Constrained Motion Strategies for Robotic Systems

Jaeheung Park

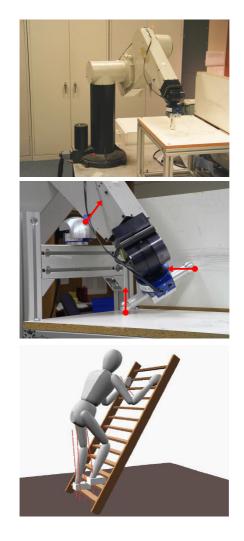
Ph.D. Candidate in Aero/Astro Department

Advisor: Professor Khatib Artificial Intelligence Laboratory Computer Science Department Stanford University

Contributions

- Robust force control for multi-body robotic systems
 - High fidelity haptically augmented teleoperation
- Development of generalized motion/force control structure for multi-link multi-contact

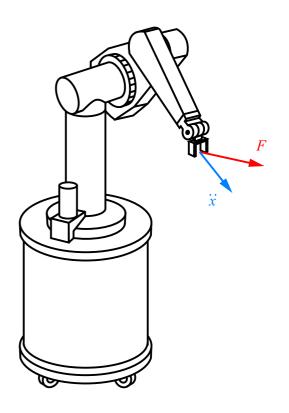
Contact force consistent motion/force control strategy for humanoid systems





The operational space formulation (Khatib 87) Equations of motion in joint space

$$A\ddot{q} + b(q, \dot{q}) + g(q) = \Gamma$$

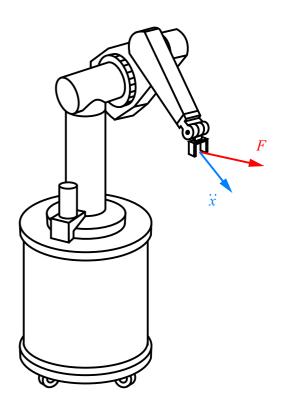


The operational space formulation (Khatib 87) Equations of motion in joint space

$$A\ddot{q} + b(q, \dot{q}) + g(q) = \Gamma$$

Dynamics in the operational space

$$\Lambda \ddot{x} + \mu(q, \dot{q}) + p(q) = F$$



The operational space formulation (Khatib 87) Equations of motion in joint space

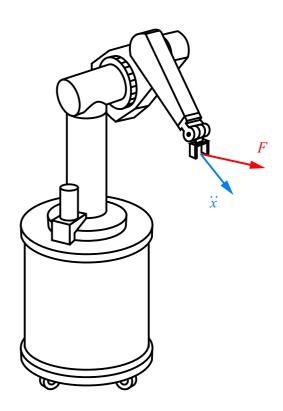
$$A\ddot{q} + b(q, \dot{q}) + g(q) = \Gamma$$

Dynamics in the operational space

$$\Lambda \ddot{x} + \mu(q, \dot{q}) + p(q) = F$$

Control force

$$F = \hat{\Lambda}f^* + \hat{\mu}(q, \dot{q}) + \hat{p}(q)$$



The operational space formulation (Khatib 87) Equations of motion in joint space

$$A\ddot{q} + b(q, \dot{q}) + g(q) = \Gamma$$

Dynamics in the operational space

$$\Lambda \ddot{x} + \mu(q, \dot{q}) + p(q) = F$$

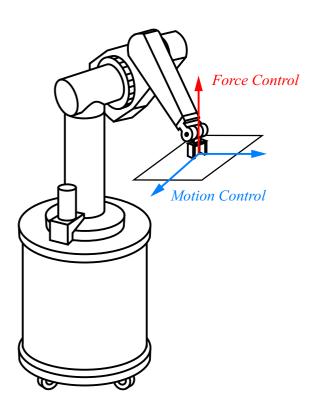
Control force

$$F = \hat{\Lambda}f^* + \hat{\mu}(q, \dot{q}) + \hat{p}(q)$$

The operational space formulation was extended to handle multiple points (Russakow, Khatib, and Rock 1995)

$$x = [x_1, x_2, \dots, x_m]^T$$

Motion/Force Control

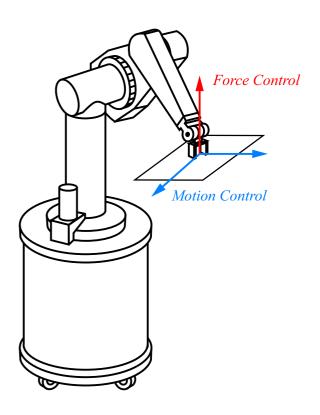


Control force

$$F = \hat{\Lambda}f^* + \hat{\mu}(q, \dot{q}) + \hat{p}(q) + \hat{f}_c$$

Compliant frame selection matrix Ω_f and Ω_m (Raibert and Craig 81, Khatib 87)

Motion/Force Control



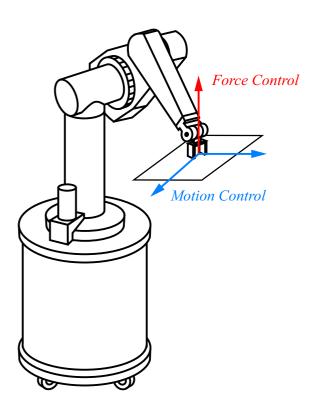
Control force

$$F = \hat{\Lambda}f^* + \hat{\mu}(q, \dot{q}) + \hat{p}(q) + \hat{f}_c$$

Compliant frame selection matrix Ω_f and Ω_m (Raibert and Craig 81, Khatib 87)

