results in in-
consistent image features when the object of interest (here a car) appears in di erent
locations within images, making is more di cult to learn an a ppearance model of the
object. For the purpose of easy illustration, circles (yell ow) denote object-related local
features, triangles (green) denote background-related local features, and the numbers
indicate the fraction of the respective local features in each pooling region.

This paper proposes a novebbject-centric spatial pooling (OCP) approach
for image classi cation. In contrast to SPM pooling, OCP rst infers the loca-
tion of the object of interest and then pools low level features segrately in the
foreground and background to form the image-level representaon. As shown
in Figure 1, if the location of the object of interest (a car in this casq is avail-
able, OCP tends to produce more consistent feature vectors tha SPM pooling.
Therefore, object location information can be very useful for futher pushing the
state-of-the-art performance of image classi cation.

Of course, the challenge for OCP is deriving accurate enough locatmin-
formation for improving classi cation performance. If the derived location in-
formation is not su ciently accurate, it can end up hurting classi ca tion accu-
racy. There is interesting previous work on learning object deteabrs using only
image-level class labels (or weak labels) [16,17]. Although these metts yield
impressive localization results, they are formulated as detection taks and have
not been shown to be helpful for improving image classi cation perfomance.
Methods such as [1{7] attempt to localize objects to improve image lassi ca-
tion accuracy but only demonstrate results on simple datasets sutas subsets of
Caltech101 classes. In contrast, we evaluate our proposed OCPeathod on the
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highly cluttered PASCALO7 data [14], where we are able to localize objets with
accuracy comparable to state-of-the-art weakly supervised ofect localization
methods [16,17] as well as to signi cantly improve image classi cationperfor-
mance. To the best of our knowledge, this paper is the rst to use wakly su-
pervised object detection to improve image classi cation on PASCAILO7, which
is considered a challenging object detection dataset even when bioding box
annotations are provided for training.

2 Related work

Classi cation. Many state-of-the-art image classi cation systems follow the
popular image feature extraction procedure [10{12] shown in Figue 2. First,

for each image, low-level descriptors like DHOG [18] or LBP [19] are sapled
on a dense grid. They are then coded into higher dimensions throughector
guantization, local coordinate coding (LCC) [10] or sparse coding [2]. Finally

the coded vectors are pooled together, typically using SPM [15] pdimg, to

form the image-level representation. Much research in image classation has

been focused on the former two steps, namely on dierent types folow-level
descriptors [18{20] and coding methods [10, 12, 21{23]. In this pagr we focus
on the spatial pooling step, replacing the popular SPM with our objed¢-centric

pooling.

Methods such as [1{7] use localization information learned in a weaklys
pervised way to help boost classi cation accuracy by focusing on paling low-
level object features without background features. Howevermost of them only
validate their approach on less cluttered and mostly centered dataets such as
subsets of Caltech101 categories, Oxford Flowers 17 datasetice For example,
recently Feng et al. [7] presented a geometric pooling approach whiaesizes each
image to the same size and learns a class-speci ¢ weighting factorrfeach grid
position in an image. On the Caltech101 dataset, where most imagesearoughly
aligned and centered, this method greatly improves over the previos state-of-
the-art [10]. However, it has di culty handling cluttered images like th e ones of
PASCALOQ7 [14]. Further, Nguyen et al. [1] and Bilen et al. [2] explicitly mention
that some degree of context information (like road for cars) nees to be included
into the detected object bounding box in order to be useful for imae classi -
cation. This leads to very rough object localization even on simple dasets. In
contrast, our work deals with high intra-class variability in object loc ation and

Dense grid Coding

(sparse coding,

S 2 Pooling Classification
[ e=p| descriplor emh | occoordinate, =Y (sew) o (svM) = Car
1 (HOG, LBP) super-vector} —

Fig. 2. A popular image classi cation pipeline of state-of-the-ar t methods [10{12]. In
this paper we focus on the pooling step and propose an objecteentric spatial pooling
approach which achieves superior classi cation accuracy compared to the SPM pooling.
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our proposed generic object-centric spatial pooling approach ylds both classi-
cation improvements as well as competitive object localization resits on the
challenging PASCALO7 data.

