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Summary. In case of engine failure, skilled pilots can save a helicopter from crgdhjin
executing an emergency procedure known as autorotation. In adtongtather than relying
on the engine to drive the main rotor, the pilot has to control the helicoptér that poten-
tial energy from altitude is transferred to rotor speed. In fact, maintaiaisgf ciently high

rotor speed is critical to retain suf cient control of the helicopter to larfélgaln this paper,
we present the rst autonomous controller to successfully pilot a relsnotantrolled (RC)
helicopter during an autorotation descent and landing.

1 Introduction

Autonomous helicopter ight represents a challenging oanproblem with high-
dimensional, asymmetric, nonlinear dynamics. Helicaptme widely regarded to
be signi cantly harder to control than xed-wing aircrafSee, e.g., [12, 18].) At
the same time, helicopters provide unique capabilitieshss in place hover and
low-speed ight, important for many applications.

Recently, there has been considerable progress in autaso(®L) helicopter
ight. Examples range from basic upright hovering and forevaght [4, 10, 15, 16,
17] to inverted hovering [14], and even to extreme aerobmtioeuvers [1, 6, 5].

All of this prior work pertains to helicopters operating witormal engine power.
By contrast, in this paper we consider autonomous helicoigiiet when the engine
is not engaged. Indeed, even when the engine has failed|ledsgilot can safely
descend and land a helicopter through autorotation.

Whereas during powered ight, the rotor drag is overcome lgyehgine power,
during autorotation the rotor drag is overcome by the air twough the blades.
Effectively the potential energy of the helicopter (copmsding to its altitude) is
transferred to rotor speed. This rotor speed allows the fmloontrol the helicopter
throughout its descent, and then slow down the helicopteré¢ouching down.

Autorotation landings are a challenging maneuver and ipgnlg executing an
autorotation maneuver often leads to severe damage or eveplete loss of the
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helicopter: If the main rotor speed becomes too low, it bezpimpossible to reli-
ably control the helicopter, and the helicopter will typigacrash. If the helicopter
touches the ground with substantial horizontal velocttwyill tip over. If the heli-
copter touches the ground with too low a main rotor speedttiiemain rotor blades
will ex sharply downward. This can result in one of the rotiolades striking the
tailboom, destroying both that rotor blade and the tailboom

Moreover, in contrast with regular landings—where the pilmtld abort a land-
ing attempt and try again later— autorotation landings @i you a single shot
at the approach. One autorotation landing attempt with a poatroller suf ces
to destroy a helicopter. This makes autorotation landingsstically a particularly
challenging research problem.

While engine failure is likely the better known reason to y elicopter in au-
torotation, autorotation is also crucial in case of tatbrdailure. In case of tail-rotor
failure, if one keeps the engine running, the torque fromethgine causes the heli-
copter to rotate (fast) around its vertical axis, which nsakeery hard (if not impos-
sible) to y the helicopter reliably. Switching off the engg removes the torque that
causes this rotation. Hence, in case of tail rotor failune, gilot can still maintain
control of the helicopter by disengaging the engine andgperihg an autorotation
descent and landing.

In this paper, we present the rst controller to succesgfpilot a (RC) heli-
copter during an autorotation descent and landing. We Isyacbllecting ight data
from our expert human pilot, which includes several autatioh descent and landing
demonstrations. Next we learn a dynamics model from thet @gta® The dynam-
ics model we propose in this paper builds upon the dynamiacehpyoposed in [2]:
we extend it for the autorotation setting. In particulag thodel we present in this
paper explicitly incorporates a model for the rotor speediadyics, a crucial aspect
of helicopter ight during autorotatiofi. Then, since it can be very dif cult to spec-
ify helicopter maneuvers by hand, we use the expert denadiwsis to de ne the
autorotation task. (See also, e.g., [5], where demonstratwere used to enable
a helicopter to y high performance helicopter aerobaji€3nce we have the task
speci cation and the dynamics model, we use differentiadaiyic programming (an
extension of the linear quadratic regulator to nonlineatesys, see, e.g., [8, 3]) to

nd a feedback controller to perform the autonomous auttions.

