
Aggregating Learned Probabilistic Beliefs

Pedrito Maynard-Reid II
Computer Science Department

Stanford University
Stanford, CA 94305-9010

pedmayn@cs.stanford.edu

Urszula Chajewska
Computer Science Department

Stanford University
Stanford, CA 94305-9010

urszula@cs.stanford.edu

Abstract

We consider the task of aggregating beliefs of sev-
eral experts. We assume that these beliefs are rep-
resented as probability distributions. We argue that
the evaluation of any aggregation technique depends
on the semantic context of this task. We propose a
framework, in which we assume that nature generates
samples from a ‘true’ distribution and different experts
form their beliefs based on the subsets of the data they
have a chance to observe. Naturally, the optimal ag-
gregate distribution would be the one learned from the
combined sample sets. Such a formulation leads to a
natural way to measure the accuracy of the aggregation
mechanism.

We show that the well-known aggregation operator
LinOP is ideally suited for that task. We propose
a LinOP-based learning algorithm, inspired by the
techniques developed for Bayesian learning, which
aggregates the experts’ distributions represented as
Bayesian networks. We show experimentally that this
algorithm performs well in practice.

1 Introduction

Belief aggregation of subjective probability distributions
has been a subject of great interest in statistics (see [GZ86,
CW99]) and, more recently, artificial intelligence (e.g.,
[PW99]) and machine learning (ensemble learning in par-
ticular [PMGH00]), especially since probabilistic distribu-
tions are increasingly being used in medicine and other
fields to encode knowledge of experts. Unfortunately,
many of the aggregation proposals have lacked sufficient
semantical underpinnings, typically evaluating a mecha-
nism by how well it satisfies properties justified by little
more than intuition. However, as has been noted in other
fields such as belief revision (cf. [FH96]), the appropriate-
ness of properties depends on the particular context.

We take a more semantic approach to aggregation: we first
describe the realistic framework in which the experts or
sources learn their probability distributions from data us-
ing standard probabilistic learning techniques. We assume

a Decision Maker (DM) — the traditional name for the ag-
gregator — wants to aggregate a set of these learned dis-
tributions. This framework suggests a natural optimal ag-
gregation mechanism: construct the distribution that would
be learned had all the sources’ data sets been available to
the DM. Since the original data sets are generally not avail-
able, the aggregation mechanism should come as close as
possible to reconstructing the data sets and learning from
the combined set.

For intuition, consider the the task of creating an expert
system for some specialized medical field. We would like
to take advantage of the expertise of several doctors work-
ing in this field. Each of these doctors sharpened his
knowledge by following many patients. The doctors can
no longer recall the specifics of each case, but they have
formed over the years fairly accurate models of the do-
main that can be represented as sets of conditional prob-
abilities. (In fact, many expert systems have been created
over the years by eliciting such conditional probabilities
from experts [HHN92].) Of course, if there was a doctor
who had seen all of the patients the others doctors saw, the
ideal expert system would result from eliciting her model.
However, there isn’t one such expert. Therefore, our sys-
tem would benefit from incorporating the knowledge of as
many experts as we can find. The system would also ac-
count for the differing levels of experience of different doc-
tors – some of them may have practiced for much longer
than others.

One of the best-known aggregation operators is the Lin-
ear Opinion Pool (LinOP) which aggregates a set of distri-
butions by taking their weighted sum. It has been shown
in the statistics community that, under some intuitive as-
sumptions, learning the joint distribution from the com-
bined data set is equivalent to using LinOP over the individ-
ual joint distributions learned from the individual data sets.
However, whereas the weights in typical uses of LinOP
are often criticized for being ad-hoc, our framework pre-
scribes semantically-justified weights: the estimated per-
centages of the data each source saw. Intuitively, a high
weight means we believe a source has seen a relatively



large amount of data and is, hence, likely to be reliable.

However, joint distributions are hardly the preferred rep-
resentation for probabilistic beliefs in real-world domains.
BNs (aka belief networks, etc.) [Pea88] have gained much
popularity as structured representations of probability dis-
tributions. They allow such distributions to be represented
much more compactly, therefore often avoiding exponen-
tial blowup in both memory size and inference complexity.

