Hierarchical Apprenticeship Learning, with
Application to Quadruped Locomotion

J. Zico Kolter, Pieter Abbeel, Andrew Y. Ng
Department of Computer Science
Stanford University
Stanford, CA 94305
{kol ter, pabbeel, ang}@s. stanford. edu

Abstract

We consider apprenticeship learning—Ilearning from expenhahstrations—in
the setting of large, complex domains. Past work in appeestiip learning
requires that the expert demonstrate complete trajestdhi®ugh the domain.
However, in many problems even an expert has difficulty adliig the system,
which makes this approach infeasible. For example, congidetask of teach-
ing a quadruped robot to navigate over extreme terrain; detrating an optimal
policy (i.e., an optimal set of foot locations over the emtierrain) is a highly
non-trivial task, even for an expert. In this paper we prepasnethod fohier-
archical apprenticeship learningvhich allows the algorithm to accept isolated
advice at different hierarchical levels of the control tad3kis type of advice is
often feasible for experts to give, even if the expert is lm&d demonstrate com-
plete trajectories. This allows us to extend the apprestipelearning paradigm
to much larger, more challenging domains. In particulathis paper we apply
the hierarchical apprenticeship learning algorithm totdsk of quadruped loco-
motion over extreme terrain, and achieve, to the best of aondedge, results
superior to any previously published work.

1 Introduction

In this paper we considepprenticeship learningn the setting of large, complex domains. While
most reinforcement learning algorithms operate under thekbV decision process (MDP) formal-
ism (where the reward function is typically assumed to bemia priori), past work [1, 13, 11]
has noted that often the reward function itself is difficolspecify by hand, since it must quantify
the trade off between many features. Apprenticeship lagris based on the insight that often it
is easier for an “expert” to demonstrate the desired beha&vam it is to specify a reward function
that induces this behavior. However, when attempting tdyagpprenticeship learning to large do-
mains, several challenges arise. First, past algorithmagfprenticeship learning require the expert
to demonstrate complete trajectories in the domain, and&specifically concerned with domains
that are sufficiently complex so that even this task is nosifda. Second, these past algorithms
require the ability to solve the “easier” problem of findingearly optimal policygivensome can-
didate reward function, and even this is challenging indailgmains. Indeed, such domains often
necessitate hierarchical control in order to reduce theptexity of the control task [2, 4, 15, 12].

As a motivating application, consider the task of naviggtnquadruped robot (shown in Figure
[1(a)) over challenging, irregular terrain (shown in Figdfb,c)). In a naive approach, the dimen-
sionality of the state space is prohibitively large: theatdiias 12 independently actuated joints, and
the state must also specify the current three-dimensiarsilipn and orientation of the robot, lead-
ing to an 18-dimensional state space that is well beyondahalilities of standard RL algorithms.
Fortunately, this control task succumbs very naturally bdesarchical decomposition: we first plan
a general path over the terrain, then plan footsteps alaagéth, and finally plan joint movements

Figure 1: (a) LittleDog robot, designed and built by Boston Dynamics, Inc. (b)idalgerrain. (c) Height
map of the depicted terrain. (Black = Ocm altitude, white = 12cm altitude.)

to achieve these footsteps. However, it is very challengpngpecify a proper reward, specifically

for the higher levels of control, as this requires quantifythe trade-off between many features,
including progress toward a goal, the height different&tideen feet, the slope of the terrain under-
neath its feet, etc. Moreover, consider the apprenticdshiming task of specifying a complete set
of foot locations, across an entire terrain, that propeailytares all the trade-offs above; this itself is
a highly non-trivial task.

Motivated by these difficulties, we present a unified methmchferarchical apprenticeship learn-
ing. Our approach is based on the insight that, while it may bécdif for an expert to specify
entire optimal trajectories in a large domain, it is mucheras “teach hierarchically”: that is, if we
employ a hierarchical control scheme to solve our probleis,much easier for the expert to give
advice independently at each level of this hierarchy. Atldveer levels of the control hierarchy,
our method only requires that the expert be able to demdagg@odlocal behavior, rather than
behavior that is optimal for the entire task. This type ofiadvs often feasible for the expert to give
even when the expert is entirely unable to give full trajectdemonstrations. Thus the approach
allows for apprenticeship learning in extremely compleevpusly intractable domains.