We extensively tested our autonomous autorotation cdetroh our helicopter.
Concretely, we had our helicopter perform a large number@Rautorotations, each
of which resulted in a successful landing.

There is a signi cant body of work studying helicopter igiht autorotation (see,
e.g., [18, 11, 9]). However, prior work has only consideteel analysis of autorota-
tion controllers and autorotation dynamics—often with tbalgf pilot training. No

% Note on terminology: we do not intend to make a distinction between “systemti icie
tion” and “learning a dynamics model.” For the purposes of this papeetban be consid-
ered equivalent.

4 In powered helicopter ight, the variation in rotor speed is relatively minothe engine
tries to keep the rotor speed close to constant.
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prior work has autonomously descended and landed a hetictipbugh autorota-
tion.

In Section 2 we describe our modeling approach. In Sectiore 8l@scribe our
control design and give details on how we use the demormtsatd de ne the con-
trol task. In Section 4 we describe our experimental res8kstion 5 concludes the
paper.

Videos of our autonomous autorotations are available at:

http://heli.stanford.edu

2 Modeling the Dynamics

Helicopters are well-known to have complex dynamics. Fetance, to completely
capture the state of the “helicopter system” one would havediude the—typically
extremely complex—state of the air around the helicopter hé dynamics model.
(See, e.g., [12, 18].) However, various prior work has shavis possible to build
a suf ciently accurate model for control by treating theibepter as a rigid-body,
possibly including the blade- apping dynamics and the nraitor speed. (See, e.qg.,
[13,7,6,2,1,5].)

We model the helicopter with a thirteen dimensional statesisting of position,
orientation, velocity, angular rate and main rotor spedtt fielicopter is controlled
via a 4-dimensional action space: the cyclic pitch contiigls i1a , Which cause the
helicopter to pitch forward/backward or sideways; theratidr (rudder) control,q ,
which affects tail rotor thrust, and can be used to yaw (tthe)helicopter; the main
rotor collective pitch controi,, which changes the main rotor thrust by changing
the pitch of the rotor blades.

Following [2], we rst subtract out the effects of inertia dugravity, and then
learn a model from data to predict accelerations in a coatdiframe attached to
the helicopter. Doing so allows us to use a dynamics modél avitelatively small
number of parameters to be estimated from ight data. Wegirate= the accelerations
over time to obtain position, velocity, orientation, argulate and main rotor speed.

Concretely, our dynamics model uses the following pararizetiion to predict
accelerations:

u=v r w q g +C% [u]
v=w p ur g+C) [V 0
W=u g v p gu+tCl [1; W ic ; uz + v2j;

p=CY [L P i I
q= Cg [1; a; ilon ]
r= Cro [1; r; irud ]

. Pe .
—=C% [1; ooy W uZ+vZ (iZ+i02)):
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The velocities @; v; w) and angular rateg(q;r) are expressed in the helicopter's
reference frame. Heig ; gy ; g refer to the components of gravity in the helicopter's
reference frame; is the main-rotor speed. Similar to [2], we evaluate the rhbgle
considering its simulation accuracy over several secdndsection 4 we document
this accuracy in detail for the rotor speed, which is pattidy important for autoro-
tation.

We estimate the parameter vect@sfrom ight data using least squares. Note
that only the last equation in the dynamics model is spe@ autorotation. Hence,
thanks to the non-linear parameterization, we can use malvigtht data to estimate
the parameters appearing in the rst six equations. Thisignéeresting practical
property of the proposed model: during autorotation it ingéous to apply large
control inputs as is often done when collecting data withghgpose of learning a
dynamics model—large control inputs would slow down the refmeed and make
the helicopter hard (or even impossible) to control. Thelinear parameterization
allows one to still use data with large control inputs to tetire model. In our expe-
rience this improves the accuracy of the learned model césfeso when the ight
data is noisy—as is often the case for (small-scale) hekgepthere vibration tends
to pollute the sensor measurements, and the resultingesttiteates.