Thus, we assume the sources beliefs are BNs learned from
data. According to our semantics, the aggregate BN should
be one the DM would learn from the combined sets of data.
We describe a LinOP-based BN aggregation algorithm, in-
spired by the algorithm designed to learn BNs from data.
The algorithm uses sources’ distributions instead of sam-
ples to search over possible BN structures and parameter
settings. It takes advantage of the marginalization prop-
erty of LinOP to make computation more efficient. We ex-
plore the algorithm’s behavior by running experiments on
the well-known, real-life Alarm network [BSCC89] and on
the smaller artificial Asia network [LS88].

2 Formal Preliminaries

We restrict our attention to domains with discrete variables.
We consider how to compute the aggregate distribution,
and how the accuracy of our computation depends on how
much we know about the sources.

Formally, we consider the following setting: There are �
sources and � discrete random variables, where each vari-
able � has domain ������. We follow the convention of
using capital letters to denote variables and lowercase let-
ters to denote their values. Symbols in bold denote sets. �
is the set of possible worlds defined by value assignments
to variables. The true distribution or model of the world is
�. Each source � has a data set�� sampled from (unknown
to us) �. We will assume that each �� is finite of size ��.
The corresponding empirical (i.e., frequency) distribution
is ���. Each source � learns a distribution �� over � . This
is �’s model of the world. The combined set of samples is
� � ���� of size � . The corresponding empirical distri-
bution is ��. The DM constructs an aggregate distribution �.
The optimal aggregate distribution �� is posited to be the
distribution the DM would learn from�.

Since it is unrealistic to expect the DM to have access to the
sources’ sample sets, we consider how to use information
about the sources’ learned distributions to at least approx-
imate ��. Specifically, we consider the situation where the
DM knows the sources’ distributions and has a good esti-
mate of the percentage �� � ���� of the combined set of
samples each source � has observed as well as what learn-
ing method it used.

We make a number of assumptions. First, we assume that
the samples are not noisy or otherwise corrupted, and they

are complete (no missing values).

Second, we assume that the individual sample sets are dis-
joint (so� �

�
���). This implies that the concatenation

of the�� equals�, so we don’t have to concern ourselves
with repeats when aggregating. This assumption is not al-
ways appropriate. It is invalidated when multiple sources
observe the same event. However, there are interesting do-
mains where this property holds. For example, in our mo-
tivating medical domain, doctors are likely to have seen
disjoint sets of patients.

Third, we assume that the sources believe their samples to
be IID — independent and identically distributed. The ma-
chine learning algorithms used in practice commonly rely
on this assumption.

Finally, we assume that the samples in the combined set�
are sampled from � and IID. This assumption may appear
overly restrictive at first glance. For one, it may seem to
preclude the common situation where sources receive sam-
ples from different subpopulations. For example, if doctors
are in different parts of the world, the characteristics of the
patients they see will likely be different.

In fact, we can accomodate this situation within our frame-
work by assuming � is a distribution over the domain vari-
ables and a source variable 	 which takes the different
sources as values; 	 � � means source � observed the in-
stantiated domain variables. This generalized distribution
is sampled IID. Each �� consists of the subset of samples
where 	 � �. It is not necessary to keep around the 	 val-
ues; computing the �� and �� without 	 will give the same
results as learning distributions over the complete samples
and marginalizing out 	. Thus, although samples will be
IID, different subpopulation distributions will be possible,
captured by different conditional probability distributions
of the domain variables given distinct values of 	.�

3 Aggregating Learned Joint Distributions

We first consider the case where sources have learned joint
distributions, and the aggregate is also a joint.

3.1 Learning joint distributions: review

Given samples of a variable� , the goal of a learner is to es-
timate the probability of future occurences of each value of
� . In our setting, the domain of� is� and the parameters
that need to be learned are the ��� probabilites. The dis-
tribution over � is parameterized by�. Two standard ap-
proaches are Maximum Likelihood Estimation (MLE) and
Maximum A Posteriori estimation (MAP).

�Two implications of this formulation are that the assumption
that the�� are disjoint is implicit and �� will approach ��� � ��
as � approaches� for all �.