The contributions of this paper are twofold. First, we idimoe the hierarchical apprenticeship
learning algorithm. This algorithm extends the apprestige learning paradigm to complex, high-

dimensional control tasks by allowing an expert to demeastiesired behavior at multiple levels of

abstraction. Second, we apply the hierarchical appresitip@pproach to the quadruped locomotion
problem discussed above. By applying this method, we aehpevformance that is, to the best of
our knowledge, well beyond any published results for quaediocomotior

The remainder of this paper is organized as follows. In $a¢# we discuss preliminaries and
notation. In Section|3 we present the general formulatich@hierarchical apprenticeship learning
algorithm. In Sectioh 4 we present experimental resultsh lom a hierarchical multi-room grid
world, and on the real-world quadruped locomotion task.alynin Section 5 we discuss related
work and conclude the paper.

2 Preliminaries and Notation

A Markov decision process (MDP) is a tupl§, A, T, H, D, R), whereS is a set of statesd is a
set of actions]” = {Ps,} is a set of state transition probabilities (heR, is the state transition
distribution upon taking action in states); H is the horizon which corresponds to the number of
time-steps considered) is a distribution over initial states; an@l : S — R is a reward function.
As we are often concerned with MDPs for which no reward fumcis given, we use the notation
MDP\R to denote an MDP minus the reward function. A policis a mapping from states to a prob-

ability distribution over actions. The value of a poligyis given byV (7) = E [Zio R(sy)|m|,

where the expectation is taken with respect to the randota seguencey, s1, ..., sy drawn by
stating from the state, (drawn from distributionD) and picking actions according to

There are several other institutions working with the LittleDog robot, andyrhame developed (unpub-
lished) systems that are also very capable. As of the date of submissitrlieve that the controller presented
in this paper is on par with the very best controllers developed at other titstigu For instance, although di-
rect comparison is difficult, the fastest running time that any team aahigweng public evaluations was 39
seconds. In Section 4 we present results crossing terrain of conigditiiculty and distance in 30-35 seconds.

Often the reward functiorR can be represented more compactly as a function of the state.
¢ : S — R" be a mapping from states to a set of features. We consideatieewchere the reward
function R is a linear combination of the featureB{(s) = w’ ¢(s) for parametersv € R™. Then
we have that the value of a poligyis linear in the reward function weights

V(m) = E[Y,L, Rso)lr] = B[Lo wTé(sy)|m] = wT B[,y ¢(si)lm] = wlpg(m) (1)
where we used linearity of expectation to bringoutside of the expectation. The last quantity
defines the vector deature expectationg,(m) = E[Zfio o(s¢)|m].

3 The Hierarchical Apprenticeship Learning Algorithm

We now present our hierarchical apprenticeship learniggrahm (hereafter HAL). For simplicity,
we present dwo levelhierarchical formulation of the control task, referred engrically as the
low-levelandhigh-levelcontrollers. The extension to higher order hierarchiegpo® difficulties.

3.1 Reward Decomposition in HAL

At the heart of the HAL algorithm is a simple decompositiortied reward function that links the
two levels of control. Suppose that we are given a hieraatkiecomposition of a control task in the
form of two MDP\Rs — a low-level and a high-level MDIR, denoted\{, = (Sy, A¢, Ty, Hy, Dy)
andM;, = (S, An, Tw, Hp, D},) respectively — and a partitioning functiah: S, — S}, that maps
low level states to high-level states (the assumption leettesit| Sy, | < |S¢| so that this hierarchical
decomposition actually provides a computational gaiRpr example, in the case of the quadruped
locomotion problem the low-level MDIR describes the state of all four feet, while the high-level
MDP\R describes only the position of the robot’s center of massisAtandard in apprenticeship
learning, we suppose that the rewards in the low-level Mi®Pan be represented as a linear function
of state featuresi(s,) = w” ¢(s¢). The HAL algorithm assumes that the reward of a high-level
state is equal to the average reward over all its correspgridiv-level states. Formally
1 1 - J
R(Sh) N(Sh) Z R(Sf) N(Sh) Z w ¢(85) N(S}L)w Z qb(Sg)