The ground is well known to affect helicopter dynamics whemehe helicopter
is within two rotorspans of the ground. In our experiments, faund it diffult to
accurately model the in uence of the ground effect on thedogter dynamics.
However, the net effect relevant for control during an aatiation landing was suf-
ciently well captured by adding a vertical offset relatite the vertical position
predicted in the absence of ground effect. This verticadeifivas easily estimated
from ight data and taken into account accordingly.

3 Control

Once we have an accurate dynamics model, two key challeegasim: (i) Formu-
lating the control problem in a format amenable to contrdigie algorithms, and
(ii) Solving the resulting control problem.

For the case of optimal control (or reinforcement learnimg) need to specify a
cost function that corresponds to the task at hand. For aantpkks, such as heli-
copter ight, it is often very challenging to hand-specihettask in the form of a cost
function. Concretely, for many helicopter maneuvers dyfaiatural description of
the task requires one to specify a trajectory (a sequendatessand control inputs to
be visited over time). However, helicopter dynamics arg eemplex and this makes
it dif cult (if not impossible) to hand-specify a trajectpthat (even approximately)
obeys the dynamics. Similarly to [5], we leverage our expédt's demonstrations
to nd a good target trajectory.

Concretely, an autorotation maneuver is naturally spld three phases.

5 Close to the ground, one cannot safely exert the large control inputdastily used to
collect ight data for system identi cation.
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1. Autorotation glide. The helicopter descends at a reasonable velocity while
maintaining a suf ciently high main rotor speed, which igtical for the he-
licopter to be able to successfully perform the are.

2. Autorotation are. Once the helicopter is at a certain altitude above the ground
it transitions from the glide phase into the are phase. Thee slows down the
helicopter and (ideally) brings it to zero-velocity aboOGtE above the ground.

3. Autorotation landing. Once the helicopter has completed the are, it lands by
using the remaining rotor speed to maintain a level oriéraand slowly de-
scend until contacting the ground.

We recorded several autorotations from our expert pilot spld each of the
recorded trajectories into these three phases.

The glide is a steady state (rather than a trajectory) andigkeg as our target
glide state a typical state (in particular velocity and ratpeed) from the glides our
expert performed.

The landing is simply characterized by a level orientatemotor speed, and a
very low downward velocity. Concretely, our target for tlaading is for the heli-
copter to maintain zero velocity and level orientation.c®ithe helicopter's engine
is disabled, the main rotor speed will gradually decreasaduhis in-place hover,
and the helicopter will slowly descend and land.

The are is very challenging to specify—it does require a estafjectory. A
natural candidate for the are trajectory would be the begtegt demonstration, or
even an idealized version automatically estimated fronexpert's many suboptimal
demonstrations (as proposed for helicopter aerobatic§])n\\Ve use an idealized
version of the best expert demonstration for our are tatggectory. (See Section 4
for details.)

Once we have the target state or trajectory for each phabke iatorotation, we
use differential dynamic programming (DDP), an extensibthe linear quadratic
regulator (LQR) formalism for non-linear systems. We peabuadratically for
deviations from the target state or trajectory. See, €3§).f¢r more details on linear
quadratic methods, [8] for more details on DDP, [1] for moe¢ails on DDP in the
context of autonomous helicopter ight.

4 Experimental Results

4.1 Experimental Setup

Figure 1 shows our helicopter platform: an XCell Tempesidta 54", height 19”)
powered by a 0.91-size, two-stroke engine. We instrumeatgdXCell Tempest
with a Microstrain 3DM-GX1 inertial unit, which measuresdh-axis acceleration,
angular rate and magnetic eld. A ground-based four-cansgsiem measures the
helicopter's positiorf. A (extended) Kalman lter uses both of these sets of mea-
surements to track the helicopter's position, velocitjgeotation and angular rate. In

6 Using ground-based vision is just one of many possible ways of solviadptialization
problem. Of course, the presented control approach is indepeofithve particular sens-
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Fig. 1. Instrumented XCell Tempest during autonomous autorotation.

addition, our Tempest includes a custom tachometer, wtsels a magnet attached
to the main rotor shaft and a Hall effect sensor to monitorrtitational speed of
the main rotor. Our Tempest also includes a sonar unit, whielasures distance
from the ground. XBee Pro 2.4GHz wireless radios relay seim$ormation from
the helicopter to the ground-based ight computer.