An MLE learner chooses the member of a specified family
of distributions that maximizes the likelihood of the data:

Definition 1 If � is a random variable, ������ �
���
 � � � 
 ���, and� � �	�
 � � � 
	�� where 	� � � �� �
��, then the MLE distribution over � given data set� is


����
�� � ����
�

��� � ��

It is easy to show that the MLE distribution is the empirical
distribution if samples are IID.

MAP learning, on the other hand, follows the Bayesian ap-
proach to learning which directs us to put a prior distribu-
tion over the value of any parameter we wish to estimate.
We treat these parameters as random variables and define a
probability distribution over them. More formally, we now
have a joint probability space that includes both the data
and the parameters.

Definition 2 If � is a random variable, ������ �
���
 � � � 
 ���, and� � �	�
 � � � 
	�� where 	� � � �� �
��, then the MAP distribution over � given data set �
and prior � ��� is the distribution


����
����
�� � ��� ��� �

�
��� ������ ��� ��

The appropriate conjugate prior for variables with multino-
mial distributions is Dirichlet. ����� � ��
 � � � 
 ���, where
each �� is a hyperparameter such that �� � �.

We will assume that Dirichlet distributions are assessed us-
ing the method of equivalent samples: given a prior dis-
tribution � over � and an estimated sample size �, � � is
simply �����. We use these to parameterize 
��:

Definition 3 If � is a random variable, ������ �
���
 � � � 
 ���, � � �	�
 � � � 
	�� where 	� � ��� �
��, � is a probability distribution over � , and
� � �, then 
����
 ��
 ��
�� denotes the distribution

����
 ��
�� where �� � ������������
 � � � 
 �������.

We will omit the � argument from the MLE and MAP no-
tation since it is understood.

3.2 LinOP: review

Let us turn to the problem of aggregation. We will show
that joint aggregation essentially reduces to LinOP. LinOP
was proposed by Stone in [Sto61], but is generally at-
tributed to Laplace. It aggregates a set of joint distributions
by taking a weighted sum of them:

Definition 4 Given probability distributions ��
 � � � 
 ��
and non-negative parameters ��
 � � � 
 �� such that�

� �� � �, the LinOP operator is defined such that, for

any � � � ,

��������
 ��
 � � � 
 ��
 ������ �
�
�

��������

LinOP is popular in practice because of its simplicity. As
described in [GZ86], it also has a number of attractive
properties such as unanimity (if all the �� � ��, then
LinOP returns ��), non-dictatorship (no one input is always
followed), and the marginalization property (aggregation
and marginalization are commutative operators). However,
LinOP has often been dismissed in the aggregation commu-
nities as a normative aggregation mechanism, primarily be-
cause it fails to satisfy a number of other properties deemed
to be necessary of any reasonable aggregator, e.g., the ex-
ternal Bayesianity property (aggregation and conditioning
should commute) and the preservation of shared indepen-
dences. Furthermore, typical approaches to choosing the
weights are often criticized as being ad-hoc.

However, this dismissal may have been overly hasty.
LinOP proves to be the operator we are looking for in our
framework: using it is equivalent to having the DM learn
from the combined data set under intuitive assumptions.

3.3 MLE aggregation

Suppose the sources and the DM are MLE learners. As has
been known in statistics for some time, the DM need only
compute the LinOP of the sources’ distributions.

Proposition 1 ([Win68, Mor83]) If �� � 
������ for
each � � ��
 � � � 
 �� and �� � 
�����, then �� �
��������
 ��
 � � � 
 ��
 ���.

Although straight-forward, this proposition is illuminating.
For one, the weight corresponding to each source has a very
clear meaning; it is the percentage of total data seen by that
source. The DM only needs to provide accurate estimates
of these percentages. A high weight indicates that the DM
believes a source has seen a relatively large amount of data
and is, hence, likely to be very reliable. Thus, we address
a common criticism of LinOP, that the weights are often
chosen in an ad-hoc fashion. Also, if � is known, the
DM can compute the number of samples in � that were
�: ���������
 ��
 � � � 
 ��
 ���. Thus, ����� can be
viewed as essentially storing the sufficient statistics for the
DM learning problem.

It is now easy to see why a property such as preservation
of independence will not always hold given our learning-
based semantics. In our framework, sources do not have
strong beliefs about independences; any believed indepen-
dence depends on how well it fits the source’s data. The
independence preservation property does not take into ac-
count the possibility that, because of limited data, sources
may all have learned independences which are not justified
if all the data was taken into account.