7 se€h(sn) 7 se€h(sn) se€P~1(sn)
(2)

where~1(s,) denotes the inverse image of the partitioning function an@,) = [¢~1(s5)|-
While this may not always be the most ideal decomposition®féward function in many cases—
for example, we may want to let the reward of a high-levelesta themaximumof its low level
state rewards to capture the fact that an ideal agent wowlaysalseek to maximize reward at the
lower level, or alternatively theninimumof its low level state rewards to be robust to worst-case
outcomes—it captures the idea that in the absence of otharipformation, it seems reasonable
to assume a uniform distribution over the low-level stamsesponding to a high-level state. An
important consequence of| (2) is that the high level rewarig also linear in the low-level reward
weightsw. This will enable us in the subsequent sections to form@ateified hierarchical appren-
ticeship learning algorithm that is able to incorporateezkjadvice at both the high level and the
low level simultaneously.

3.2 Expert Advice at the High Level

Similar to past apprenticeship learning methods, expericadat the high level consists of full
policies demonstrated by the expert. However, becauseigheldvel MDP\R can be significantly
simpler than the low-level MD¥R, this task can be substantially easier. If the expert sstgdbat
wfi)E is an optimal policy for some given MDR M,(L’), then this corresponds to the following
constraint, which states that the expert’s policy outpenfoall other policies:

V() > VO (m) vm!.
Equivalently, using (1), we can formulate this constramfalows:
W (10g) > wlpg(nl) vald.
While we may not be able to obtain the exact feature expeastbthe expert’s policy if the high-
level transitions are stochastic, observing a single éxgemonstration corresponds to receiving

2As with much work in reinforcement learning, it is the assumption of thisepdpat the hierarchical
decomposition of a control task ggvenby a system designer. While there has also been recent work on the
automated discovery of state abstractions[5], we have found thatisheften a very natural decomposition of
control tasks into multiple levels (as we will discuss for the specific caseadmped locomotion).

a sample from these feature expectations, so we simply @seltberved expert features counts

[LS) (7r,(f7)E) in lieu of the true expectations. By standard sample conifglexguments [1], it can be
shown that a sufficient number of observed feature countsailverge to the true expectation. To
resolve the ambiguity i, and to allow the expert to provide noisy advice, we use gegadtion and
slack variables (similar to standard SVM formulations)jattresults in the following formulation:
. %”w'("%) o X (@)) (D)
s.t. wT,&d: (Whl’E) > wlpy(m”) +1—n® vm" i

Wherefr,(j) indexes over all high-level policiesindexes over all MDPs, and, is a regularization
constant Despite the fact that there are an exponential number oftgegmlicies there are well-
known algorithms that are able to solve this optimizatiosbpem; however, we defer this discussion
until after presenting our complete formulation.

3.3 Expert Advice at the Low Level

Our approach differs from standard apprenticeship legrmihen we consider advice at the low
level. Unlike the apprenticeship learning paradigm wherexpert specifies full trajectories in the
target domain, we allow for an expert to specify single, dyeactions in the low-level domain.
Specifically, if the agent is in statg and the expert suggests that the best greedy action would mov
to states), this corresponds directly to a constraint on txard function, namely that
R(s}) > R(sy)
for all other states;/ that can be reached from the current state (we saythat“reachable” from
the current state, if 3a s.t.Ps,q(s)) > € for some0 < ¢ < 1).* This results in the following
constraints on the reward function parameters
wl ¢(sy) > w’ ¢(s7)
for all sj reachable frons,. As before, to resolve the ambiguity inand to allow for the expert to
provide noisy advice, we use regularization and slack ks This gives:
min, ¢ glwl|3+Cr YT, €9
St wT(?(SZ(J)) > wT(b(sZ(J)) 11 ¢ Vs%’(j),j
Wheresg“) indexes over all states reachable frﬁf) and; indexes over all low-level demonstra-
tions provided by the expert.