4.2 Modeling and Simulation Results

First we had our (human) pilot perform autorotations andepseon each of the
four control inputs through their normal operating rangepéarticular, we collected
10 minutes of autorotation demonstrations and 10 minutépafiered) frequency
sweeps for each of the control inputs. During the powereduieecy sweeps, the
governor regulated the main rotor speed around 1700rpnin@autorotation the
control sweeps are small and gentle to avoid expending téional energy of the
rotor blades. Then we learned a model from the ight data asiileed in Section 2.
Model accuracy for position and orientation for the famifynmodels we use has
been validated in earlier work (see, e.g., [2]). Here we $oon the novel modeling
aspect: the rotor speed model. We simulated the rotor spesrdtime. The rotor
speed's evolution over time depends on the velocity androbmputs, which we
provide to our simulator for this evaluation. Figure 2(apwk both the simulated
rotor speed and the actual rotor speed for a typical autiwatdescent. Our rotor
speed dynamics model accurately captures the true rotedsty@mamics throughout.

ing setup. One could conceivably localize the helicopter using, e.g., GP&y other
localization system that might be available.

" The parameters we found for our helicopter wei®; = 0:05; C, =
0:06; Cw = [ 0:47; 1:42; 0:01; 0:15]; C, = [ 1:46; 574;002]; Cq =
[ 0:23; 5:32; 0:01]; C, = [0:52; 5:43;0.02]; C =

[106:85; 0:23; 6853;2279;211; 6:10]
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Fig. 2. (a) Main rotor speed simulation. (b) Altitude during four autonomous atation
descents. (c) Main rotor speed during four autonomous autorotatsoens. (See text for
details.)
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An accurate rotor speed model is crucial for model-basetrabdesign. In partic-
ular, a controller which would bring the rotor speed too lewuld make it hard (if
not impossible) to recover and the helicopter would crashtime ground.

4.3 Autonomous Flight Results

In our autonomous ight experiments, the helicopter startsutonomous hover. We
then enable a forward ight controller for 2 seconds. Thiswes the helicopter
has some forward speed. Then we disable the engine, we eth@bitorotation
controller and the helicopter begins its (unpowered) atdion maneuvet.

During the rst phase of the autorotation, the glide, ourtroler tries to main-
tain a state similar to the state (crudely) maintained bymlat during his demon-
strations. In particular, we set a target rotor speed of ddiQa forward velocity
of 8m/s, a downward velocity of 5m/s, and a level orientat®imilar to our pilot's
demonstration, once the helicopter is 9 meters above thendrave switch to the
second phase.

During the second phase, the are, our controller tries tto¥o an idealized
version of our pilot's are demonstrations. In particulare chose our pilot's best
demonstration, and slowed it down to ensure zero horizavetakity at the end of
the are. Throughout the maneuver, we penalize for deviation frontahget trajec-

8 The engine is not actually turned off. Instead, the throttle is reduced todallsing the
clutch attached to the main rotor to disengage. In this state the main rotor sgghsdnd
is no longer driven by the engine.