Consider, for example, the following distribution over two
variables � and �: ����� � ���, ������ � ���, ������ �
���, and ������� � ���. Obviously, � and � are not in-
dependent. Suppose two sources have each received a set
of six samples from this distribution: �� consists of one
each of �� and ���, two each of ��� and ����; �� consists of
one each of ��� and ����, two each of �� and ���. Further
suppose each used MLE to learn a distribution over � and
�. � and � are independent in each of these distributions.
The LinOP distribution, on the other hand, effectively takes
into account the evidence seen by both sources and actually
computes � where the variables are not independent.

3.4 MAP aggregation

MLE learners are known to have problems with overfitting
and low-probability events for which data never material-
ized. MAP learning often does a better job of dealing with
these problems, especially when data is sparse.

Consequently, suppose the sources and the DM are MAP
learners with Dirichlet priors. The optimal aggregate dis-
tribution is a variation on �����:�

Proposition 2 Suppose, for each � � ��
 � � � 
 ��, �� �

������
 ���
��� and �� � 
�����
 ��
���. Then,

����� �
�

� � �
����������
 ��
 � � � 
 ��
 ��� � ������

�
�
�

��
� � �

������ 	 ������ � (1)

The first term in Equation 1 is the DM’s MAP estimation,
the second term accounts for the sources’ priors by sub-
tracting out their effect.

Corollary 2.1 Suppose, for each � � ��
 � � � 
 ��, � � �

������
 ���
��� and �� � 
�����
 ��
���. Then,

���
�����

������ ��

�� � ��������
 ��
 � � � 
 ��
 ����

Thus, as � becomes large, the LinOP distribution ap-
proaches ��. This is not surprising since it is well-known
that MLE learning and MAP learning with Dirichlet priors
are asymptotically equivalent. The implication is that if �
is large, not only do we not need to know � to aggregate,
we do not need to know what priors the sources used ei-
ther. And if we approximate the aggregate distribution by
the LinOP distribution, this approximation will improve the
more samples seen by the sources.

4 Aggregating Learned Bayesian Networks

Bayesian networks (BNs) are structured representations of
probability distributions. A BN � consists of a directed

�We omit proofs for lack of space.

acyclic graph (DAG) � whose nodes are the� random vari-
ables. The parents of a node � are denoted by ����;
���� denotes a particular assignment to ����. The
structure of the network encodes marginal and conditional
independencies present in the distribution. Associated with
each node is the conditional probability distribution (CPD)
for � given ����.

We consider the case where sources’ beliefs are represented
as BNs learned from data. We briefly review the tech-
niques used for learning BNs from data. For a more de-
tailed presentation, see [Hec96].

4.1 Learning Bayesian networks: review

If the structure of the network is known, the task reduces
to statistical parameter estimation by MLE or MAP. In the
case of complete data, the likelihood function for the entire
BN conveniently decomposes according to the structure of
the network, so we can maximize the likelihood of each
parameter independently.

If the structure of the network is not known, we have to ap-
ply Bayesian model selection. More precisely, we define a
discrete variable � whose states � correspond to possible
models, i.e., possible network structures; we encode our
uncertainty about � with the probability distribution � ���.
For each model �, we define a continuous vector-valued
variable 	�, whose instantiations �� correspond to the pos-
sible parameters of the model. We encode our uncertainty
about 	� with a probability distribution � ��� � ��.

We score the candidate models by evaluating the marginal
likelihood of the data set � given the model �, that is,
the Bayesian score � �� � �� �

�
� �� � �� 
 ��� ��� �

��� ������ �

In practice, we often use some approximation to the
Bayesian score. The most commonly used is the MDL
score, which converges to the Bayesian score as the data
set becomes large. The MDL score is defined as

 !��"����#
� $ �� �

�

��
���

�
	
����

�
��

����
 ����� ��� ����������

	
����

%
���&��'	������

where ���&��' is the number of independent parameters in
the graph and ������ is the description length of � �. Find-
ing the network structure with the highest score has been
shown to be NP-hard in general. Thus, we have to resort to
heuristic search. Since the search can easily get stuck in
a local maximum, we often add random restarts to the pro-
cess. The BN learning algorithm is presented in Figure 1.