3.4 The Unified HAL Algorithm

From (2) we see the high level and low level rewards are aiinembination of the same set of
reward weightsv. This allows us to combine both types of expert advice piteskabove to obtain
the following unified optimization problem

MiNy, ;¢ %Hw”% + Ce Z;nzl £9) 4+ Gy, i '
st wT¢(s’e(])) > wT¢(SZ(])) +1— f(j) VS%(J)J (3)
W) (wylp) = wlpg(rp)) +1 =@ v i

This optimization problem is convex, and can be solved effitty. In particular, even though the
optimization problem has an exponentially large numberoofstraints (one constraint per policy),
the optimum can be found efficiently (i.e., in polynomial &jnusing, for example, the ellipsoid
method, since we can efficiently identify a constraint tlsaviblated® However, in practice we
found the following constraint generation method more &ffit

3This formulation is not entirely correct by itself, due to the fact that it is isgilole to separate a policy
from all policies (including itself) by a margin of one, and so the exact solution to tbisigm will bew = 0.

To deal with this, one typically scales the margin or slack by some loss funttad quantifies how different
two policies are [16, 17], and this is the approach taken by Ratliff, et 8].ifltheir maximum margin planning
algorithm. Alternatively, Abbeel & Ng [1], solve the optimization problem with any slack, and notice that
as soon as the problem becomes infeasible, the expert’s policy lies inrthexdaull of the generated policies.
However, in our full formulation with low-level advice also taken into aaupthis becomes less of an issue,
and so we present the above formulation for simplicity. In all experimehtre we use only the high-level
constraints, we employ margin scaling as in [13].

“Alternatively, one interpret low-level advice at the levehations and interpret the expert picking actian
as the constraint that _, Psa (s)R(s') > >,/ Psar(s')R(s") Va' # a. However, in the domains we consider,
where there is a clear set of “reachable” states from each state, thalf&mn above seems more natural.

® Similar techniques are employed by [17] to solve structured predictidsigars. Alternatively, Ratliff, et
al. [13] take a different approach, and move the constraints into thetolgjdy eliminating the slack variables,
then employ a subgradient method.

o+
o+ 4+
o+
I

Figure 2: (a) Picture of the multi-room gridworld environment. (b) Performaneesys number of training
samples for HAL and flat apprenticeship learning. (c) Performaecgug number of training MDPs for HAL
versus using only low-level or only high-level constraints.

1. Begin with no expert path constraints.
2. Find the current reward weights by solving the currentnoizaition problem.

3. Solve the reinforcement learning problem at the highlle¥ehe hierarchy to find the
optimal (high-level) policies for the current reward forckaMDP\R, i. If the optimal
policy violates the current (high level) constraints, tteetd this constraint to the current
optimization problem and goto Step (2). Otherwise, no qairds are violated and the
current reward weights are the solution of the optimizafiozblem.

4 Experimental Results

4.1 Gridworld

In this section we present results on a multi-room gridwdddhain with unknown cost. While this

is not meant to be a challenging control task, it allows usamgare the performance of HAL to
traditional “flat” (non-hierarchical) apprenticeship tegng methods, as these algorithms are feasible
in such domains. The grid world domain has a very naturalahibical decomposition: if we
average the cost over each room, we can form a “high-levedt@gpmation of the grid world. Our
hierarchical controller first plans in this domain to choaspath over the rooms. Then for each
room along this path we plan a low-level path to the desiréd ex