$$f^* = \Omega_f f_f^* + \Omega_m f_m^*$$

Motion/Force Control



Control force

$$F = \hat{\Lambda}f^* + \hat{\mu}(q, \dot{q}) + \hat{p}(q) + \hat{f}_c$$

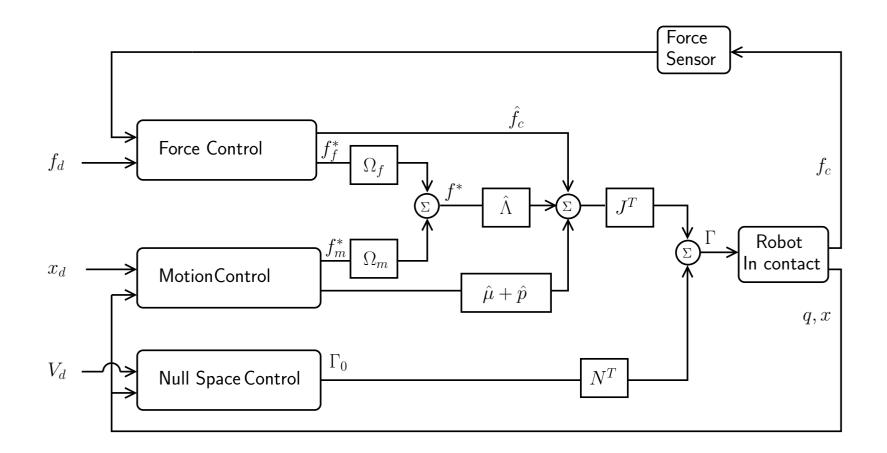
Compliant frame selection matrix Ω_f and Ω_m (Raibert and Craig 81, Khatib 87)

$$f^* = \Omega_f f_f^* + \Omega_m f_m^*$$

With environmental model (stiffness k_s),

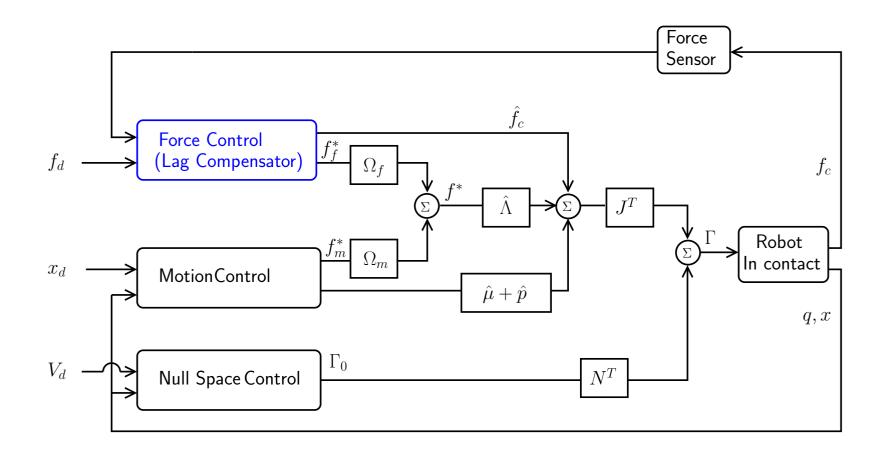
$$\begin{cases} \ddot{x}_m = f_m^* \\ \frac{1}{k_s} \ddot{f}_c = f_f^* \end{cases}$$

Motion/Force Control Framework



$$\begin{cases} \ddot{x}_m = f_m^* \\ \frac{1}{k_s} \ddot{f}_c = f_f^* \end{cases}$$

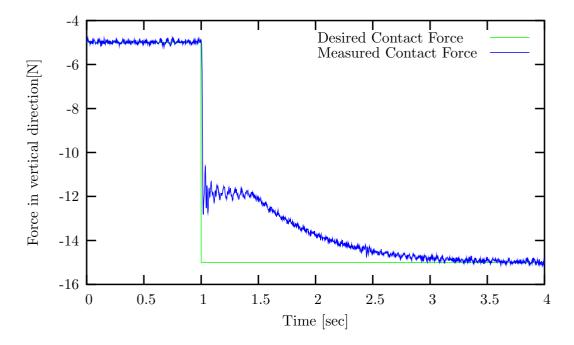
Motion/Force Control Framework

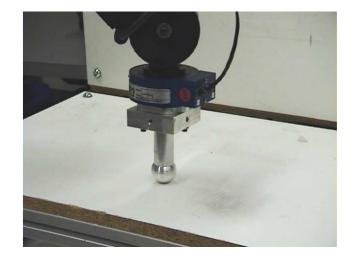


$$\begin{cases} \ddot{x}_m = f_m^* \\ \frac{1}{k_s} \ddot{f}_c = f_f^* \end{cases}$$

