

Object-centric spatial pooling for image classification

Olga Russakovsky, Yuanqing Lin, Kai Yu, Li Fei-Fei ECCV 2012

Image classification

Testing: Does this image contain a car?

Training:

cars cars

not cars

Proof of concept experiment

Testing: Does this image contain a car?

Training:

cars

not cars

Proof of concept experiment

Testing: Does this image contain a car?

Build an image classification system

PASCAL07 val, 20 classes, DHOG features, LLC coding 8K codebook, 1x1,3x3 SPM, linear SVM **Full images**

52.0 mAP

Cropped objects

69.7 mAP

Training:

cars

not cars

Inferring object locations for classification

Testing: Does this image contain a car?

Challenges:

- 1. Weakly supervised localization during training
- 2. Inferring inaccurate localization will make classification impossible

Training:

cars

Outline

Object-centric spatial pooling (OCP) image representation

Training the OCP model as a joint image classification and object localization model

Results

- Improved image classification accuracy
- Competitive weakly supervised localization accuracy

Image classification system

Classifier

Image

Low-level visual features

DHOG features, LLC coding 8K codebook Image-level representation

1

el Model

Linear SVM

Result

Standard representation: SPM pooling

The Spatial Pyramid Matching (SPM) approach forms the image representation by pooling visual features over pre-defined coarse spatial bins.

SPM-based pooling results in <u>inconsistent</u> image representations when the object of interest appears in different locations within the image.

Object-centric spatial pooling

We propose an object-centric spatial pooling (OCP) approach which

- (1) localizes the object of interest, and then
- (2) pools foreground visual features separately from the background features.

Object-centric spatial pooling

We propose an object-centric spatial pooling (OCP) approach which

- (1) <u>localizes the object of interest</u>, and then
- (2) pools foreground visual features separately from the background features.

OCP training formulation

Given: N images with labels $y_1...y_N \in \{-1,+1\}$ and no object location information

Know:

Positive images contain at least one instance of the object Negative images contain no object instances

Positive examples

Negative examples

OCP training formulation

Given: N images with labels $y_1...y_N \in \{-1,+1\}$ and no object location information

Know:

Positive images contain at least one instance of the object Negative images contain no object instances

$$\min_{\mathbf{w},b} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i} \operatorname{slack}_{i}$$

s.t.
$$y_i \max_{\substack{\text{regions} \\ \text{of Image}_i}} [\mathbf{w}^T F_{\text{region}} + b] \ge 1 - \text{slack}_i \ \forall i$$

Nguyen et al. ICCV09

OCP training formulation

Given: N images with labels $y_1...y_N \in \{-1,+1\}$ and no object location information

Know:

Positive images contain at least one instance of the object Negative images contain no object instances

Goal: a joint model for accurate image classification and accurate object localization

OCP key #1: limiting the search space

Positive examples

Negative examples

Use an unsupervised algorithm to propose regions likely to contain an object

- e.g., van de Sande et al. ICCV 2011, Alexe et al. TPAMI 2012
- Recall: > 97%, ~1500 regions per image
- Helps with accurate object localization

OCP key #2: using all negative data

Positive examples

Negative examples

Dataset: PASCAL07, 20 object classes

~200 examples from positive images +

~5000 negative images x ~1500 regions per image

=> more than 7M examples

Training: stochastic gradient descend with averaging (Lin CVPR'11)

Positive examples

Negative examples

Predict object location is the full image

- Predict object location is the full image
- Learn appearance model

- Predict object location is the full image
- Learn appearance model
- Update location estimate

- Predict object location is the full image
- Learn appearance model
- Update location estimate
- Re-learn appearance model

- Predict object location is the full image
- Learn appearance model
- Update location estimate
- Re-learn appearance model

- Predict object location is the full image
- Learn appearance model
- Update location estimate
- Re-learn appearance model

Positive examples

- Predict object location is the full image
- Learn appearance model
- Update location estimate
- Re-learn appearance model

Joint model for image classification and object localization

OCP key #3: avoiding local minima

Negative examples

Desired training progression:

. . .

OCP key #3: avoiding local minima

Negative examples

- On each iteration, slowly shrink the minimum allowed size
 - Iteration 0: use full image
 - Iteration 1: use only regions with area > 75% image area
 - Iteration 2: use only regions with area > 70% image area
 - •

Recall OCP training formulation

Given: N images with labels $y_1...y_N \in \{-1,+1\}$ and no object location information

Know:

Positive images contain at least one instance of the object Negative images contain no object instances

$$\min_{\mathbf{w}, b} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i} \operatorname{slack}_{i}$$
s.t. $y_i \max_{\substack{\text{regions} \\ \text{of Image}_i}} [\mathbf{w}^T F_{\text{region}} + b] \ge 1 - \operatorname{slack}_{i} \ \forall i$

Object-centric spatial pooling

We propose an object-centric spatial pooling (OCP) approach which

- (1) localizes the object of interest, and then
- (2) <u>pools foreground visual features separately from the background features</u>.