Why are we interested in learning BNs rather than joint



1. pick a random DAG g
2. parameterize g to form b
3. score b
4. loop
5. for each DAG g’ differing from g by

adding, removing, or reversing an edge
6. parameterize g’ to form b’
7. score b’
8. pick the b’ with the highest score and replace

g with g’ and b with b’ if score(b’) � score(b)
9. until no further change g
10. return b.

Figure 1: Bayesian network learning algorithm.

distributions? Besides some obvious reasons concerning
compact representation and efficient inference, a distribu-
tion learned by the BN algorithm may be closer to the orig-
inal distribution used to generate the data in the first place.

First, note that the networks which can be parameterized
to represent exactly the MLE- or MAP-learned joint distri-
butions are, in general, fully connected. Intuitively, a dis-
tribution learned from finite sample data will always be a
little noisy, so true independences will almost always look
like slight dependences mathematically. As a result, the
BNs we are interested in (either for the sources or for the
DM) will not be exact representations of the independen-
cies present in the MLE- or MAP-learned distributions, but,
rather, will account for this overfitting.

BN learning ‘stretches’ the distribution that best fits the
data to match candidate network structures. For every
structure, we look for the best (producing the highest score)
parameterization of that structure. The score balances the
fit to the data with model complexity.

4.2 LinOP-based Aggregation Algorithm

Now suppose each source has learned a BN �� with DAG ��
from �� using the MDL score and the DM is given these
BNs as well as the ��. According to our semantics, the
aggregate BN should be as close as possible to the one the
DM would learn from�.

We cannot apply the BN learning algorithm directly, since
we don’t have the data used by sources to learn their mod-
els. A simple solution would be to generate samples from
each source model and train the DM on the combined set.
That algorithm, although appealingly simple, raises some
new questions. It is not clear how many samples we should
generate from each source. One possibility would be to use
the same number as the (estimated) number of samples that
each source used to learn its model. However, if that num-
ber is small, the samples will not represent the generating
distribution adequately, introducing additional noise to the
process. If we generate more samples than each source saw
(increasing it proportionally to preserve the � � settings), we
give too much weight to the MLE component of the score,
thus possibly choosing a suboptimal network. In fact, our

experiments described in Section 5 show that this algorithm
does very badly in practice.

Instead, we can adapt the BN learning algorithm to use
sources’ distributions instead of samples.

The main difference is in the way we compute the
MLE/MAP parameters for each structure we consider and
the way we compute the score (lines 2, 3, 6 and 7 in Fig-
ure 1). Our algorithm relies on the observation that it is
not necessary to have the actual data to learn a BN; it is
sufficient to have their empirical distribution. As we have
demonstrated in Section 3, we can come up with said dis-
tribution by applying the LinOP operator to distributions
learned by our sources.

We can take advantage of the marginalization property of
LinOP to make computation more efficient. As is noted
in [PW99], we can parameterize the network in top-down
fashion by first computing the distribution over the roots,
then joints over the second layer variables together with
their parents, etc. The conditional probabilities can be com-
puted by dividing the appropriate marginals (using Bayes
Law). In many cases, that would require only local compu-
tations in sources’ BNs.

The MDL score also requires knowing only the empirical
distribution for � and � . Again, since the empirical dis-
tribution is the LinOP distribution if the weights are chosen
correctly and the sources used MLE or MAP (assuming
sufficient data) learning, it is possible to score the candi-
date networks without having the actual data. Furthermore,
the marginals used in the MLE score are family marginals.
If the previous parameterization step is done by computing
marginals, then these will have already been computed.

Although the MDL score requires knowledge of � , this
dependence may not be strong, especially for large � in
which case the second term is dominated by the likelihood
term and � becomes a factor common to all networks and
can be ignored. Otherwise, a rough approximation of �
should suffice.

As in traditional BN learning, caching can make the pa-
rameterization and scoring of ‘neighboring’ networks more
efficient. Since we are making only local changes to the
structure, only a few parameters will need updating. If an
arc is added or removed, we only need to recompute new
parameters for the child node, and if an arc is switched, we
only need to recompute parameters for the two nodes in-
volved. Also, since these LinOP marginals don’t change,
caching computed values may help to further speed up fu-
ture computations.



