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Simultaneous Localization and Mapping

A mobile robot navigating in an unknown
environment must incrementally
1. build a map of its surroundings and
2. localize itself within that map.

range landmark

bearing

heading

odometry
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The traditional approach: Kalman filters

• View SLAM as a state estimation problem in a
linear-Gaussian dynamical system
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The traditional approach: Kalman filters

• View SLAM as a state estimation problem in a
linear-Gaussian dynamical system

• System state at time t: [Rt;L1; . . . ;LNt
]

• The belief state is a Gaussian N (µt,Σt)

• Time & space complexity: Θ(N2
t )
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Thin junction tree filters

• TJTF: a novel algorithm for approximate
filtering in dynamic Bayesian networks
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Thin junction tree filters

• TJTF: a novel algorithm for approximate
filtering in dynamic Bayesian networks

• When applied to the SLAM problem, we obtain

space complexity: O(Nt)

time complexity: O(Nt) or O(1)
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Filtering in dynamic Bayesian networks
A dynamic Bayesian network (DBN) is a compact
representation of a complex stochastic process.
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Filtering in dynamic Bayesian networks
A dynamic Bayesian network (DBN) is a compact
representation of a complex stochastic process.
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Belief state at time t: bt = p(xt, yt, zt |w1:t−1)

Filtering: iteratively update bt
wt−→ bt+1
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Complexity of filtering in DBNs

The DBN is compact, but the belief state is not:
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Complexity of filtering in DBNs

The DBN is compact, but the belief state is not:

Y1

Z1

X1

update Y2

Z2

X2

p(x1)p(y1)p(z1) p(x2, y2, z2 |w1)

Exact filtering in DBNs is intractable.
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The Boyen & Koller (1998) Algorithm
Choose a fixed, tractable form for the belief state
and project to the closest density of that form:
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The Boyen & Koller (1998) Algorithm
Choose a fixed, tractable form for the belief state
and project to the closest density of that form:
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update Y2
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project Y2

Z2

X2

p(x1)p(y1)p(z1) p(x2, y2, z2 |w1)
p(x2 |w1)×

p(y2, z2 |w1)

Problem: what is the best tractable form?
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An example SLAM DBN
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Filtering the SLAM DBN: estimation

p(r1)

R1
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Filtering the SLAM DBN: estimation

p(r1, l1 | z1) ∝ p(r1) · p(l1) · p(z1 | r1, l1)
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Filtering the SLAM DBN: estimation

p(r1, l1 | z1) ∝ p(r1) · p(l1) · p(z1 | r1, l1)
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Observing landmark i connects Rt and Li.
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Filtering the SLAM DBN: prediction

p(r1, l1:3 | z1:3)
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Filtering the SLAM DBN: prediction

p(r1:2, l1:3 | z1:3) = p(r1, l1:3 | z1:3)·p(r2 | r1)
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Filtering the SLAM DBN: prediction

p(r1:2, l1:3 | z1:3) = p(r1, l1:3 | z1:3)·p(r2 | r1)
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The prediction phase connects Rt and Rt+1.
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Filtering the SLAM DBN: roll-up
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Filtering the SLAM DBN: roll-up
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Filtering the SLAM DBN: roll-up
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After roll-up, the SLAM belief state has
no conditional independencies.
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Junction trees
An undirected tree whose nodes are sets of
variables. . .
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p(x) =

∏
C φC(xC)

∏
S φS(xS)
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Junction trees
An undirected tree whose nodes are sets of
variables. . . with the running intersection property.
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A density p decomposes on T if we can write

p(x) =
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Junction tree inference
initialize
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Junction tree inference
initialize pass messages calibrated
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Junction tree inference
initialize pass messages calibrated
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Junction tree filters

The belief state is a calibrated junction tree.
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Junction tree filters

The belief state is a calibrated junction tree.
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Estimation and prediction

To multiply ψ(x1, . . . , xk) into p and recalibrate:

1. Find a cluster C that
contains X1, . . . , Xk.

2. Multiply ψ into φC .

3. Distribute evidence
from C (if needed).

If there is no cover, we must make one.
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Pushing variables to create covers

Y, Z

V, X, Y

Y
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Pushing variables to create covers
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Pushing variables to create covers
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Roll-up
To marginalize out a variable X that is in only one
cluster C . . .
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Roll-up
To marginalize out a variable X that is in only one
cluster C . . . marginalize X out of φC .
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Roll-up
To marginalize out a variable X that is in only one
cluster C . . . marginalize X out of φC .
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V
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Σ φ(v, x, y)
x

If X is in more than one cluster, we must first
merge the clusters containing X . . .
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Merging adjacent clusters

φ(x, y)
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merge
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Thin junction tree filters (TJTF)
Pushing and merging increase the width of the
junction tree, and therefore the complexity.

roll-uppredictionestimation

TJTF chooses the projection adaptively to
minimize the approximation error.
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Variable contraction
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Variable contraction
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Variable contraction
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X from C

This cuts all edges between X and C − S,
the variables X no longer resides with.
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Variable contraction is an I-projection

Proposition. If p̃ is the density obtained by
contracting X from C , then

p̃ = arg min
{q : X ⊥⊥ (C−S) | (S\X)}

D(p || q)

27



Adaptive approximation

Proposition. If p̃ is the density obtained by
contracting X from C , then

D(p || p̃) = I(X;C − S |S \X)
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Adaptive approximation
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Adaptive approximation

Proposition. If p̃ is the density obtained by
contracting X from C , then

D(p || p̃) = I(X;C − S |S \X)

• This can be computed using φC ∝ pC .

• For Gaussian p, this is O(dim(X)3) time!

• To thin C , perform the contraction that
minimizes this approximation error.
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Thin junction tree filters for SLAM

• The junction tree has O(Nt) clusters.
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Thin junction tree filters for SLAM

• The junction tree has O(Nt) clusters.

• Use greedy-optimal variable contractions to
keep the width bounded by w.

• Space complexity: O(w2 ·Nt)

• Time complexity: O(w3 ·Nt)

• This O(Nt) time complexity is due (mainly) to
message passing in the estimation step.
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Adaptive message passing

Propagate messages only as long as they
induce significant change in the belief state.

C
φC × ψ
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Adaptive message passing

Propagate messages only as long as they
induce significant change in the belief state.

Significance is measured
by D(φ∗

S ||φS), which
decreases with distance. C

φC × ψ
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Simulation results

landmark location

landmark observations

robot path
odometry
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Simulation results
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Summary

Thin junction tree filtering:

• a novel algorithm for adaptive approximate
filtering in dynamic Bayesian networks

• an elegant solution to the Simultaneous
Localization and Mapping problem

More movies and the implementation:

http://www.cs.berkeley.edu/˜paskin/slam

Thanks to R for supporting this research!
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