Force Control Result

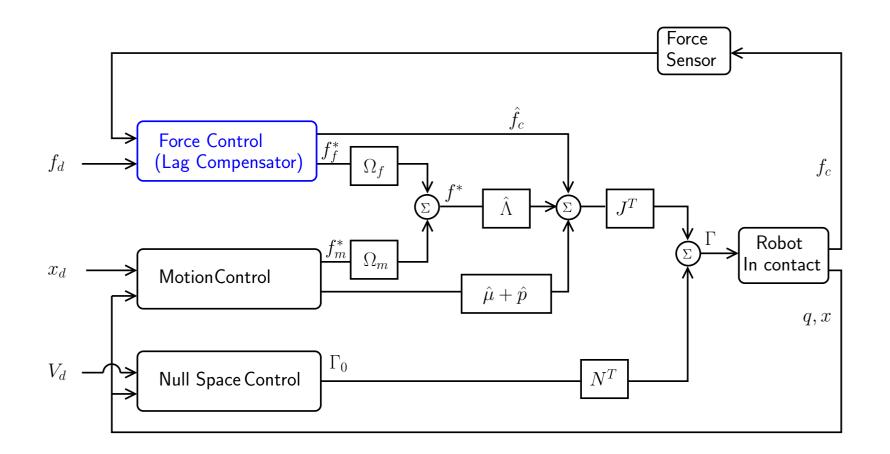
One point contact with hard surface





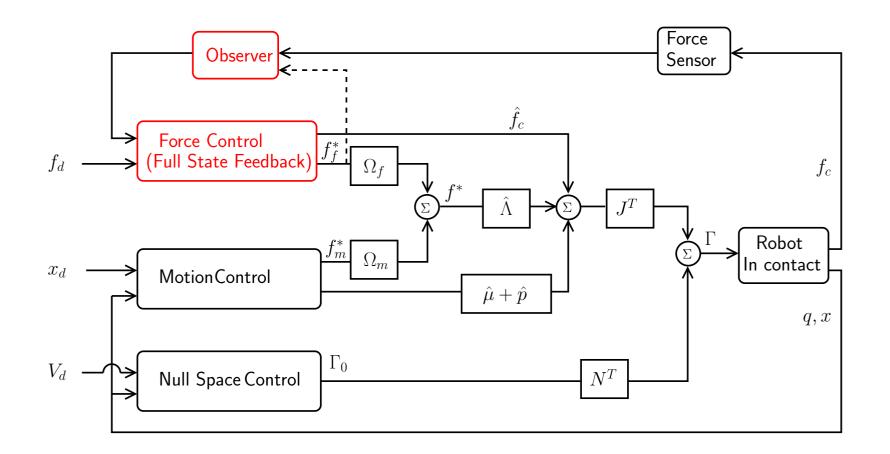
Lag compensator

Motion/Force Control Framework



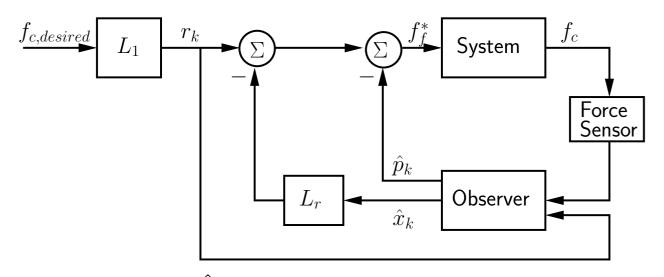
$$\begin{cases} \ddot{x}_m = f_m^* \\ \frac{1}{k_s} \ddot{f}_c = f_f^* \end{cases}$$

Motion/Force Control Framework



$$\begin{cases} \ddot{x}_m = f_m^* \\ \frac{1}{k_s} \ddot{f}_c = f_f^* \end{cases}$$

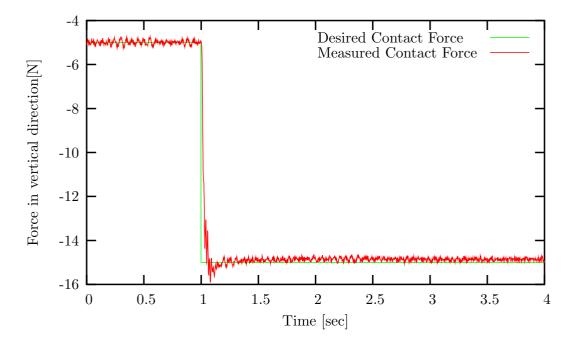
Control with Estimator

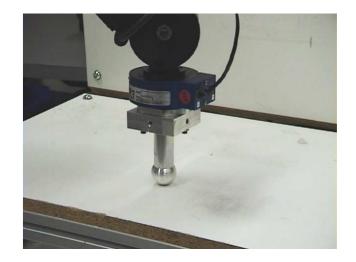


- \hat{x}_k state estimate \hat{f}_c and \hat{f}_c
- \hat{p}_k input disturbance estimate
- L_r a full state feedback gain obtained by Pole Placement Method
- L_1 a scaling factor to compute reference input
- f_c contact force
- $f_{c,d}$ desired contact force
- r_k reference input

