
Thin Junction Tree Filters for
Simultaneous Localization and Mapping

Mark Paskin

Computer Science Division
University of California, Berkeley

mark@paskin.org

1

Simultaneous Localization and Mapping

A mobile robot navigating in an unknown
environment must incrementally
1. build a map of its surroundings and
2. localize itself within that map.

range landmark

bearing

heading

odometry

2

The traditional approach: Kalman filters

• View SLAM as a state estimation problem in a
linear-Gaussian dynamical system

3

The traditional approach: Kalman filters

• View SLAM as a state estimation problem in a
linear-Gaussian dynamical system

• System state at time t: [Rt;L1; . . . ;LNt
]

3-a

The traditional approach: Kalman filters

• View SLAM as a state estimation problem in a
linear-Gaussian dynamical system

• System state at time t: [Rt;L1; . . . ;LNt
]

• The belief state is a Gaussian N (µt,Σt)

3-b

The traditional approach: Kalman filters

• View SLAM as a state estimation problem in a
linear-Gaussian dynamical system

• System state at time t: [Rt;L1; . . . ;LNt
]

• The belief state is a Gaussian N (µt,Σt)

• Time & space complexity: Θ(N2
t)

3-c

Thin junction tree filters

• TJTF: a novel algorithm for approximate
filtering in dynamic Bayesian networks

4

Thin junction tree filters

• TJTF: a novel algorithm for approximate
filtering in dynamic Bayesian networks

• When applied to the SLAM problem, we obtain

space complexity: O(Nt)

4-a

Thin junction tree filters

• TJTF: a novel algorithm for approximate
filtering in dynamic Bayesian networks

• When applied to the SLAM problem, we obtain

space complexity: O(Nt)

time complexity: O(Nt) or O(1)

4-b

Filtering in dynamic Bayesian networks
A dynamic Bayesian network (DBN) is a compact
representation of a complex stochastic process.

W1 W2

Y1

Z1

X1

Y2

Z2

X2

W3

Y3

Z3

X3

5

Filtering in dynamic Bayesian networks
A dynamic Bayesian network (DBN) is a compact
representation of a complex stochastic process.

W1 W2

Y1

Z1

X1

Y2

Z2

X2

W3

Y3

Z3

X3

Belief state at time t: bt = p(xt, yt, zt |w1:t−1)

5-a

Filtering in dynamic Bayesian networks
A dynamic Bayesian network (DBN) is a compact
representation of a complex stochastic process.

W1 W2

Y1

Z1

X1

Y2

Z2

X2

W3

Y3

Z3

X3

Belief state at time t: bt = p(xt, yt, zt |w1:t−1)

Filtering: iteratively update bt
wt−→ bt+1

5-b

Complexity of filtering in DBNs

The DBN is compact, but the belief state is not:

Y1

Z1

X1

p(x1)p(y1)p(z1)

6

Complexity of filtering in DBNs

The DBN is compact, but the belief state is not:

Y1

Z1

X1

update Y2

Z2

X2

p(x1)p(y1)p(z1) p(x2, y2, z2 |w1)

6-a

Complexity of filtering in DBNs

The DBN is compact, but the belief state is not:

Y1

Z1

X1

update Y2

Z2

X2

p(x1)p(y1)p(z1) p(x2, y2, z2 |w1)

Exact filtering in DBNs is intractable.

6-b

The Boyen & Koller (1998) Algorithm
Choose a fixed, tractable form for the belief state
and project to the closest density of that form:

Y1

Z1

X1

update Y2

Z2

X2

p(x1)p(y1)p(z1) p(x2, y2, z2 |w1)

7

The Boyen & Koller (1998) Algorithm
Choose a fixed, tractable form for the belief state
and project to the closest density of that form:

Y1

Z1

X1

update Y2

Z2

X2

project Y2

Z2

X2

p(x1)p(y1)p(z1) p(x2, y2, z2 |w1)
p(x2 |w1)×

p(y2, z2 |w1)

7-a

The Boyen & Koller (1998) Algorithm
Choose a fixed, tractable form for the belief state
and project to the closest density of that form:

Y1

Z1

X1

update Y2

Z2

X2

project Y2

Z2

X2

p(x1)p(y1)p(z1) p(x2, y2, z2 |w1)
p(x2 |w1)×

p(y2, z2 |w1)

Problem: what is the best tractable form?