% Indeed, in principle it might have seemed a natural choice to just usdothvest demon-
strated are. However, there is a big discrepancy between sensirapititips of our au-
tonomous helicopter and our expert pilot. In particular, our expert péat better accu-
racy in sensing the distance of the helicopter from the ground. On the loéimet, our
autonomous helicopter has better rotor speed sensing accuracyoAsexjaence, the nat-
urally safest autorotation trajectories are different for our expert pitld our autonomous
helicopter. Our expert pilot prefers the helicopter to have high veloaity,can then time
his controls just right relative to the ground to transfer (forward) vigldnto rotor speed
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Fig. 3. (a) Main rotor speed during autonomous autorotation ights. (b) Altitudéhefheli-

copter during autonomous autorotation ights. (c) Forward velocity ofttelicopter during
autonomous autorotation ights. (d) Pitch angle for the helicopter duringremmous autoro-
tation ights. (e) Main rotor speed in (closed-loop) simulation. (f) Altitudettoé helicopter in
(closed-loop) simulation. (g) Forward velocity of the helicopter in (cleeg) simulation.
(h) Pitch angle for the helicopter in (closed-loop) simulation. (See texddtails.)
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tory's velocity, angular rate, altitude, orientation anthbr speed. Once the helicopter
is 0.5 meters above the ground, we switch to the third phase.

During the third phase, the landing, our controller triebower the helicopter in
place. The helicopter will slowly lose rotor speed whilerpso, and touch down.

We performed the maneuver twenty- ve times to experiméyntadlidate our
controller's performance. Each of the autorotation lagdisuccessfully touched the
helicopter down gently, never causing any damage. Figura® hows our au-
tonomous ight results. In particular, it shows the mainaiospeed, the altitude, the
forward velocity and the pitch angle of our helicopter thgbaut each of the au-
tonomous autorotations we performed. Since the glide pbasdake an arbitrary
amount of time (depending on how long it takes to reach thiaudé that triggers
the are phase), the ights are time-aligned by setting titoée zero at the start of
the are phase. The plots start at the time we switch to pasiemode. The plots
show that our autorotation controller successfully holasrhain rotor speed around
1150rpm during the glide. It consistently manages to debet@a reasonable veloc-
ity, and bring its velocity close to zero during the are.

Figure 3 (e-h) shows our simulator's predictions for ouroaotation descents.
Our simulator's predictions fairly closely match the ighgsults.

Figures 4, 5 and 6 show mosaics of three of our autorotatioremnaers. To make
the mosaics, we subsampled videos of three of our autonomdosotation ights
at 4Hz. Then we overlaid the images, ensuring the backgrauodrrectly aligned.
Finally,for every frame we put the patch containing theduogier in the rst layer.

We posted videos of our autonomous autorotations at theraviiged in the
introduction.

We also performed a completely separate set of ight testasmg on the glide
phase to verify our controller's capability of prolongedhaintaining a suf ciently
high main rotor speed, while descending relatively slowlgure 2 (b) and (c) show
the main rotor speed and altitude throughout several loidggl Our controller suc-
cessfully maintains a suf ciently high main rotor speedoilghout the glides: From
a nominal (power on) rotor speed of roughly 1700 RPM, the matior is slowed to
a steady-state rate around our target for this case of 1208RIBually within just
30RPM.

5 Conclusion

Autorotation is a maneuver that allows one to safely bringrdea helicopter in case
of engine failure and in case of tail-rotor failure. We rsplect ight data from

an expert pilot. We use the ight data to (i) build an accurdy@mamics model of
a helicopter in autorotation, and (ii) help us de ne the aaotation task. Then we

when pitching back during the are. By contrast, our autonomous hekca@an more ac-
curately maintain rotor speed during the descent. Hence it does noaieerdch forward

velocity to ensure suf cient rotor speed in the are and landing phasea &onsequence,
the safer approach for our autonomous helicopter is to execute a stwedversion of

our expert's autorotation.
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use tools from optimal control (in particular, differedttynamic programming) to
design a controller for autonomous autorotation. Our drpaEmts present the rst
successful autonomous autorotations of (RC) helicopters.
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Fig. 4. Mosaic of one of our autonomous autorotation ights as viewed from to thei¢he
helicopter. (Sampled at 4Hz.)
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Fig. 5. Mosaic of one of our autonomous autorotation ights as viewed from intfad the
helicopter. (Sampled at 4Hz.)
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Fig. 6. Mosaic of one of our autonomous autorotation ights as viewed from to itji& of
the helicopter. (Sampled at 4Hz.)