If object location information is available during training, methods such
as [24, 25] have been used to detect the object of interest, and,[# showed how
to use the output of object detectors to boost classi cation peformance. There
are two main di erences compared our approach. First, we focus o the purely
classi cation setting where no annotations beyond image-level claslabels are
available during training. Second, we learn a joint model for both locéization and
classi cation instead of combining the scores of the two tasks as gi-processing.
Weakly supervised localization. There is a large body of work on weakly
supervised object localization [16, 17, 26{28]. Most of these metlis use HOG-
type low-level features [18] which are faster for detection but hae been shown to
be inferior than bag-of-words models for classi cation [10, 25]. Thecurrent state
of the art is the work of Pandey and Lazebnik [17] which uses deforable parts-
based models [24] trained discriminatively in a weakly supervised fashio for
object localization. In contrast, our goal here is image classi catiom (not object
localization) although we do utilize localization as an intermediate step.

3 Object-centric spatial pooling (OCP) for image
classi cation

Let's rst use an empirical experiment to quantitatively see how object location
information can dramatically improve image classi cation performance. On the
PASCALOQ7 classi cation dataset [14], we trained two classi ers for each object
class: one classi er using features extracted from the full imageand the other
classi er using features extracted only from the provided tight bounding boxes
around the objects. We followed [10] in extracting image features iad training
linear classi ers. Both classi ers were trained on the training set ard tested on
the validation set. The former classi er (trained on full images) yielded 520%
mean average precision (MAP), whereas the latter classi er (traired and tested
on tight bounding boxes) achieved an astonishing 6% mAP. In comparison
the current state-of-the-art classi cation result with a single ty pe of low-level
descriptor (which used a more involved coding method as well as signtant
post-processing) [11] is just 52% mAP. Therefore, it is evident that learning
to properly localize the object in the image holds great promise for impoving
classi cation accuracy.

Now, the challenge is deriving accurate enough location informationd help
classi cation. Obviously, if the location information is not reliable enough, it
can easily end up hurting classi cation performance instead. Reliabldocaliza-
tion becomes very challenging on generic dataset like PASCALO7 [14] vere
objects vary greatly in appearance and viewpoint, are often occlded, and ap-
pear in highly cluttered and unstructured scenes. In fact, most verk on weakly
supervised localization uses simpler datasets [1, 2, 26{28]. Recentpeselaers et
al. [16] were the rst to tackle PASCALO7. To simplify the problem, however,
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they trained object class models separately for di erent viewpoins of objects.
We are interested in learning generic object detectors without anyadditional
annotations and evaluating classi cation performance on the origiral 20 object
classes. To the best of our knowledge we are the rst to do so.

To this end, we introduce a novel framework ofobject-centric spatial pooling
(OCP) for image classi cation. OCP consists of two steps: (1) infering the lo-
cation of the objects of interested; and (2) pooling low-level feaires from the
foreground and the background separately to form the image-le®l representa-
tion. In order to infer the object locations, we propose an iterative procedure for
learning object detectors from only image class labels (or weak labglsvery dif-
ferent from existing methods for learning weakly supervised objealetectors [16,
17], our approach directly optimizes the classi cation objective furction and uses
object detection as an intermediate step. This is described in Sectiv3.1. More
importantly, OCP enables feature sharing between classi cation aml detection:
the resulting feature representation of OCP can be seen as both laounding box
representation (for detection) and an image representation (fo classi cation).
This is described in detail in Section 3.2. As we show in Section 4, suchdgture
sharing plays an essential role in improving classi cation performane.

3.1 Classi cation formulation

We assume we are dealing with the binary image classi cation problem sice
multi-class classi cation is often solved in practice by training one-vesus-all
binary classi ers. Given N data pairs, f1;;yiglL, , wherel; is the i"" image and
yi 2 f+1; 1gis a binary label of the image, the SVM formulation for binary
image classi cation with OCP becomes

min Sjjwij2 + CX\I i 1)
Wi Wl .
st. yi max w'Pg(li))+b 1 ; (2)
B 2BB (i)
i 0 8i (3)

wherew is SVM weight vector, bis bias term, Pg (I;) is the image feature rep-
resentation of imagel; using OCP with given bounding box B, and BB(i) is the
collection of all bounding box windows within imagel;. BB(i) can be obtained
by either densely sampling sliding windows or by using salient regions [25}Ve
do not require any ground truth localization information in this optimiz ation.
Interestingly, the above formulation can also be viewed as multi-insance
learning (MIL) for object detection [1]. However, as in [1], the traditional MIL
formation often only uses the foreground for constructing the unding box
features and discards the background information. This has its dawbacks in
both detection and classi cation. As a result, the method of [1] wasnot able
to accurately localize objects even on simpler datasets such as Calth101; it
tended to choose regions which were larger than the object of intest to encom-
pass contextual information for classi cation. We x these drawbacks by using
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a foreground-background representation, as described belovAs a result, we are
able to localize objects on the signi cantly more challenging PASCALO7[14]
with accuracy comparable to state-of-the-art weakly supervisd object localiza-
tion methods [16,17].

