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Summary

• Thin junction tree filtering (tjtf) is an approximate filtering technique for

dynamic Bayesian networks.

• tjtf is an assumed density filter where at each time step the belief state is

projected to a density of bounded treewidth.

• The approximation is adaptive: the error induced by each of a set of

projections is efficiently computed and the best one is executed.

• Thin junction tree filters generalize the popular Boyen & Koller (1998)

algorithm beyond products-of-marginals approximations.

• tjtf advances the state-of-the-art in Simultaneous Localization and

Mapping, a fundamental problem in Robotics.
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Filtering in dynamic Bayesian networks

A dynamic Bayesian network (dbn) is a compact and modular

representation of a complex discrete-time stochastic process.
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The filtering task is to compute the a posteriori density of some subset of the

current state variables, e.g., p(xt |w1:t) or p(xt, yt |w1:t).
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Recursive filtering
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estimation: p(xt, yt, zt |w1:t) ∝ p(xt, yt, zt |w1:t−1)× p(wt | yt, zt)

prediction: p(xt+1, yt+1, zt+1, xt, yt, zt |w1:t) = p(xt, yt, zt |w1:t)× p(xt+1 |xt)

× p(yt+1 |xt, yt)× p(zt+1 | zt)

roll-up: p(xt+1, yt+1, zt+1 |w1:t) =
∑
xt

∑
yt

∑
zt

p(xt+1, yt+1, zt+1, xt, yt, zt |w1:t)
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Complexity of filtering in dbns

Filter updates add edges to the belief state’s graphical model:
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This presents two problems:

1. The size of the belief state representation grows over time.

2. The cost of the filter updates (and inference) grows over time.
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The Boyen & Koller (1998) Algorithm

An assumed density filter (adf) adds a projection step which chooses a

tractable approximation of the belief state. The Boyen & Koller (1998)

algorithm projects the belief state to a product of marginals:
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This approximation makes filtering tractable, but it discards dependencies that

help us make the best use of future observations.
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Thin junction tree filters

We represent the belief state using a junction tree with bounded width:
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The density represented by the junction tree is

p ∝

∏
C∈C φC∏
S∈S φS

We keep the junction tree calibrated, so the cluster and separator potentials

are proportional to marginals, i.e., φC ∝ pC .
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Estimation and prediction

• Estimation and prediction consist of multiplying local potentials (e.g.,

p(wt | yt, zt) or p(xt+1 |xt)) into the belief state.

• To multiply in a new potential ψ into the junction tree and calibrate:

1. Find a cluster C that covers the

potential’s variables.

2. Multiply ψ into φC .

3. Distribute evidence from C.

C φC ×  ψ

• If there is no cluster that covers the variables of ψ, we must create one.
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Pushing variables to create covers
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• Pushing yields a valid junction tree and preserves calibration.

• For non-adjacent B and C, push i along the unique path from B to C.

• To make a cluster C cover D, push each of the variables in D to C.
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Roll-up

If Xi is present in only one cluster C, then we marginalize Xi out of φC :

C∗ ← C \ i φ∗C ←
∑

xi

φC

If not, we must first merge all clusters containing Xi into a single cluster:

Ti
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A∪B∪C A∪B∪C \  i
m e r g e m a r g i n a l i z e

This is necessary to cover the elimination clique over the Markov blanket of Xi.
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Merging clusters
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• Merging clusters yields a valid junction tree and preserves calibration.

• We can merge all clusters containing Xi by a sequence of pairwise merges.
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Variable contraction
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• The result is a valid junction tree, but perhaps not for the original density.

• Variable contractions preserve calibration.

• Effect on the corresponding graphical model:

Contracting i from C cuts all edges between Xi and XC−S, the

variables it no longer resides with.
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Variable contraction is an efficient I-projection

Proposition. If p̃ is the density obtained by contracting i from C, then

p̃ = arg min
{q :Xi⊥⊥XC−S |XS\i}

D(p || q)
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Adaptive approximation

Proposition. If p̃ is the density obtained by contracting i from C, then

D(p || p̃) = I(Xi; XC−S |XS\i)

• This error can be computed locally using the cluster potential φC ∝ pC .

• In Gaussian densities this error can be computed in O(dim(Xi)
3) time.

• To “thin” a large cluster C: perform the contraction with minimum error.

• Note: we may be using an approximate model to compute the error.
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Simultaneous Localization and Mapping (slam)

A mobile robot navigating in an unknown environment must incrementally

build a map of its surroundings and localize itself within that map.
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The slam belief state is completely connected after each filter update: it

has no conditional independencies.
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Thin junction tree filters for slam

The space and time complexity of the Kalman filter is quadratic in the

number of observed landmarks, whereas tjtf is linear. Using adaptive

message passing, the tjtf filter is often constant time.
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http://www.cs.berkeley.edu/~paskin/slam

• the IJCAI 2003 paper

• a companion technical report

• movies and implementations of several types of slam filters
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