Figurel 2(b) shows the performance versus number of traiekagnples provided to the algorithm
(where one training example equals one action demonstbgtéiie expertf, As expected, the flat
apprenticeship learning algorithm eventually convergea superior policy, since it employs full
value iteration to find the optimal policy, while HAL uses tfmon-optimal) hierarchical controller.
However, for small amounts of training data, HAL outperferthe flat method, since it is able to
leverage the small amount of data provided by the expertthtlbeels of the hierarchy. Figure 2(c)
shows performance versus number of MDPs in the trainingosdd AL and well as for algorithms
which receive the same training data as HAL (that is, botin hégel and low level expert demon-
strations), but which make use of only one or the other. Hersee that HAL performs substantially
better. This is not meant to be a direct comparison of theuifft methods, since HAL obtains more
training data per MDP than the single-level approacheshd®athis experiment illustrates that in
situations where one has access to both high-level anddeel-hdvice, it is advantageous to use

SExperimental details: We consider a 111x111 grid world, evenly divided 100 rooms of size 10x10
each. There are walls around each room, except for a door of siaatZonnects a room to each of its
neighbors (a picture of the domain is shown in figure 2(a)). Each statdhainary features, sampled from
a distribution particular to that room, and the reward function is chosedoraly to have 10 “small” [-0.75,
-0.25], negative rewards, 20 “medium” [-1.0 -2.0] negativeards, and 10 “high” [-3.0 -5.0] negative rewards.
In all cases we generated multiple training MDPs, which differ in which featare active at each state and we
provided the algorithm with one expert demonstration for each sampleé Wier training on each MDP we
tested on 25 holdout MDPs generated by the same process. In altisasesults were averaged over 10 runs.
For all our experiments, we fixed the ratio@f, /C, so that the both constraints were equally weighted (i.e., if
it typically took ¢ low level actions to accomplish one high-level action, then we used a ra@ia 6, = t).
Given this fixed scaling, we found that the algorithm was generally inseasiti terms of the resulting policy’s
suboptimality) to scaling of the slack penalties. In the comparison of HAL wéthabprenticeship learning
in Figure[2(b), one training example corresponds to one expert acBoncretely, for HAL the number of
training examples for a given training MDP corresponds to the numbleigbflevel actions in the high level
demonstration plus the (equal) number of low level expert actions pdviéor flat apprenticeship learning
the number of training examples for a given training MDP corresponttsestaumber of expert actions in the
expert’s full trajectory demonstration.

Footstep Demonstrated
by Expert

—
Current Foot Positions
] s
v Before Learning

Figure 3:(a) High-level (path) expert demonstration. (b) Low-level (footsqpert demonstration.

both. This will be especially important in domains such asdhadruped locomotion task, where
we have access to very few training MDPs (i.e., differenties).

4.2 Quadruped Robot

In this section we present the primary experimental reduthis paper, a successful application of
hierarchical apprenticeship learning to the task of quaelduocomotion. Videos of the results in
this section are available http://cs.stanford.edu/ kolter/nips07videos

4.2.1 Hierarchical Control for Quadruped Locomotion

The LittleDog robot, shown in Figure 1, is designed and HujlBoston Dynamics, Inc. The robot
consists of 12 independently actuated servo motors, threach leg, with two at the hip and one at
the knee. It is equipped with an internal IMU and foot forcas®s. We estimate the robot’s state
using a motion capture system that tracks reflective maikerhe robot’s body. We perform all
computation on a desktop computer, and send commands tolibevia a wireless connection.