5 Experiments

We implemented the BN aggregation algorithm in Matlab
using Kevin Murphy’s Bayes Net Toolbox and explored its
behavior by running experiments on the well-known, real-
life Alarm network [BSCC89], a 37-node network used as
part of a system for monitoring intensive care patients, and
on the smaller 8-node artificial Asia network [LS88].

In our experiments, we learned two source BNs from data
sampled from the original BN, then aggregated the results
using our algorithm (AGGR). We had both the sources and
the DM use MAP to parameterize their networks. In com-
puting LinOP, we used the �� as weights. We compared our
proposal’s accuracy against learning from the combined
data sets (OPT) by plotting the Kullback-Leibler (KL) di-
vergence [Kul59]� of each distribution from the true distri-
bution for different values of � � ���.

5.1 Sensitivity to �

We considered the situation where the DM knows the pri-
ors used by the sources and adjusts for the unduly large
number of imaginary samples. All sources and DMs used
the Dirichlet prior defined by the uniform distribution and
an estimated sample size of 1. We varied the total num-
ber of samples � between 200 and 20000, having sources
see the same number of samples in some cases and dif-
ferent numbers in others. We conducted multiple runs for
each setting and averaged them. Figure 2(a) plots the av-
erages for the Alarm network when sources have equal � �.
Due to software limitations, we had to start each structure
search with the fully disconnected graph and used no ran-
dom restarts for this larger network. As can be seen, in
spite of the limited search, our algorithm does fairly well
as far as coming close to the optimal and improving on the
sources. Not surprisingly, the KL divergence drops as the
total number of samples increases. Furthermore, the exper-
iments on sources with different �� showed no dependence
of the performance of the algorithm on the relative differ-
ence in ��.

We ran similar experiments on Asia. Here, we varied the
number of samples between 200 and 3000, with five runs
per setting. For each run, we used five random restarts.
Figure 2(b) plots the average for each setting. The plot
shows that when we are able to explore the search space
sufficiently in the learning and aggregation algorithms, our
algorithm consistently improves on the sources and closely
approximates to the optimal.

�Available at http://www.cs.berkeley.edu/ murphyk/bnt.html.
�The KL divergence of distribution � from � is defined as�
���

���� ��� ����

����
�

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

200 2000 10000 20000

M

K
L 

D
iv

er
ge

nc
e

S1
S2
OPT
AGGR

(a)

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

0.100

200 600 1000 1400 1800 2200 2600 3000

M

K
L 

D
iv

er
ge

nc
e

S1
S2
OPT
AGGR

(b)

Figure 2: Sensitivity to � (a) Alarm network results. (b)
Asia network results.

5.2 Sensitivity to the DM’s estimation of �

We hypothesized earlier that the actual value of the DM’s
estimate of M does not matter all that much. To demon-
strate this, we ran experiments on the Asia network similar
to those above, but leaving � fixed and varying the DM’s
estimate 1 order of magnitude above and below � . Fig-
ures 3(a) summarizes the results for � � ���.

Any approximation above 0.25 orders of magnitude below
� provides improvement over the sources. Estimates be-
low this made the complexity penalty sufficiently strong to
select DAGs with fewer arcs than the original and under-
fit the data. On the other hand, although overestimating�
did not increase the KL distance from the original, there is a
danger of extreme overestimates causing overfitting. How-
ever, we did not find any increase in the complexity of the
aggregate networks for the 1 order of magnitude range we
considered; they remained at 8–9 arcs on average.

Figure 3(b) summarizing the results for � � ����� shows



0.00

0.05

0.10

0.15

0.20

0.25

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

M'/M (log10)

K
L 

D
iv

er
ge

nc
e

S1
S2
OPT
AGGR

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

M'/M (log10)

K
L 

D
iv

er
ge

nc
e

S1
S2
OPT
AGGR

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

200 600 1000 1400 1800 2200 2600 3000

M

K
L 

D
iv

er
ge

nc
e

S1
S2
OPT
AGGR

(a) (b) (c)

Figure 3: Asia network results (a) varying DM’s estimate of � (� � ���). (b) varying DM’s estimate of � (� � ���).
(c) with different subpopulations.

that, as predicted, the range of “slack” increases with � ;
the more samples seen by the sources, the less important
the accuracy of the DM’s estimate.