Force Control Result

One point contact with hard surface

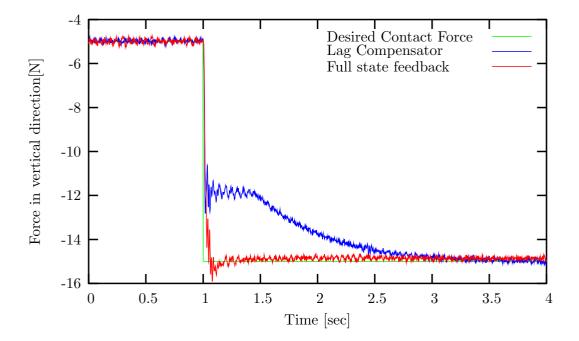




Full state feedback control

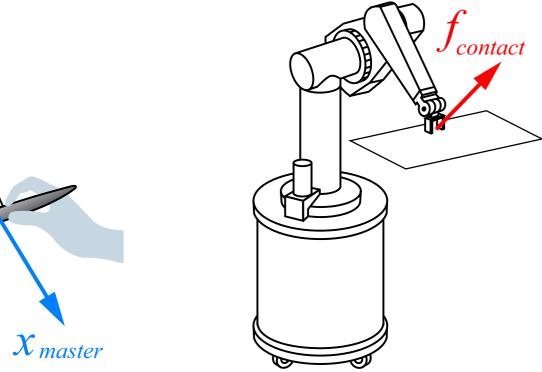
Force Control Result

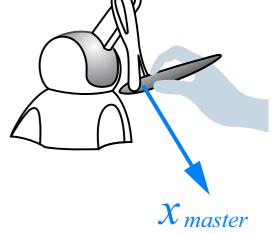
One point contact with hard surface



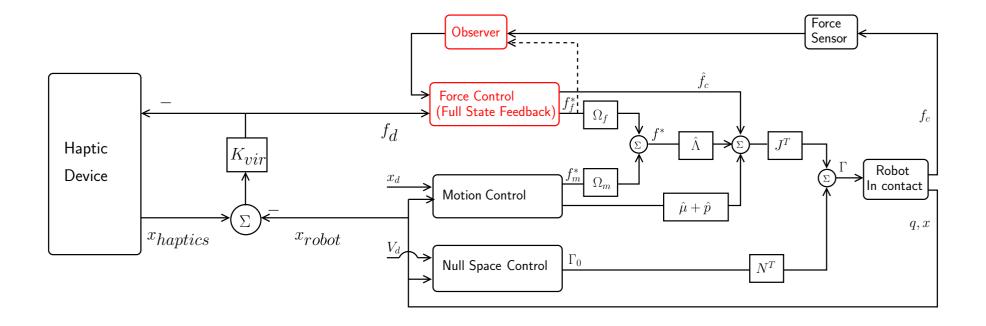
Comparison

Teleoperation

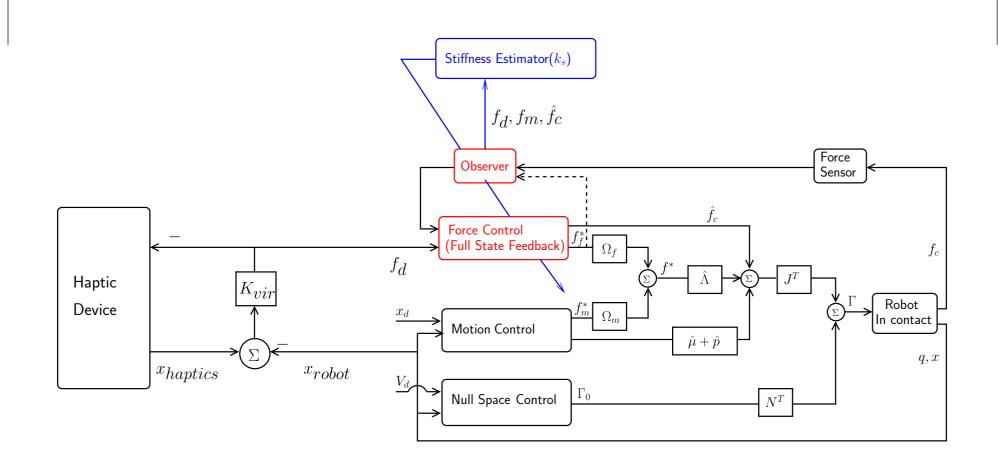




Teleoperation Scheme



Teleoperation Scheme

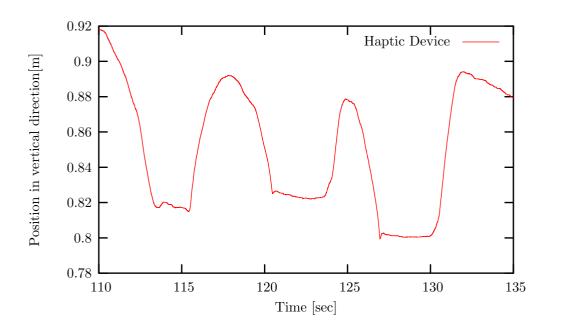


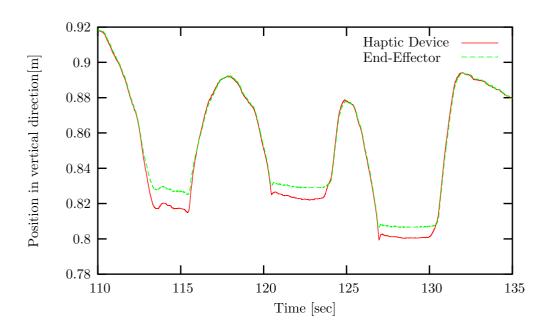
System Setup

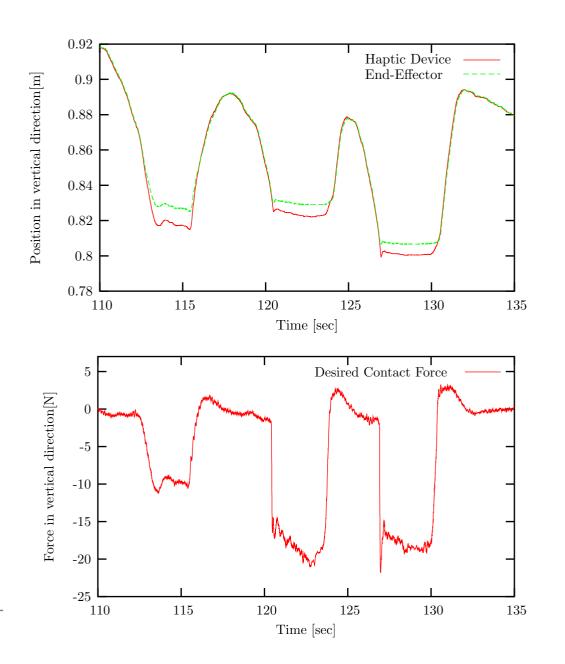
- Master Haptic Device: PHANTOM 1.0 SensAble
- Stanford Mobile Platform: PUMA560 on XR4000

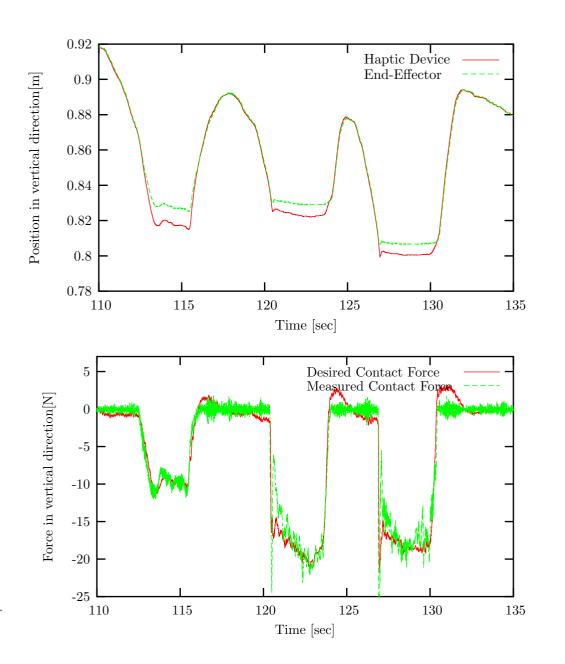
Experimental Results

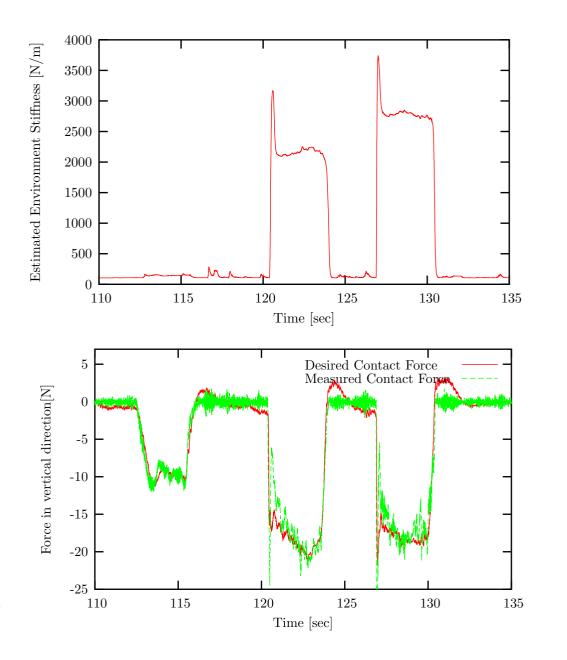
- End-effector controlled by teleoperation
- Base motion is controlled in the null-space