7-b

An example SLAM DBN

R1

L1 L2 L3 L4 L5

R2

Y2

Z1 Z3Z2 Z6 Z8Z7

Y3

R3

Z4 Z5

odometry

measurements

landmark

measurements

landmarks’

positions

robot pose

and velocity

8

Filtering the SLAM DBN: estimation

p(r1)

R1

9

Filtering the SLAM DBN: estimation

p(r1, l1 | z1) ∝ p(r1) · p(l1) · p(z1 | r1, l1)

R1

R1

L1

Z1

9-a

Filtering the SLAM DBN: estimation

p(r1, l1 | z1) ∝ p(r1) · p(l1) · p(z1 | r1, l1)

R1

R1

L1

Z1

R1

L1

9-b

Filtering the SLAM DBN: estimation

p(r1, l1 | z1) ∝ p(r1) · p(l1) · p(z1 | r1, l1)

R1

R1

L1

Z1

R1

L1

Observing landmark i connects Rt and Li.

9-c

Filtering the SLAM DBN: prediction

p(r1, l1:3 | z1:3)

R1

L1

L2

L3

10

Filtering the SLAM DBN: prediction

p(r1:2, l1:3 | z1:3) = p(r1, l1:3 | z1:3)·p(r2 | r1)

R1

L1

L2

L3

R1

L1

L2

L3

R2

10-a

Filtering the SLAM DBN: prediction

p(r1:2, l1:3 | z1:3) = p(r1, l1:3 | z1:3)·p(r2 | r1)

R1

L1

L2

L3

R1

L1

L2

L3

R2

The prediction phase connects Rt and Rt+1.

10-b

Filtering the SLAM DBN: roll-up

p(r1:2, l1:3 | z1:3)

R1

L1

L2

L3

R2

11

Filtering the SLAM DBN: roll-up

p(r2, l1:3 | z1:3) =
∑

r1

p(r1:2, l1:3 | z1:3)

R1

L1

L2

L3

R2

L1

L2

L3

R2

11-a

Filtering the SLAM DBN: roll-up

p(r2, l1:3 | z1:3) =
∑

r1

p(r1:2, l1:3 | z1:3)

R1

L1

L2

L3

R2

L1

L2

L3

R2

After roll-up, the SLAM belief state has
no conditional independencies.

11-b

Junction trees
An undirected tree whose nodes are sets of
variables. . .

V, Y, ZV, W, Y

V, X

U, V, W

clusters

A density p decomposes on T if we can write

p(x) =

∏
C φC(xC)

∏
S φS(xS)

12

Junction trees
An undirected tree whose nodes are sets of
variables. . . with the running intersection property.

V, Y, ZV, W, Y

V, X

U, V, W

clusters

A density p decomposes on T if we can write

p(x) =

∏
C φC(xC)

∏
S φS(xS)

12-a

Junction trees
An undirected tree whose nodes are sets of
variables. . . with the running intersection property.

V, Y, ZV, W, Y

V, X

U, V, W

V

V

W

V

Y

clusters separators

13

Junction trees
An undirected tree whose nodes are sets of
variables. . . with the running intersection property.

V, Y, ZV, W, Y

V, X

U, V, W

V

V

W

V

Y

clusters separators

A density p decomposes on T if we can write

p(x) =

∏
C φC(xC)

∏
S φS(xS)

13-a

Junction tree inference
initialize

φ(u, v, w)

φ(v, w, y)

φ(v, y, z)

φ(v, x)φ
(v

)

φ(v, w)

φ(v, y)

p =
∏

C
φC∏

S
φS

14

Junction tree inference
initialize pass messages

φ(u, v, w)

φ(v, w, y)

φ(v, y, z)

φ(v, x)φ
(v

)

φ(v, w)

φ(v, y)

p =
∏

C
φC∏

S
φS

14-a

Junction tree inference
initialize pass messages calibrated

φ(u, v, w)

φ(v, w, y)

φ(v, y, z)

φ(v, x)φ
(v

)

φ(v, w)

φ(v, y)

p(u, v, w)

p(v, w, y)

p(v, y, z)

p(v, x)p
(v

)

p(v, w)

p(v, y)

p =
∏

C
φC∏

S
φS

14-b

Junction tree inference
initialize pass messages calibrated

φ(u, v, w)

φ(v, w, y)