5.3 Subpopulations

Our algorithm performs well when combining source dis-
tributions learned based on samples from different subpop-
ulations. To show this, we modified the Asia network to ac-
comodate two sources, a doctor practicing in San Francisco
and one practicing in Cincinnati. The probability distribu-
tions of the two root nodes in the Asia network, represent-
ing whether a patient smokes and whether she has visited
Asia would be significantly different for the two doctors.
A patient from San Francisco is less likely to be a smoker,
and one from Cincinnati is less likely to have visited Asia.
Thus, we added a source variable as described in Section 2,
gave the sources equal priors of seeing patients, made the
source variable a parent of the two root variables, and gave
them appropriate CPDs. We drew � samples from this
extended network and had each source learn from the ap-
propriate subset, then used AGGR to combine the results
using the correct �� and � . Figure 3(c) plots the KL di-
vergence of each distribution from the original distribution
with the source variable marginalized out. Because the
sources are learning the distributions for different subpop-
ulations, what they learn is relatively far from the overall
distribution. The DM takes advantage of the information
from both sources and learns a BN that approximates the
original much more closely than either source.

5.4 Comparison to sampling algorithm

In each of the above experiments, we also compared the
performance of our algorithm to the alternative intuitive al-
gorithm SAMP we described in Section 4.2 in which we
sample ��� samples from each source �’s BN and learn
a BN from the combined data. SAMP did very badly in

general, consistently worse than not only AGGR, but worse
than the sources as well, often by an order of magnitude.

6 Related Work

A wealth of work exists in statistics on aggregating prob-
ability distributions. Good surveys of the field include
[GZ86, CW99]. Many of the earlier, axiomatic approaches
suffered from a lack of semantical grounding. For this rea-
son, the community moved towards modeling approaches
instead. The most studied approach has been the supra-
Bayesian one, introduced in [Win68] and formally estab-
lished in [Mor74, Mor77]. Here, the DM has a prior not
only over the variables in the domain, but over the possi-
ble beliefs of the sources as well. She aggregates by us-
ing Bayesian conditioning to incorporate the information
she receives from the sources. In fact, Proposition 1 de-
rives from this body of work. However, almost all of this
work has been restricted to aggregating beliefs represented
as point probabilities or odds, or joint distributions.

There has been some recent interest, particularly in AI, in
the problem of aggregating structured distributions includ-
ing [MA92, MA93, PW99]. But, like the early axiomatic
approaches in statistics, much of this work focuses on at-
tempting to satisfy abstract properties such as preserving
shared independences, and often runs into impossibility re-
sults as a consequence.

In some sense, what we are doing could also be viewed
as ensemble learning for BNs. Ensemble learning involves
combining the results of different weak learners to improve
classification accuracy. Because of its simplicity, LinOP is
often used without justification to do the actual combina-
tion. Our results justify this use when the weak learners
use MLE, MAP, or BN learning.

Another new area in AI that bears similarities to our work
is that of on-line or incremental learning of BNs (e.g.,



[Bun91, LB94, FG97]). There, we are given a continuous
stream of samples and we want to maintain a BN learned
from all the data we have seen so far. Because the stream is
very long, it is generally not possible to maintain the full set
of sufficient statistics. Approaches range from approximat-
ing the sufficient statistics to restricting the network that
can be learned. We essentially do the former by assuming
that the sufficient statistics for the data seen by each source
is encoded in its network. Cross-fertilization between the
two fields may prove profitable.

7 Conclusion

We have presented a new approach to belief aggregation.
We believe that we cannot formulate that problem pre-
cisely or measure success of different techniques without
answering questions about the way in which sources’ be-
liefs were formulated. We argued that a framework in
which the sources are assumed to have learned their distri-
butions from data is both intuitively plausible and leads to a
very natural formulation of the optimal DM distribution —
one which would be learned from the combined data sets
— and a natural success measure — a distance from the
generating, ‘true’ distribution.

Based on the observation that LinOP is the appropriate
operator for this framework if sources and DM are MLE
learners, we presented a LinOP-based algorithm to aggre-
gate beliefs represented by Bayesian networks. Our prelim-
inary results show that this algorithm performs very well.