OCP key #4: Foreground-background

Background provides context to improve classification

Foreground

Background

OCP key #4: Foreground-background

- Background provides context to improve classification
- Using a foreground-only model leads to inaccurate localization

Accurate:

Too big:

OCP key #4: Foreground-background

- Background provides context to improve classification
- Using a foreground-only model leads to inaccurate localization
- The foreground-background representation is both
 - a bounding box representation (for detection), and
 - an image-level representation (for classification)

Foreground

Background

Outline

Object-centric spatial pooling (OCP) image representation

Training the OCP model as a joint image classification and object localization model:

- 1. Limit the search space
- 2. Train with lots of negative data
- 3. Localize slowly to avoid local minima
- 4. Use foreground-background representation

Results

- Improved image classification accuracy
- Competitive weakly supervised localization accuracy

Results

PASCAL VOC 2007 test set, 20 classes
DHOG features with LLC coding (codebook size 8192, k=5) and max pooling
1x1,3x3 SPM pooling on foreground + 1 background bin

PASCAL VOC 2007 test set, 20 classes

DHOG features with LLC coding (codebook size 8192, k=5) and max pooling

1x1,3x3 SPM pooling on foreground + 1 background bin

Baseline SPM on full image: 54.3% classification mAP

Object-centric pooling (OCP): **57.2%** classification mAP

Method	aero	bicycle	bird	boat	bottle	bus	car	cat	chair	cow
SPM	72.5	56.3	49.5	63.5	22.4	60.1	76.4	57.5	51.9	42.2
ОСР	74.2	63.1	45.1	65.9	29.5	64.7	79.2	61.4	51.0	45.0

Method	dining	dog	horse	mot	person	plant	sheep	sofa	train	tv
SPM	48.9	38.1	75.1	62.8	82.9	20.5	38.1	46.0	71.7	50.5
ОСР	54.8	45.4	76.3	67.1	84.4	21.8	44.3	48.8	70.7	51.7

PASCAL VOC 2007 test set, 20 classes
DHOG features with LLC coding (codebook size 8192, k=5) and max pooling
1x1,3x3 SPM pooling on foreground + 1 background bin

Baseline SPM on full image: 54.3% classification mAP

Object-centric pooling (OCP): **57.2%** classification mAP

Baseline with 4-level SPM: 54.8% classification mAP

OCP foreground-only: 55.7% classification mAP

PASCAL VOC 2007 test set, 20 classes
DHOG features with LLC coding (codebook size 8192, k=5) and max pooling
1x1,3x3 SPM pooling on foreground + 1 background bin

Baseline SPM on full image: 54.3% classification mAP

Object-centric pooling (OCP): **57.2%** classification mAP

Baseline with 4-level SPM: 54.8% classification mAP

OCP foreground-only: 55.7% classification mAP

Foreground-only (green) vs. foreground-background (yellow)

PASCAL VOC 2007 test set, 20 classes
DHOG features with LLC coding (codebook size 8192, k=5) and max pooling
1x1,3x3 SPM pooling on foreground + 1 background bin

Baseline SPM on full image: 54.3% classification mAP

Object-centric pooling (OCP): **57.2%** classification mAP

Baseline with 4-level SPM: 54.8% classification mAP

OCP foreground-only: 55.7% classification mAP

OCP with state-of-the-art strongly supervised detector (Felzenszwalb et al.):

PASCAL VOC 2007 test set, 20 classes
DHOG features with LLC coding (codebook size 8192, k=5) and max pooling
1x1,3x3 SPM pooling on foreground + 1 background bin

Baseline SPM on full image: 54.3% classification mAP

Object-centric pooling (OCP): **57.2%** classification mAP

Baseline with 4-level SPM: 54.8% classification mAP

OCP foreground-only: 55.7% classification mAP

OCP with state-of-the-art strongly supervised detector (Felzenszwalb et al.):

56.9% classification mAP

Results: weakly supervised localization

PASCAL VOC 2007 <u>train set</u>, 20 classes
DHOG features with LLC coding (codebook size 8192, k=5) and max pooling
1x1,3x3 SPM pooling on foreground + 1 background bin

27.4% localization accuracy

(compare to 28% of Deselaers IJCV12 and 30% of Pandey ICCV11)

PASCAL VOC 2007 test set, 6 classes

Method	aeroplane		bicycle		boat		bus		horse		motorbike		average detection
	left	right	left	right	left	right	left	right	left	right	left	right	mAP
Pandey 2011	7.5	21.1	38.5	44.8	0.3	0.5	0	0.3	45.9	17.3	43.8	27.2	20.8
Deselaers 2012	5	18	49	62	0	0	0	16	29	14	48	16	21.4
ОСР	30.8		25.0		3.6		26.0		21.3		29.9		22.8

Results: weakly supervised localization

Results: classification + detection

PASCAL VOC 2007 test set, 20 classes
DHOG features with LLC coding (codebook size 8192, k=5) and max pooling
1x1,3x3 SPM pooling on foreground + 1 background bin

Conclusions

Object-centric spatial pooling (OCP) framework:

Joint model for image classification and object localization Foreground-background representation

Competitive results

Image classification
Weakly supervised object localization

Important step towards better image understanding

Without the need for additional costly image annotation

Olga Russakovsky, Yuanqing Lin, Kai Yu, Li Fei-Fei.

Object-centric spatial pooling for image classification. ECCV 2012

http://ai.stanford.edu/~olga olga@cs.stanford.edu

Object-centric spatial pooling for image classification

Olga Russakovsky, Yuanqing Lin, Kai Yu, Li Fei-Fei ECCV 2012