As mentioned in the introduction, we employ a hierarchicamtool scheme for navigating the
guadruped over the terrain. Due to space constraints, werideshe complete control system
briefly, but a much more detailed description can be foun@jnThe high level controller is body
path planney that plans an approximate trajectory for the robot’s aeatenass over the terrain;
the low-level controller is dootstep plannethat, given a path for the robot's center, plans a set of
footsteps that follow this path. The footstep planner usemnaard function that specifies the rel-
ative trade-off between several different features of timot's state, including (i) several features
capturing the roughness and slope of the terrain at seviffieriesht spatial scales around the robot’s
feet, (ii) distance of the foot location from the robot’s iled center, (iii) the area and inradius of the
support triangle formed by the three stationary feet, ahdratimilar features. Kinematic feasibility
is required for all candidate foot locations and collisidritee legs with obstacles is forbidden. To
form the high-level cost, we aggregate features from thésfep planner. In particular, for each
foot we consider all the footstep features within a 3 cm radifithe foot’'s “home” position (the
desired position of the foot relative to the center of maghéabsence of all other discriminating
features), and aggregate these features to form the fedturthe body path planner. While this is
an approximation, we found that it performed very well ingtige, possibly due to its ability to ac-
count for stochasticity of the domain. After forming the thsction for both levels, we used value
iteration to find the optimal policy for the body path plann@nd a five-step lookahead receding
horizon search to find a good set of footsteps for the footsiamner.

4.2.2 Hierarchical Apprenticeship Learning for Quadruped Locomotion

All experiments were carried out on two terrains: a reldgieasy terrain for training, and a signif-
icantly more challenging terrain for testing. To give advat the high level, we specified complete
body trajectories for the robot’'s center of mass, as showFignre/ 3(a). To give advice for the
low level we looked for situations in which the robot stepped suboptimal location, and then
indicated the correct greedy foot placement, as shown inrEig(b). The entire training set con-

http://cs.stanford.edu/~kolter/nips07videos

Figure 5: Body and footstep plans for different constraints on the training (leff)tasting (right) terrains:
(Red) No Learning, (Green) HAL, (Blue) Path Only, (Yellow) FootstagyO

sisted of a single high-level path demonstration acrostg#ireing terrain, and 20 low-level footstep
demonstrations on this terrain; it took about 10 minutesttect the data.

Even from this small amount of training data, the learnedesysachieved excellent performance,
not only on the training board, but also on the much more diffiesting board. Figure 4 shows

snapshots of the quadruped crossing the testing boardreFigshows the resulting footsteps taken
for each of the different types of constraints, which showsgy large qualitative difference be-

tween the footsteps chosen before and after training. Tablews the crossing times for each of
the different types of constraints. As shown, he HAL aldorntoutperforms all the intermediate

methods. Using only footstep constraints does quite wethertraining board, but on the testing

board the lack of high-level training leads the robot to takery roundabout route, and it performs
much worse. The quadruped fails at crossing the testingitewhen learning from the path-level

demonstration only or when not learning at all.

Finally, prior to undertaking our work on hierarchical appticeship learning, we invested several
weeks attempting to hand-tune controller capable of pgkiood footsteps across challenging ter-
rain. However, none of our previous efforts could signifitaoutperform the controller presented
here, learned from about 10 minutes worth of data, and mamguoprevious efforts performed
substantially worse.

5 Related Work and Discussion

The work presented in this paper relates to many areas dbregment learning, including ap-
prenticeship learning and hierarchical reinforcementrlieg, and to a large body of past work in
guadruped locomotion. In the introduction and in the foratioh of our algorithm we discussed the
connection to the inverse reinforcement learning algoritf [1] and the maximum margin plan-
ning algorithm of [13]. In addition, there has been subsatuerk [14] that extends the maximum
margin planning framework to allow for the automated additbf new features through a boosting
procedure; There has also been much recent work in reinfatlearning on hierarchical rein-
forcement learning; a recent survey is [2]. However, allwluek in this area that we are aware of
deals with the more standard reinforcement learning fomtiet where known rewards are given
to the agent as it acts in a (possibly unknown) environmentohtrast, our work follows the ap-
prenticeship learning paradigm where the model, but notétvards, are known to the agent. Prior
work on legged locomotion has mostly focused on generatitg dor stably traversing fairly flat

HAL FeetOnly PathOnly No Learning
Training | Time (sec)| 31.03 33.46 — 40.25
Testing | Time (sec)| 35.25 45.70 — —

Table 1: Execution times for different constraints on training and testing terrairesh&s indicate that the
robot fell over and did not reach the goal.

terrain (see, among many others, [10], [7]). Only very fearténg algorithms, which attempt to
generalize to previously unseen terrains, have been sfatlgspplied before [6, 3, 9]. The terrains
considered in this paper go well beyond the difficulty levahsidered in prior work.