One direction of future work will involve finding ways to
relax the various assumptions. For example, we would like
to extend the framework to allow for continuous variables
and to allow for dependence between sources’ sample sets.

In our framework, the DM completely ignores sources’ pri-
ors. This may be appropriate if the priors are known to be
unreliable or uninformative. However, the priors used in
real applications are often informative in and of themselves.
Thus, a second direction will involve finding valid ways of
taking advantage of sources’ priors to improve the quality
of the aggregation. For example, if sources use Dirichlet
priors and the DM trusts their estimated sample sizes, she
may chose to incorporate them into her estimate of � .

Acknowledgements

Pedrito Maynard-Reid II was partially supported by a Na-
tional Physical Science Consortium Fellowship. Urszula
Chajewska was supported by the Air Force contract
F30602-00-2-0598 under DARPA’s TASK program.

References

[BSCC89] I. Beinlich, G. Suermondt, R. Chavez, and
G. Cooper. The ALARM monitoring system. In

Proc. European Conf. on AI and Medicine, 1989.

[Bun91] W. Buntine. Theory refinement on bayesian net-
works. In Proc. UAI’91, pages 52–60, 1991.

[CW99] R. T. Clemen and R. L. Winkler. Combining proba-
bility distributions from experts in risk analysis. Risk
Analysis, 19(2):187–203, 1999.

[FG97] N. Friedman and M. Goldsmidt. Sequential update of
bayesian network structure. In Proc. UAI’97, pages
165–174, 1997.

[FH96] N. Friedman and J. Y. Halpern. Belief revision: A
critique. In Proc. KR’96, pages 421–431, 1996.

[GZ86] C. Genest and J. V. Zidek. Combining probability
distributions: A critique and an annotated bibliogra-
phy. Statistical Science, 1(1):114–148, 1986.

[Hec96] D. Heckerman. A tutorial on learning bayesian net-
works. Technical Report MSR-TR-95-06, Microsoft
Research, 1996.

[HHN92] D. Heckerman, E. Horvitz, and B. Nathwani. Toward
normative expert systems: Part I. The Pathfinder
project. Methods of Information in Medicine, 31:90–
105, 1992.

[Kul59] S. Kullback. Information Theory and Statistics. Wi-
ley, 1959.

[LB94] W. Lam and F. Bacchus. Learning bayesian belief
networks: An approach based on the mdl principle.
Computational Intelligence, 10:269–293, 1994.

[LS88] S. L. Lauritzen and D. J. Spiegelhalter. Local compu-
tations with probabilities on graphical structures and
their application to expert systems. In J. Royal Sta-
tistical Society, Series B (Methodological), volume
50(2), pages 157–224, 1988.

[MA92] I. Matzkevich and B. Abramson. The topological fu-
sion of Bayes nets. In Proc. UAI’92, pages 191–198,
1992.

[MA93] I. Matzkevich and B. Abramson. Some complexity
considerations in the combination of belief networks.
In Proc. UAI’93, pages 152–158, 1993.

[Mor74] P. A. Morris. Decision analysis expert use. Manage-
ment Science, 20:1233–1241, 1974.

[Mor77] P. A. Morris. Combining expert judgements: A
bayesian approach. Management Science, 23:679–
693, 1977.

[Mor83] P. A. Morris. An axiomatic approach to expert reso-
lution. Management Science, 29(1):24–32, 1983.

[Pea88] J. Pearl. Probabilistic Reasoning in Intelligent Sys-
tems. Morgan Kaufmann, 1988.

[PMGH00] D. M. Pennock, P. Maynard-Reid II, C. L. Giles, and
E. Horvitz. A normative examination of ensemble
learning algorithms. In Proc. ICML’00, pages 735–
742, 2000.

[PW99] D. M. Pennock and M. P. Wellman. Graphical rep-
resentations of consensus belief. In Proc. UAI’99,
pages 531–540, 1999.

[Sto61] M. Stone. The opinion pool. Annals of Mathematical
Statistics, 32(4):1339–1342, 1961.

[Win68] Robert L. Winkler. The consensus of subjec-
tive probability distributions. Management Science,
15(2):B61–B75, October 1968.