φ(v, y, z)

φ(v, x)φ
(v

)

φ(v, w)

φ(v, y)

p(u, v, w)

p(v, w, y)

p(v, y, z)

p(v, x)p
(v

)

p(v, w)

p(v, y)

p =
∏

C
φC∏

S
φS

p =
∏

C
pC∏

S
pS

14-c

Junction tree inference
initialize pass messages calibrated

φ(u, v, w)

φ(v, w, y)

φ(v, y, z)

φ(v, x)φ
(v

)

φ(v, w)

φ(v, y)

p(u, v, w)

p(v, w, y)

p(v, y, z)

p(v, x)p
(v

)

p(v, w)

p(v, y)

p =
∏

C
φC∏

S
φS

complexity scales
with width

p =
∏

C
pC∏

S
pS

14-d

Junction tree filters

The belief state is a calibrated junction tree.

p(t) =
∏

C
p
(t)
C

∏
S

p
(t)
S

p(t+1) =
∏

C
p
(t+1)
C

∏
S

p
(t+1)
S

15

Junction tree filters

The belief state is a calibrated junction tree.

roll-uppredictionestimation

p(t) =
∏

C
p
(t)
C

∏
S

p
(t)
S

p(t+1) =
∏

C
p
(t+1)
C

∏
S

p
(t+1)
S

16

Estimation and prediction

To multiply ψ(x1, . . . , xk) into p and recalibrate:

1. Find a cluster C that
contains X1, . . . , Xk.

2. Multiply ψ into φC .

3. Distribute evidence
from C (if needed).

If there is no cover, we must make one.

17

Estimation and prediction

To multiply ψ(x1, . . . , xk) into p and recalibrate:

1. Find a cluster C that
contains X1, . . . , Xk.

2. Multiply ψ into φC .

3. Distribute evidence
from C (if needed).

C
φC

If there is no cover, we must make one.

18

Estimation and prediction

To multiply ψ(x1, . . . , xk) into p and recalibrate:

1. Find a cluster C that
contains X1, . . . , Xk.

2. Multiply ψ into φC .

3. Distribute evidence
from C (if needed).

C
φC × ψ

If there is no cover, we must make one.

19

Estimation and prediction

To multiply ψ(x1, . . . , xk) into p and recalibrate:

1. Find a cluster C that
contains X1, . . . , Xk.

2. Multiply ψ into φC .

3. Distribute evidence
from C (if needed).

C
φC × ψ

20

Estimation and prediction

To multiply ψ(x1, . . . , xk) into p and recalibrate:

1. Find a cluster C that
contains X1, . . . , Xk.

2. Multiply ψ into φC .

3. Distribute evidence
from C (if needed).

C
φC × ψ

If there is no cover, we must make one.

20-a

Pushing variables to create covers

Y, Z

V, X, Y

Y

21

Pushing variables to create covers

Y, Z

V, X, Y

Y

X, Y, Z

V, X, Y

X, Y
push X

21-a

Pushing variables to create covers

Y, Z

V, X, Y

Y

X, Y, Z

V, X, Y

X, Y
push X

p
a
s
s
 m

e
s
s
a
g
e

21-b

Roll-up
To marginalize out a variable X that is in only one
cluster C . . .

V, Y, ZV, X, Y

V, W

V

V

Y

φ(v, x, y)

22

Roll-up
To marginalize out a variable X that is in only one
cluster C . . . marginalize X out of φC .

V, Y, ZV, X, Y

V, W

V

V

Y

φ(v, x, y)

marginalize

V, Y, ZV, Y

V, W

V

V

Y

Σ φ(v, x, y)
x

22-a

Roll-up
To marginalize out a variable X that is in only one
cluster C . . . marginalize X out of φC .

V, Y, ZV, X, Y

V, W

V

V

Y

φ(v, x, y)

marginalize

V, Y, ZV, Y

V, W

V

V

Y

Σ φ(v, x, y)
x

If X is in more than one cluster, we must first
merge the clusters containing X . . .

22-b

Merging adjacent clusters

φ(x, y)

φ(x, y) φ(y, z)
φ(y)

φ(y)

φ(y, z)

X, Y

Y, Z

Y
merge

X, Y, Z

23

Thin junction tree filters (TJTF)
Pushing and merging increase the width of the
junction tree, and therefore the complexity.

roll-uppredictionestimation

TJTF chooses the projection adaptively to
minimize the approximation error.

