Thin Junction Tree Filters

Mark Paskin
Computer Science Division
University of California, Berkeley
mark@paskin.org
Summary

- Thin junction tree filtering (TJTF) is an approximate filtering technique for dynamic Bayesian networks.

- TJTF is an assumed density filter where at each time step the belief state is projected to a density of bounded treewidth.

- The approximation is adaptive: the error induced by each of a set of projections is efficiently computed and the best one is executed.

- TJTF advances the state-of-the-art in Simultaneous Localization and Mapping, a fundamental problem in Robotics.
Filtering in dynamic Bayesian networks

A dynamic Bayesian network (DBN) is a **compact** and **modular** representation of a complex discrete-time stochastic process.

The **filtering task** is to compute the *a posteriori* density of some subset of the current state variables, e.g., $p(x_t | w_{1:t})$ or $p(x_t, y_t | w_{1:t})$.
Recursive filtering

estimation:
\[p(x_t, y_t, z_t | w_{1:t}) \propto p(x_t, y_t, z_t | w_{1:t-1}) \times p(w_t | y_t, z_t) \]

prediction:
\[p(x_{t+1}, y_{t+1}, z_{t+1}, x_t, y_t, z_t | w_{1:t}) = p(x_t, y_t, z_t | w_{1:t}) \times p(x_{t+1} | x_t) \]
\[\quad \times p(y_{t+1} | x_t, y_t) \times p(z_{t+1} | z_t) \]

roll-up:
\[p(x_{t+1}, y_{t+1}, z_{t+1} | w_{1:t}) = \sum_{x_t} \sum_{y_t} \sum_{z_t} p(x_{t+1}, y_{t+1}, z_{t+1}, x_t, y_t, z_t | w_{1:t}) \]
Complexity of filtering in DBNs

Filter updates add edges to the belief state’s graphical model:

\[p(x_1) p(y_1) p(z_1) \]

This presents two problems:

1. The size of the belief state representation grows over time.
2. The cost of the filter updates (and inference) grows over time.
The Boyen & Koller (1998) Algorithm

An assumed density filter (ADF) adds a projection step which chooses a tractable approximation of the belief state. The Boyen & Koller (1998) algorithm projects the belief state to a product of marginals:

$$p(x_1) p(y_1) p(z_1)$$

$$p(x_2, y_2, z_2 | w_1)$$

$$p(x_2 | w_1) p(x_2, z_2 | w_1)$$

This approximation makes filtering tractable, but it discards dependencies that help us make the best use of future observations.
Thin junction tree filters

We represent the belief state using a junction tree with bounded width:

The density represented by the junction tree is

\[p \propto \frac{\prod_{C \in \mathcal{C}} \phi_C}{\prod_{S \in \mathcal{S}} \phi_S} \]

We keep the junction tree **calibrated**, so the cluster and separator potentials are proportional to marginals, i.e., \(\phi_C \propto p_C \).
Estimation and prediction consist of multiplying local potentials (e.g., $p(w_t \mid y_t, z_t)$ or $p(x_{t+1} \mid x_t)$) into the belief state.

To multiply in a new potential ψ into the junction tree and calibrate:

1. Find a cluster C that **covers** the potential’s variables.
2. Multiply ψ into ϕ_C.
3. Distribute evidence from C.

If there is no cluster that covers the variables of ψ, we must create one.
Pushing yields a valid junction tree and preserves calibration.

- For non-adjacent B and C, push i along the unique path from B to C.

- To make a cluster C cover D, push each of the variables in D to C.

Pushing variables to create covers
If X_i is present in only one cluster C, then we marginalize X_i out of ϕ_C:

$$C^* \leftarrow C \setminus i \quad \phi^*_C \leftarrow \sum_{x_i} \phi_C$$

If not, we must first merge all clusters containing X_i into a single cluster:

This is necessary to cover the elimination clique over the Markov blanket of X_i.
Merging clusters yields a valid junction tree and preserves calibration.

- We can merge all clusters containing X_i by a sequence of pairwise merges.
Variable contraction

- The result is a valid junction tree, but perhaps not for the original density.
- Variable contractions preserve calibration.
- Effect on the corresponding graphical model:

 Contracting i from C cuts all edges between X_i and X_{C-S}, the variables it no longer resides with.
Variable contraction is an efficient I-projection

Proposition. If \tilde{p} is the density obtained by contracting i from C, then

$$\tilde{p} = \arg \min_{\{q : X_i \perp\!\!\!\perp X_{C-S} \mid X_{S\setminus i}\}} D(p \| q)$$
Adaptive approximation

Proposition. If \(\tilde{p} \) is the density obtained by contracting \(i \) from \(C \), then

\[
D(p \| \tilde{p}) = I(X_i; X_{C-S} | X_{S\setminus i})
\]

- This error can be computed locally using the cluster potential \(\phi_C \propto p_C \).
- In Gaussian densities this error can be computed in \(O(\text{dim}(X_i)^3) \) time.
- To “thin” a large cluster \(C \): perform the contraction with minimum error.
- Note: we may be using an approximate model to compute the error.
Simultaneous Localization and Mapping (SLAM)

A mobile robot navigating in an unknown environment must incrementally build a map of its surroundings and localize itself within that map.

The SLAM belief state is completely connected after each filter update: it has no conditional independencies.
Thin junction tree filters for SLAM

The space and time complexity of the Kalman filter is **quadratic** in the number of observed landmarks, whereas TJTF is **linear**. Using **adaptive message passing**, the TJTF filter is often **constant time**.
http://www.cs.berkeley.edu/~paskin/slam

- the IJCAI 2003 paper
- a companion technical report
- movies and implementations of several types of SLAM filters