3.2 Foreground-background feature representation

In the classi cation formulation in Eq. 3, the foreground-background feature
representation of OCP provides a natural mechanism for featuresharing be-
tween classi cation and detection. In fact, even for standalone @tection and
classi cation, the foreground-background feature represerition is advantageous
compared to traditional foreground-only feature representaton.
Foreground-background for classi cation. The foreground-background fea-
ture representation provides stronger classi cation performarce than its foreground-
only counterpart. This is not surprising since the background provdes strong
scene context for classi cation [4,29]. For example, for the clasboat, the sur-
rounding water in the image may provide a strong clue that this image ontains
a boat; similarly, seeing road at the bottom of an image can strongly idlicate
that this image is likely about cars. Going back to the classi ers trained on the
tight bounding boxes as described at the beginning of Section 3, if weeplace
the foreground-only feature representation with the foreground-background rep-
resentation, we further improve the classi cation mAP from 69:7% to 71:1%.
This highlights the fact that the foreground-background feature representation
carries important information for classi cation which may be missing in the
foreground-only representation. This is illustrated in Figure 3.
Foreground-background for detection. Object detectors trained with the
foreground-background features also tend to yield more accuta bounding boxes
during detection. Since the foreground and background models arlearned jointly,
they will prevent the object appearance features from leaking inb the back-
ground, and context features from leaking into the foreground.This is illus-
trated in Figure 4. To validate the e ectiveness of the foregroundbackground fea-
ture representation for detection, we also experimented on PASBL07, training
fully supervised object detectors using the foreground-only andhe foreground-
background feature representation respectively. It was no suprise that the foreground-
background feature representation yielded signi cantly better detection perfor-
mance. Here we skip the details of the experiments for simplicity sinceupervised
detection is not the major focus of this paper. In Figure 6 in the exgrimental

aeroplane boat chair diningtable hrse sofa

Fig. 3. Example images which were misclassi ed using just the foreground representa-
tion but correctly classi ed when using the foreground-bac kground representation.
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Foreground-only  Foreground-background
representation representation
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Fig. 4. Bounding boxes bhh and bl have a similar foreground-only feature represen-
tation, but they are very di erent under the foreground-bac kground representation.
Here, the numbers denote the count of object-related descriptors. For bh, parts of
object that leaked into the background will be greatly disco unted by the background
model.

results section, however, we show the di erences in detections ndg with the
foreground-only and the foreground-background model in our @P framework.

With the foreground-background representation of OCP, optimizing the for-
mulation in Eq. 3 can be seen as a simultaneous detection and classi tian
procedure. This is because the foreground-background represtation can be
seen as both a bounding box representation (for detection) and rmimage-level
representation (for classi cation).

3.3 Optimization

Now that we have de ned our objective and our foreground-backjround feature
representation, we discuss how to optimize this formulation. The ofimization

in Eq. 1 is non-convex because of the maximization operation in the atstraints,
thus we need to be careful during optimization to avoid local minima. h par-
ticular, since we are not given any localization information during training, our
optimization algorithm consists of an outer loop that bootstraps the background
region from the foreground and an inner loop that trains the appeance model.
Outer loop: bootstrapping background regions. In a purely classi cation

setting, no foreground and background annotations are providd initially. We

initialize the background region by cropping out a 16-pixel border ofeach im-
age. Then the outer loops bootstraps the background by graduéy shrinking the

smallest bounding box considered in the bounding box searchBB(i) in Eq. 1).