24

Thin junction tree filters (TJTF)
Pushing and merging increase the width of the
junction tree, and therefore the complexity.

roll-up projectionpredictionestimation

25

Thin junction tree filters (TJTF)
Pushing and merging increase the width of the
junction tree, and therefore the complexity.

roll-up projectionpredictionestimation

TJTF chooses the projection adaptively to
minimize the approximation error.

25-a

Variable contraction

C

φ
C

φ
S

S

X XX

X

26

Variable contraction

C

φ
C

φ
S

S

X XX

X

C \X

XX

X

Σφ
C

S \X

Σφ
Sx

x

contract
X from C

26-a

Variable contraction

C

φ
C

φ
S

S

X XX

X

C \X

XX

X

Σφ
C

S \X

Σφ
Sx

x

contract
X from C

This cuts all edges between X and C − S,
the variables X no longer resides with.

26-b

Variable contraction is an I-projection

Proposition. If p̃ is the density obtained by
contracting X from C , then

p̃ = arg min
{q : X ⊥⊥ (C−S) | (S\X)}

D(p || q)

27

Adaptive approximation

Proposition. If p̃ is the density obtained by
contracting X from C , then

D(p || p̃) = I(X;C − S |S \X)

28

Adaptive approximation

Proposition. If p̃ is the density obtained by
contracting X from C , then

D(p || p̃) = I(X;C − S |S \X)

• This can be computed using φC ∝ pC .

28-a

Adaptive approximation

Proposition. If p̃ is the density obtained by
contracting X from C , then

D(p || p̃) = I(X;C − S |S \X)

• This can be computed using φC ∝ pC .

• For Gaussian p, this is O(dim(X)3) time!

28-b

Adaptive approximation

Proposition. If p̃ is the density obtained by
contracting X from C , then

D(p || p̃) = I(X;C − S |S \X)

• This can be computed using φC ∝ pC .

• For Gaussian p, this is O(dim(X)3) time!

• To thin C , perform the contraction that
minimizes this approximation error.

28-c

Thin junction tree filters for SLAM

• The junction tree has O(Nt) clusters.

29

Thin junction tree filters for SLAM

• The junction tree has O(Nt) clusters.

• Use greedy-optimal variable contractions to
keep the width bounded by w.

29-a

Thin junction tree filters for SLAM

• The junction tree has O(Nt) clusters.

• Use greedy-optimal variable contractions to
keep the width bounded by w.

• Space complexity: O(w2 ·Nt)

29-b

Thin junction tree filters for SLAM

• The junction tree has O(Nt) clusters.

• Use greedy-optimal variable contractions to
keep the width bounded by w.

• Space complexity: O(w2 ·Nt)

• Time complexity: O(w3 ·Nt)

29-c

Thin junction tree filters for SLAM

• The junction tree has O(Nt) clusters.

• Use greedy-optimal variable contractions to
keep the width bounded by w.

• Space complexity: O(w2 ·Nt)

• Time complexity: O(w3 ·Nt)

• This O(Nt) time complexity is due (mainly) to
message passing in the estimation step.

29-d

Adaptive message passing

Propagate messages only as long as they
induce significant change in the belief state.

C
φC × ψ

30

Adaptive message passing

Propagate messages only as long as they
induce significant change in the belief state.

Significance is measured
by D(φ∗

S ||φS), which
decreases with distance. C

φC × ψ

30-a

Simulation results

landmark location

landmark observations

robot path
odometry

31

Simulation results

landmark location

landmark observations

robot path
odometry

0 200 400 600 800
0

5

10

15

fl
o
a
ti
n
g
 p

o
in

t
o
p
e
ra

ti
o
n
s
 ×

 1
0

6

0 200 400 600 800
0

5

10

lo
c
a
liz

a
ti
o
n

e
rr

o
r

0 200 400 600 800
0

2

4

6

time step

m
a
p
p
in

g
e
rr

o
r

Kalman filter
FastSLAM
TJTF

31-a

Summary

Thin junction tree filtering:

• a novel algorithm for adaptive approximate
filtering in dynamic Bayesian networks

• an elegant solution to the Simultaneous
Localization and Mapping problem

More movies and the implementation:

http://www.cs.berkeley.edu/˜paskin/slam

Thanks to R for supporting this research!

32