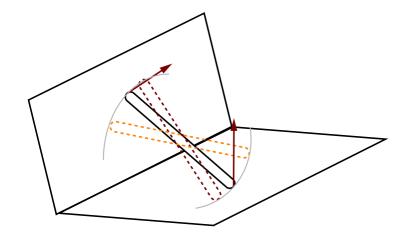






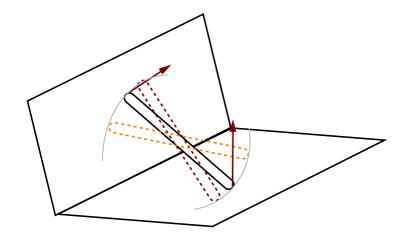
Juliet Setting a Dinner Table

Multiple Contacts



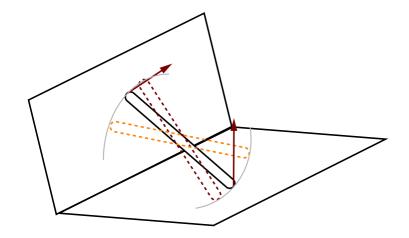
Compliant frame selection matrices is not general enough to describe multi-contact

Multiple Contacts



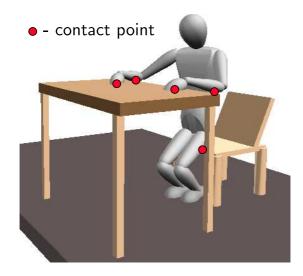
- Compliant frame selection matrices is not general enough to describe multi-contact
- Special selection matrix $\Omega_f(n)$ and $\Omega_m(n)$
 - Featherstone, Sonck, and Khatib (1997)

Multiple Contacts



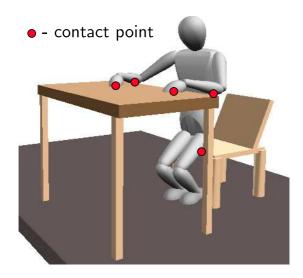
- Compliant frame selection matrices is not general enough to describe multi-contact
- Special selection matrix $\Omega_f(n)$ and $\Omega_m(n)$
 - Featherstone, Sonck, and Khatib (1997)
 - Bruyninckx and Schutter (1998)

Multi-link Multi-contact



$$\begin{pmatrix} \Lambda_{11} & \Lambda_{12} & \dots & \Lambda_{1m} \\ \Lambda_{21} & \Lambda_{22} & \dots & \Lambda_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \Lambda_{m1} & \Lambda_{m2} & \dots & \Lambda_{mm} \end{pmatrix} \begin{pmatrix} \ddot{x}_1 \\ \ddot{x}_2 \\ \vdots \\ \ddot{x}_m \end{pmatrix} + \mu + p + f_c = \begin{pmatrix} F_1 \\ F_2 \\ \vdots \\ F_m \end{pmatrix}$$

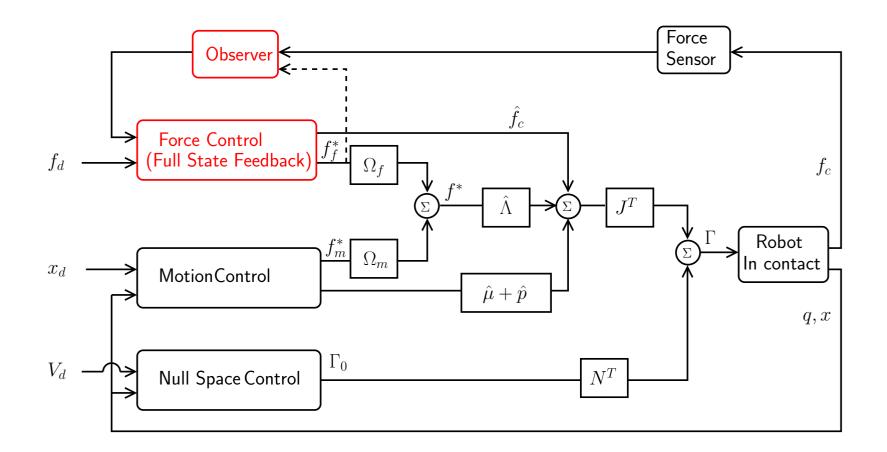
Multi-link Multi-contact



The spacial selection matrices will be defined by the contact normal directions of all the operational points : $\Omega_f(n_1, n_2, \ldots, n_l)$ and $\Omega_m(n_1, n_2, \ldots, n_l)$

$$F = \hat{\Lambda}f^* + \hat{\mu} + \hat{p} + \hat{f}_c$$
$$f^* = \Omega_f f_f^* + \Omega_m f_m^*$$

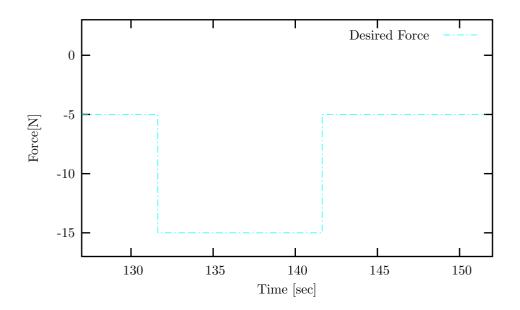
Motion/Force Control Framework



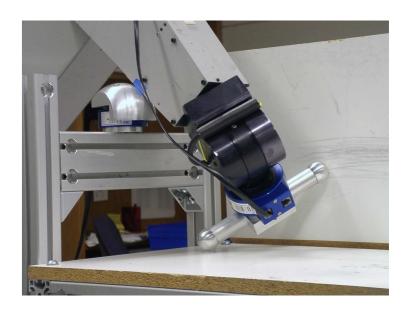
$$\begin{cases} \ddot{x}_m = f_m^* \\ \frac{1}{k_s} \ddot{f}_c = f_f^* \end{cases}$$