Thus we begin localizing using large windows and iteratively allow smaller ad
smaller windows as we learn more and more accurate models. As the diaround
region is allowed to grow, the algorithm learns more and more accura back-
ground models. If the algorithm goes too aggressively, it will end up irbad local
minima. For example, if the localization is so inaccurate that many featires from
the object of interest appear in the background region, the modewould learn
that objects features actually belong to the background. This waild lead to bad
classi cation models which are hard to correct in later iterations. However, as
long as such bad local minima are avoided, the specic rate of shrinkig the
foreground region does not a ect performance in our experimers.

Inner loop: learning the appearance model for detection. Given the
current constraint on the background size, we need to learn the st object ap-
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pearance model. This is done in two steps: (1) detection, where ginethe current
appearance model we nd the best possible object location from pgitive images
(images that are known to contain the object of interest); and (2 classi cation,
where given the proposed bounding boxes from positive images as gitive ex-
amples and a large sample of bounding boxes from negative images asgative
examples, we construct the bounding box representation using OE and then
train a binary SVM classi er for discriminating the positive bounding bo xes from
the negative bounding boxes. In contrast to more common treatrents which
would need another loop to bootstrap the di cult negative bounding boxes and
iteratively improve the SVM model, here we get rid of this loop by solving an
SVM optimization directly with all (often millions) negative bounding box es.
We make use of the candidate image regions proposed in an unsupé&ed
fashion by [25] to avoid both sampling too many negative windows for kassi-
cation and running sliding windows search for detection. Since the andidate
bounding boxes aim to achieve high recall rate ¥ 96%), we ended up with
1000 3000 candidate bounding boxes per image. For PASCALO7, we havedhl
images in the training and validation sets. Therefore, for each innefoop, we need
to solve for 20 binary SVMs with about 10 million data examples. Furthemore,
our feature representation for OCP is very high-dimensional: we usd a code-
book of 8192 for LLC coding [10], pool the low-level features on théreground
regionusing 1 1and 3 3 SPM pooling regions [15], and separately pool all
low-level features features in the background, thus resulting in deature vector
of dimension 8192 11 =90112. Indeed, if we save all the feature vectors from
the 5011 images, this would require more than 700G of space. Most-the-shelf
SVM solvers would not be able to handle such a large-scale problem. Swe
developed a stochastic gradient descent algorithm with averagingsing a similar
idea to [30]. We were able to run an inner loop in 7 8 hours and to nish the
training (inner look and outer loop) in about 3 days on a single machine.

4 Experiments

We validate our approach on the challenging PASCALQ7 dataset [14], @ntaining
5011 images for training and validation, and 4952 images for testinglhis dataset
consists of 20 object categories, with object instances ocurringn a variety of
scales, locations and viewpoints.

Image representation.  For low-level features, we extract DHOG [18] features
with patch sizes 16 16, 25 25, 31 31 and 46 46. We then run Linear
Locality-Constrained (LLC) coding [10] using a codebook of size 81 and 5
nearest neighbors. For the baseline representation, we pool thBHOG features
usingl 1and 3 3 SPM pooling regions [15] over the full image. Thus each
image is represented using a feature vector of dimension 819210 = 81920.
For our object-centric pooling, we use the same SPM representatn but on the
foreground region and also pool over all low-level features in the dckground
separately, thus giving us a feature dimension of 8192 11 = 90112.
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4.1 Joint classi cation and localization

The main insight behind our approach is that object classi cation and detection
can be mutually bene cial. In particular, as the classi cation accuracy improves
we expect detection accuracy to improve as well, and vice versa. Weegin by
verifying that this is indeed the case. Figure 5 shows the steady immvement in
mean average precision on both classi cation and detection over t iterations
(outer loop) of our algorithms. As a baseline (iteration 0), we use a lassier
trained on full images with the SPM spatial pooling representation, which is
equivalent to assuming an empty background region in foregroundsackground
representation. Interestingly, even after just one iteration, aur classi cation mAP
is already 548%, which is Q5% greater than the 543% SPM classi cation result.:
In the end our OCP method achieves 522% classi cation mAP, signi cantly out-
performing the SPM representation. In fact, it signi cantly outpe rforms even a
much richer 4-level SPM representation of size 8192 30 which achieves only
54:8% classi cation mAP. On the detection side, our approach was abled im-
prove the baseline of 610% detection mAP to the nal 15:0%.

o
J

53

o

v
i

56-

Detec?ion mAP

Classification mAP

0I00) (75— 270y 3(65) 40y 5(55 650 7(0) — 8(O)°
Iteration (min region size as % of image area)

Fig.5. Classi cation and detection mAP on the PASCALOQ7 test set ove r the iterations
of our joint detection and classi cation approach. The red s olid line is classi cation
mAP, and the blue dotted line is detection mAP. We see a steady joint improvement
of classi cation and detection accuracy.

