Detecting avocados to zucchinis: what have we done, and where are we going?

Olga Russakovsky\(^1\) Jia Deng\(^1\) Zhiheng Huang\(^1\) Alexander C. Berg\(^2\) Li Fei-Fei\(^1\)

\(^1\)Stanford University \(^2\)UNC Chapel Hill

Introduction

Motivation
Large-Scale Recognition is a grand goal of computer vision. Benchmarking and analysis measure progress and inform future directions.

Goal
The goal is to analyze and compare performance of state-of-the-art systems on large-scale recognition.

Dataset
The ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) 2012 is much larger and more diverse than previous datasets.

PASCAL VOC 2005-2012
- 20 object classes: 22,591 images
- 1000 object classes: 1,431,167 images

Classification-localization challenge (ILSVRC2012)
- Task: To determine the presence and location of an object class.

Analysis setup

Why run analysis?

Reason 1: Surprisingly strong performance of the winning entry.

Reason 2: The scale of 1000 object categories allows for unprecedented look at how objects properties affect accuracy of leading algorithms.

State-of-the-art large-scale object localization algorithms

Supervision (SV) by A. Krizhevsky, I. Sutskever, G. Hinton
- Classification: Deep convolutional neural network; 7 hidden layers, rectified linear units, one pooling, dropout, trained with SGD on two GPUs.
- Localization: regression on (x, y, w, h).

Defend-DEEP (DDEEP) by K. Simonyan, Y. Aytar, A. Vedaldi, A. Zisserman
- Classification: ResNet-L; color statistics, Fisher vector (1024 Gaussian), product quantization, linear SVM, one vs rest SVM, trained with Pegasos.
- Localization: Deformable parts model, root-only.

What images are difficult?

Protocol
- For every one of the 1000 classes:
 - Ask humans to annotate different properties, e.g., is this object deformable? (x)
 - Compute accuracy of algorithms on test images (y)

Upper bound (UB)
Currently the output of SV and VGG (using an oracle) to demonstrate the current limit of object localization accuracy.

Where are we going?

- Cluttered images remain very challenging for object localization
 - Proposed measure of clutter can be used for creating and evaluating datasets.
- Untextured and man-made objects are still challenging even for the best algorithms.
- Complementary advantages of SV and VGG can be used to design the next generation of detectors:
 - SV algorithm is very strong at learning object texture, and
 - VGG algorithm is less sensitive to number of instances and object scale.
- ILSVRC dataset is a promising benchmark for detection algorithms.

Bibliography