Three contact experiment

Two contact at the end-effector and one contact at the third link

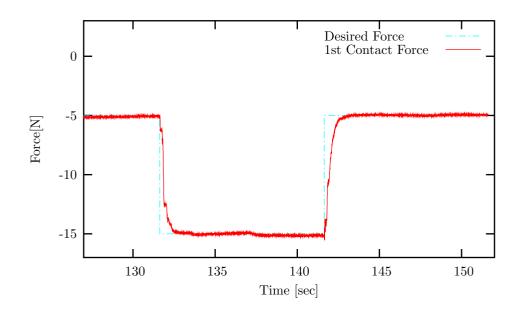


Contact force measurement

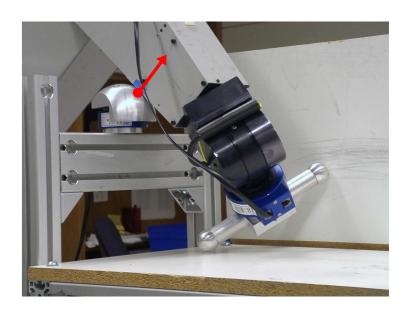


Three contact experiment

Two contact at the end-effector and one contact at the third link

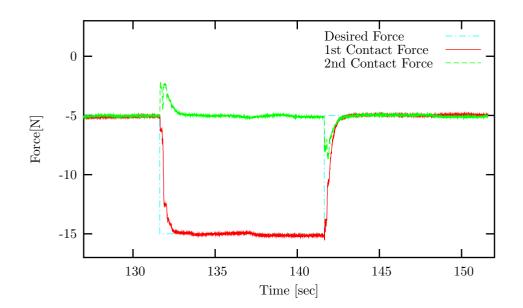


Contact force measurement

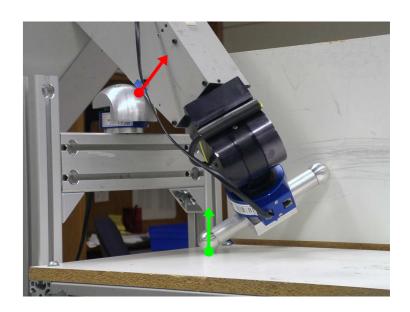


Three contact experiment

Two contact at the end-effector and one contact at the third link

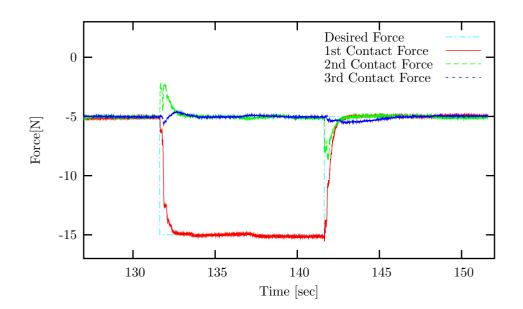


Contact force measurement

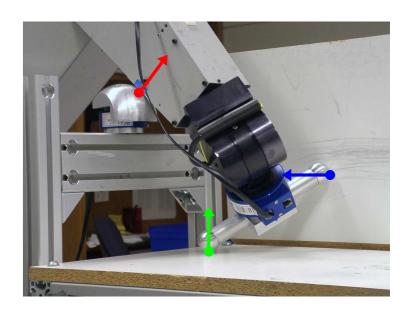


Three contact experiment

Two contact at the end-effector and one contact at the third link



Contact force measurement



Three contact experiment with motion

Humanoid robot

- Many humanoid systems have been built. Honda ASIMO, Sony SDR, HRP, and KHR
- Controls are still limited
 - mostly focused on walking
 - walking and manipulation are treated as separate problems

Humanoid Research in the group

Whole-body control framework

- Whole-body dynamic behavior and control of human-like robots (Khatib, Sentis, Park, Warren 2004)
- SAI simulation environment
 - Dynamic simulation

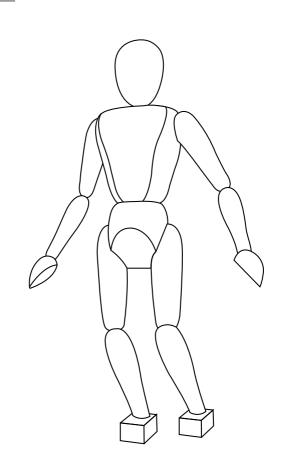
-Efficient recursive algorithm for the operational space inertia matrix of branching mechanisms (Chang, Khatib 2001)

-A framework for multi-contact multi-body dynamic simulation and Haptic Display (Ruspini, Khatib 2000)

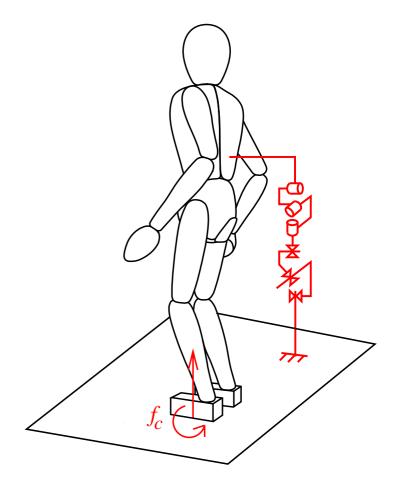
SAI graphics engine and programming environment -Conti, Pashchenko

- Learning from human motion
 - Simulating the Task-level Control of Human Motion: A Methodology and Framework for Implementation (De Sapio, Warren, Khatib, and Delp 2005)
 - Control implementation on ASIMO Thaulad

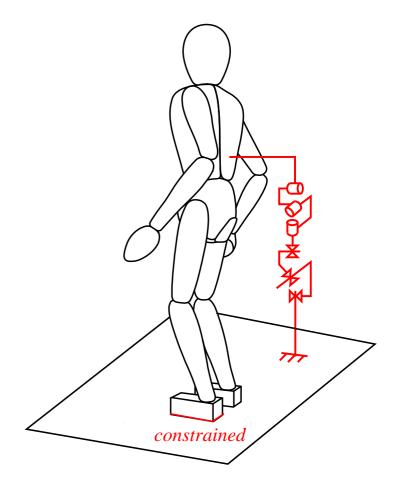
Humanoid robot characteristics



- Under-actuated system in free space
 - Non fixed base
 - Contacts are necessary to support the system