It is important to note that jointly optimizing detection and classica tion
using OCP as in Eq. 3 plays an essential role in achieving the joint impros-
ments for classi cation and detection. As we show below, when detion and
classi cation are optimized separately, higher detection accuracynay not always
means higher classi cation accuracy.

1 We make use of only one type of low-level image descriptor in @ntrast to [9, 31],
and don't do any additional post-processing of the features in contrast to [10, 11].
The work of [10] gives 593% classi cation mAP on this dataset when using LLC
coding, but this relied on signi cant post-processing of th e resulting image features.
To simplify the comparison, we do not involve the post-proce ssing.
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4.2 Image classi cation

OCP signi cantly boost of classi cation accuracy on most of the 20 dject
classes, as shown in Table 1. In particular, OCP achieves signi cant irprove-
ment on the following categories: dog (3% improvement), bottle (7:1%), bicycle
(6:8%), sheep (62%), diningtable (5:9%), bus (46%), motorbike (4:3%) and even
1:3% on the notoriously di cult potted plant category. Noticeably, ma ny of these
categories are relatively small objects (like bottles) embedded in clitered envi-
ronments. OCP greatly improves classi cation accuracy on these ategories by
making an e ort to localize the objects.

Method|| aero| bicycle| bird | boat| bottle| bus| car | cat | chair| cow| dining
SPM 725| 56.3 | 49.5| 63.5| 22.4| 60.1| 76.4| 575 51.9| 42.2| 48.9
OCP || 74.2| 63.1 | 45.1| 65.9| 29.5 | 64.7| 79.2| 61.4| 51.0| 45.0| 54.8
Method|| dog | horsel motbike | person| plant| sheeg sofa| train| tv Mean
SPM || 38.1| 75.1| 62.8 829 | 20.5| 38.1| 46.0| 71.7| 50.5 54.3
OCP || 45.4| 76.3| 67.1 84.4 | 21.8 | 44.3 | 48.8| 70.7| 51.7 57.2

Table 1. Classi cation AP of object-centric spatial pooling compar ed to the standard

SPM spatial pooling on the PASCALOQ7 test set.

There are three categories that proved di cult for OCP to improve : chairs
( 0:9%), trains ( 1:0%) and birds ( 4:4%). For the bird and chair categories,
the objects are often occluded (e.g., birds are often occluded bydes, and chairs
are often occluded by people sitting on them), which make them verghallenging
for detection even when bounding box annotations are available (&=[24,14]).
For the slight drop in the train category, since trains are already rdatively well-
centered in images, SPM pooling alone yields very satisfactory classiation
accuracy (717%) and is di cult to further improve.

We also investigate using the foreground-only (instead of the forground-
background) feature representation when optimizing Eq. 3 This foreground-
only representation leads to an improvement from the baseline SPM mdel { the
mMAP increases from 543% to 557%. This is a 14% improvement as compared
to the 2:9% improvement as in the case of our foreground-background ree-
sentation. Figure 6 illustrates some location results, showing that éreground-
background representation often yields better localization.

4.3 Weakly supervised object localization

Even though our primary goal is image classi cation, the proposed bject-centric
spatial pooling also accurately localizes the objects of interest. PBCALO7 is

2 This experiment is a more assertive version of the technique described in Nguyen et
al. [1]: the optimization framework is similar to [1] but wit h signi cantly stronger
low-level descriptors (HOG descriptors [18] with LLC codin g [10] compared to vector-
quantized SIFT [20]) and with much more negative training da ta.



Object-centric spatial pooling for image classi cation 11

aeroplane bicycle bird boat car cow

Fig. 6. Images where object-centric pooling with the foreground-b ackground model
(yellow) localizes objects more accurately than the foreground-only model (green).

a very challenging dataset for weakly supervised localization (wherdounding
box information is not available during training). Only a few recent works have
tackled this data (Deselaers et al. [16] and Pandey and Lazebnik [17])They
focused on localizing only a handful of the object classes and usedhavailable
viewpoint annotations during training to assist learning. In contrast, we work on
the full dataset without using these additional annotations to mimic the purely
classi cation setting.