6 Acknowledgements

We gratefully acknowledge the anonymous reviewers forfheguggestions. This work was sup-
ported by the DARPA Learning Locomotion program under cactthnumber FA8650-05-C-7261.

References

[1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via ingeeinforcement learning. IRro-
ceedings of the International Conference on Machine Learri004.

[2] Andrew G. Barto and Sridhar Mahadevan. Recent advancesriarbigcal reinforcement learnindpis-
crete Event Dynamic Systems: Theory and Applicatit811—-77, 2003.

[3] Joel Chestnutt, James Kuffner, Koichi Nishiwaki, and Satoshigfaig Planning biped navigation strate-
gies in complex environments. Proceedings of the International Conference on Humanoid Rohotics
2003.

[4] Thomas G. Dietterich. Hierarchical reinforcement learning with th& @ value function decomposi-
tion. Journal of Artificial Intelligence Research3:227-303, 2000.

[5] Nicholas K. Jong and Peter Stone. State abstraction discovery frelevant state variables. Proceed-
ings of the International Joint Conference on Atrtificial Intelligen2@05.

[6] H. Kim, T. Kang, V. G. Loc, and H. R. Choi. Gait planning of quaged walking and climbing robot
for locomotion in 3D environment. I®Proceedings of the International Conference on Robotics and
Automation 2005.

[7] Nate Kohl and Peter Stone. Machine learning for fast quadrupectamotion. InProceedings of AAAI
2004.

[8] J. Zico Kolter, Mike P. Rodgers, and Andrew Y. Ng. A complete cohdrrchitecture for quadruped loco-
motion over rough terrain. IRroceedings of the International Conference on Robotics and Automation
(to appear) 2008.

[9] Honglak Lee, Yirong Shen, Chih-Han Yu, Gurjeet Singh, and AadY. Ng. Quadruped robot obstacle
negotiation via reinforcement learning. Pioceedings of the International Conference on Robotics and
Automation 2006.

[10] Jun Morimoto and Christopher G. Atkeson. Minimax differential alyric programming: An application
to robust biped walking. INeural Information Processing Systems 2602.

[11] Gergeley Neu and Csaba Szep@sv Apprenticeship learning using inverse reinforcement learning and
gradient methods. IRroceedings of Uncertainty in Artificial Intelligenc2007.

[12] Ronald Parr and Stuart Russell. Reinforcement learning withristecges of machines. INeural Infor-
mation Processing Systems, 1@98.

[13] Nathan Ratliff, J. Andrew Bagnell, and Martin Zinkevich. Maximumrgia planning. InProceedings of
the International Conference on Machine Learni@g06.

[14] Nathan Ratliff, David Bradley, J. Andrew Bagnell, and Joel ChastiBoosting structured prediction for
imitation learning. InNeural Information Processing Systems 2007.

[15] Richard S. Sutton, Doina Precup, and Satinder Singh. Betweer amdpsemi-mdps: A framework for
temporal abstraction in reinforcement learnidgtificial Intelligence 112:181-211, 1999.

[16] Ben Taskar, Vassil Chatalbashev, Daphne Koller, and Carle&s@n. Learning structured prediction
models: A large margin approach. Rmoceedings of the International Conference on Machine Leatning
2005.

[17] 1. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. leamgargin methods for structured and
interdependent output variablelournal of Machine Learning Researd11453-1484, 2005.

	Introduction
	Preliminaries and Notation
	The Hierarchical Apprenticeship Learning Algorithm
	Reward Decomposition in HAL
	Expert Advice at the High Level
	Expert Advice at the Low Level
	The Unified HAL Algorithm

	Experimental Results
	Gridworld
	Quadruped Robot
	Hierarchical Control for Quadruped Locomotion
	Hierarchical Apprenticeship Learning for Quadruped Locomotion

	Related Work and Discussion
	Acknowledgements