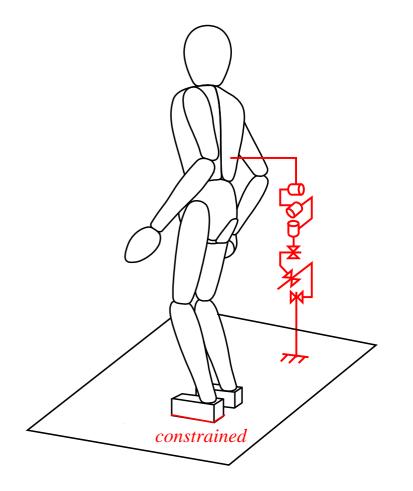
 $A(q)\ddot{q} + b(q,\dot{q}) + g(q) + J_c^T (f_c) = \Gamma$



$$A(q)\ddot{q} + b(q,\dot{q}) + g(q) + J_c^T (f_c) = \Gamma$$

By treating the contacts as constraints, $\ddot{x}_c = 0$ and $\dot{x}_c = 0$,

$$\underbrace{f_c}_{c} = \bar{J}_c^T(q)\Gamma - \mu_c(q, \dot{q}) - p_c(q)$$



$$A(q)\ddot{q} + b(q,\dot{q}) + g(q) + J_c^T (f_c) = \Gamma$$

By treating the contacts as constraints, $\ddot{x}_c = 0$ and $\dot{x}_c = 0$,

$$\underbrace{f_c}_{c} = \bar{J}_c^T(q)\Gamma - \mu_c(q, \dot{q}) - p_c(q)$$

$$\Rightarrow A(q)\ddot{q} + b(q,\dot{q}) + g(q)$$
$$- J_c^T(\mu_c(q,\dot{q}) + p_c(q))$$
$$= (I - J_c^T \bar{J}_c^T)\Gamma$$

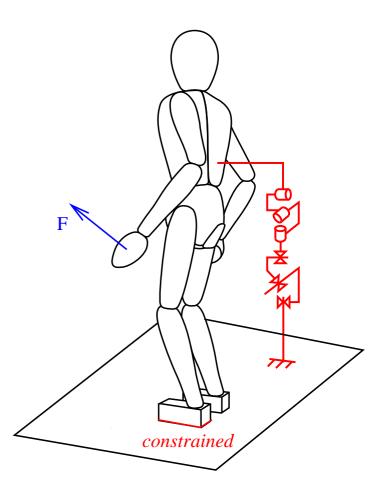
Operational Space Dynamics



Constrained Joint Space Dynamics

$$\begin{aligned} A\ddot{q} + b + g - J_c^T(\mu_c + p_c) \\ &= (I - J_c^T \bar{J}_c^T) \Gamma \end{aligned}$$

Operational Space Dynamics



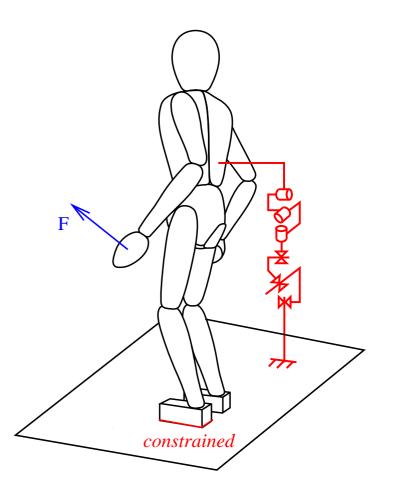
Constrained Joint Space Dynamics

$$\begin{aligned} A\ddot{q} + b + g - J_c^T(\mu_c + p_c) \\ &= (I - J_c^T \bar{J}_c^T) \Gamma \end{aligned}$$

Constrained Operational space dynamics

$$\Lambda \ddot{x} + \mu(q, \dot{q}) + p(q) = F$$

Operational Space Dynamics



Constrained Joint Space Dynamics

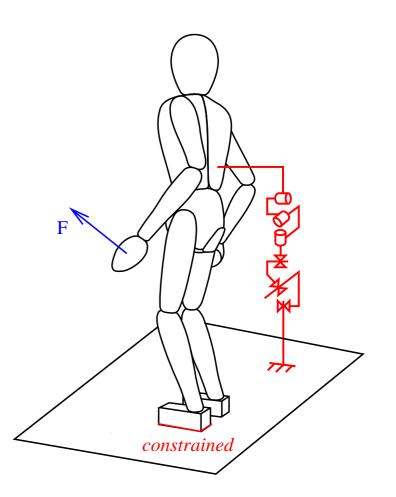
$$\begin{aligned} A\ddot{q} + b + g - J_c^T(\mu_c + p_c) \\ &= (I - J_c^T \bar{J}_c^T) \Gamma \end{aligned}$$

Constrained Operational space dynamics

$$\Lambda \ddot{x} + \mu(q, \dot{q}) + p(q) = \mathbf{F}$$

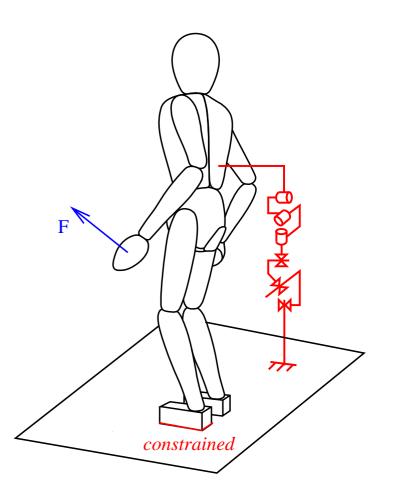
Control Force

 $F = \hat{\Lambda} f^* + \hat{\mu} + \hat{p}$



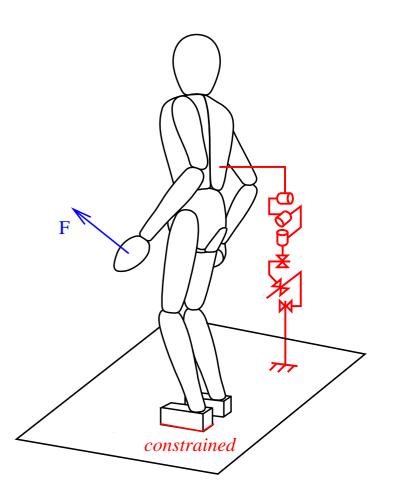
The relation between joint torque and force