Weakly supervised localization can be evaluated directly on the trainiry set
(in our case the PASCALOQ7 trainval set) since only image-level clastabels are
available during training. Following [16, 17] we compute localization accuacy as
the percentage of training image in which an instance was correctly lcalized by
the highest-scoring detection according to the PASCAL criterion vindow inter-
section over the union 50%). On the 14 classes of PASCALO®I® introduced
by [16], our localization accuracy is 274%, which is comparable to 26% of [16]
using additional viewpoint annotations and 30.0% of [17].

As we're most interested in inferring object location on unseen image we
evaluate the detection accuracy on the test set as well. Table 2 copares our
detection average precision on six PASCAL07-6x2 classes [16] evatad on all
test images with the current state-of-the-art in weakly supervised localization.
We obtain 22:8%, outperforming the previous best 208% of [17] which used
additional viewpoint annotations. On all 20 classes, we obtained 1B% detection
MAP compared to 291% mAP of the state-of-the-art deformable part-based
model that used bounding box labels for detector training [24].

aeroplane| bicycle boat bus horse | motorbike
left| right | left [right [left[right [left][right | left [right | left | right
Deselaers [16]9.1| 23.6 |33.4{ 49.4|/0.0 0.0 {0.0| 16.4| 9.6| 9.1 {20.9] 16.1| 16.0
Pandey [17] | 7.5| 21.1|38.5/44.8/0.3| 0.5 | 0 | 0.3 |45.9/17.3|43.8 27.2| 20.8

OCP 30.8 25.0 3.6 26.0 21.3 29.9 22.8
Table 2. Comparison of detection AP on the PASCALO7-6x2 test set for o ur method
versus [16, 17]. Both [16, 17] split up the objects by left and right viewpoint to make
the models easier to learn. We do not make use of these additimal labels and learn a
single model for each object.

Method Average

8 PASCALO7-all includes all classes of PASCALO7 except bird, car, cat, cow, dog and
sheep. [16]
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aeroplane

bicycle

cat car

train

Fig. 7. Foreground regions detected by the object-centric pooling framework on PAS-
CALO7 test images. The models are learned without any ground truth localization
information. Yellow boxes correspond to correct detection s and red boxes are failed de-
tections. On images where multiple instances of a object class are presented, we show
the top few detections after running non-maximal suppression.

Figure 7 shows some examples of our detection results on PASCALQ&st set.
Localization is often quite reasonable, which is amazing considering #hdi culty
of the dataset and the lack of any bounding box annotations duringtraining.
Even on images with multiple object instances our method is sometimeable to
separate out the di erent instances.

Interestingly, when we used the location information derived from the de-
formable part-based model mentioned above [24] learned with thedip of bound-
ing box annotations, images features constructed using our imagespresentation
with the foreground-background pooling yielded a classi cation mAP of 56:9%.
This is inferior to the aforementioned 572% classi cation mAP obtained using
OCP, where our proposed approach in Eqg. 3 did not use any boundingox an-
notations and only achieved 150% detection mAP. This strongly highlights the
importance of the formulation in Eq. 3, which uses classi cation as tte major
optimization objective and jointly optimizes detection and classi cation when
solving the optimization.
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5 Conclusion

We presented an object-centric spatial pooling (OCP) approach ér improving
classi cation performance. The challenge of OCP is training reliable olfect de-
tectors with no available bounding box annotations as in a typical clasi cation
setting. We propose a framework that directly optimizes classi caton objective
with detection being treated as an intermediate step. The key to ths frame-
work is the foreground-background feature representation byOCP that natu-
rally enables feature sharing between detection and classi cationOur results
on the challenging PASCALO7 dataset show that not only is the propsed OCP
approach able to improve the classi cation accuracy compared to sing SPM
pooling, but it also yields very reasonable object detection resultsWe believe
this is an important step toward better image understanding { not only deciding
what objects are in an image but also guring out where these objects are.

Our future work includes incorporating bounding box annotations during
training (from all or just a subset of images) to further improve th e classi cation
performance. We are also very interested in exploiting even more peerful visual
features than the simple LLC feature as used in this paper. As demustrates by
the motivation experiment described in the beginning of Section 3, tlere is much
room for improving classi cation performance by utilizing location info rmation.
This paper is just an initial step toward that direction.
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