$$\Gamma = J^T F$$



The relation between joint torque and force

$$F = \bar{J}^T \Gamma$$

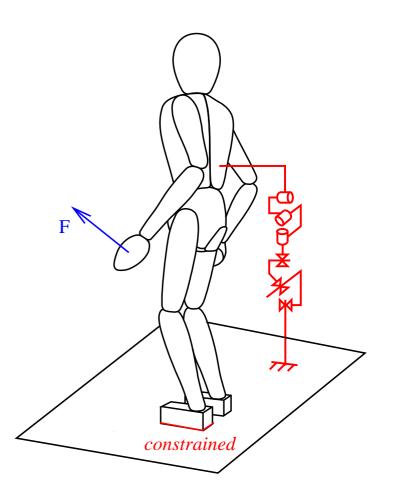


The relation between joint torque and force

$$F = \bar{J}^T \Gamma$$

Torques at virtual joints are zero.

$$F = \bar{J}^T S^T \Gamma_{actuated}$$



The relation between joint torque and force

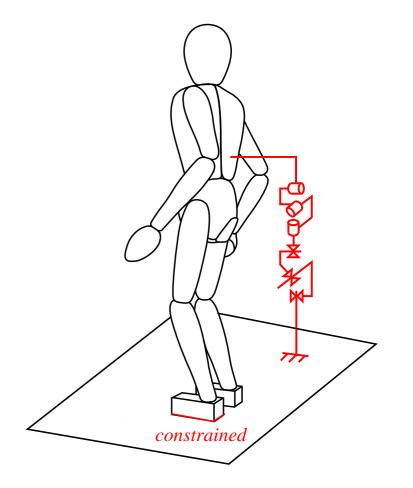
$$F = \bar{J}^T \Gamma$$

Torques at virtual joints are zero.

$$F = \bar{J}^T S^T \Gamma_{actuated}$$

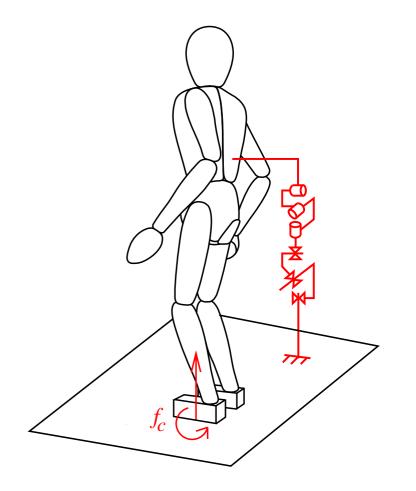
The Control torque is

$$(\Gamma_{actuated})_{task} = \overline{\bar{J}^T S^T} F$$



$$A\ddot{q} + b + g - J_c^T(\mu_c + p_c)$$
$$= (I - J_c^T \bar{J}_c^T)\Gamma$$

$$\boldsymbol{f_c} = \bar{J}_c^T \Gamma - \mu_c(q, \dot{q}) - p_c(q)$$



$$A\ddot{q} + b + g - J_c^T(\mu_c + p_c)$$
$$= (I - J_c^T \bar{J}_c^T)\Gamma$$

$$\boldsymbol{f_c} = \bar{J}_c^T \Gamma - \mu_c(q, \dot{q}) - p_c(q)$$

$$f_{c,i}|_{min} < f_{c,i} < f_{c,i}|_{max}$$

Reaction Force Control

 $\Gamma_{actuated} = (\Gamma_{actuated})_{task}$

Reaction forces are given by

$$f_c = \bar{J}_c^T S^T (\Gamma_{actuated})_{task} - \mu_c(q, \dot{q}) - p_c(q)$$

Reaction Force Control

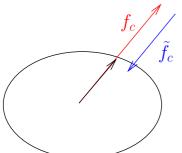
 $\Gamma_{actuated} = (\Gamma_{actuated})_{task} + (\Gamma_{actuated})_{contact}$

Reaction forces are given by

$$f_c = \bar{J}_c^T S^T (\Gamma_{actuated})_{task} - \mu_c(q, \dot{q}) - p_c(q)$$

Modify control torque if they exceed the boundaries,

$$(\Gamma_{actuated})_{contact} = \overline{\bar{J}_c^T S^T} \tilde{f}_c$$



Standing on two feet

Gravity compensation with reaction force control

Balancing

- Position of Center of Mass AND Orientation of head, chest, and hip
- Left or right foot in one foot supporting

Jumping

- Position of Center of Mass AND Orientation of head, chest, and hip
- Both feet at no contact

Climbing Ladder

- Position of Center of Mass AND Orientation of head, chest, and hip
- Hands or feet in climbing

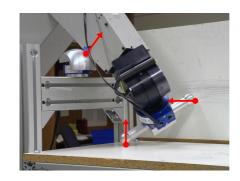
Manipulation combined with walking

- Position of Center of Mass AND Orientation of head, chest, and hip
- Position and Force control of right hand

Conclusion

Robust force control was developed for multi-body robotic systems.

- High performance was demonstrated using full state feedback with Kalman estimator (improvement over lag compensator).
- Haptic teleoperation was implemented.
 - High fidelity transparent teleoperation was achieved by using force control with stiffness estimation.
- Motion/force control structure was generalized.
 - Composition of decoupled motion/force control was achieved by constructing selection matrices over multiple control points.
- Contact force consistent control strategy was developed for humanoid systems
 - This enables implementation of motion/force control to non fixed base robots.



Acknowledgement

Advisor Prof. Khatib

Committee

Prof. Gerdes, Prof. Rock, Prof. Thrun, Prof. Tomlin

Research Group (Past & Present)

Oliver Brock, Francois Conti, Rui Cortesao, Kyong-Sok Chang, Vince De Sapio, Bob Holmberg, Kyoobin Lee, Tine Lefebvre, Irena Pashchenko, Anna Petrovskaya, Luis Sentis, Dongjun Shin, Jinsung Kwon, Peter Thaulad, James Warren, Mike Zinn

Family

Yunhyung, Kevin, Bryan, My family and In-laws in Korea

KAASA members & friends