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Abstract. Artificial systems with a high degree of autonomy require reliable seman-
tic information about the context they operate in. State interpretation, however, is
a difficult task. Interpretations may depend on a history of states and there may be
more than one valid interpretation. We propose a model for spatio-temporal situa-
tions using hidden Markov models based on relational state descriptions, which are
extracted from the estimated state of an underlying dynamic system. Our model
covers concurrent situations, scenarios with multiple agents, and situations of vary-
ing durations. To evaluate the practical usefulness of our model, we apply it to the
concrete task of online traffic analysis.

1 Introduction

It is a fundamental ability for an autonomous agent to continuously monitor
and understand its internal states as well as the state of the environment. This
ability allows the agent to make informed decisions in the future, to avoid
risks, and to resolve ambiguities. Consider, for example, a driver assistance
application that notifies the driver when a dangerous situation is developing,
or a surveillance system at an airport that recognizes suspicious behaviors.
Such applications do not only have to be aware of the current state, but also
have to be able to interpret it in order to act rationally.

State interpretation, however, is not an easy task as one has to also con-
sider the spatio-temporal context, in which the current state is embedded.
Intuitively, the agent has to understand the situation that is developing. The
goals of this work are to formally define the concept of situation and to develop
a sound probabilistic framework for modeling and recognizing situations.

Related work includes Anderson et al. (2004) who propose relational
Markov models with fully observable states. Fern and Givan (2004) describe
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an inference technique for sequences of hidden relational states. The hidden
states must be inferred from observations. Their approach is based on logical
constraints and uncertainties are not handled probabilistically. Kersting et al.

(2006) propose logical hidden Markov models where the probabilistic frame-
work of hidden Markov models is integrated with a logical representation of
the states. The states of our proposed situation models are represented by con-
junctions of logical atoms instead of single atoms and we present a filtering
technique based on a relational, non-parametric probabilistic representation
of the observations.

2 Framework for Modeling and Recognizing Situations

Dynamic and uncertain systems can in general be described using dynamic
Baysian networks (DBNs) (Dean and Kanazawa (1989)). DBNs consist of a
set of random variables that describe the system at each point in time t. The
state of the system at time t is denoted by xt and zt represents the obser-
vations. Furthermore, DBNs contain the conditional probability distributions
that describe how the random variables are related.

Fig. 1. Overview of the framework. At each time step t, the state xt of the system
is estimated from the observations zt. A relational description ot of the estimated
state is generated and evaluated against the different situation models λ1, . . . , λn.

Intuitively, a situation is an interpretation associated to some states of the
system. In principle, situations could be represented in such a DBN model by
introducing additional latent situation variables and by defining their influence
on the rest of the system. Since this would lead to an explosion of network
complexity already for moderately sized models, we introduce a relational
abstraction layer between the system DBN used for estimating the state of the
system, and the situation models used to recognize the situations associated
to the state of the system. In this framework, we sequentially estimate the
system state xt from the observations zt in the DBN model using the Bayes
filtering scheme. In a second step within each time step, we transform the
state estimate xt to a relational state description ot, which is then used to
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recognize instances of the different situation models. Figure 1 visualizes the
structure of our proposed framework for situation recognition.

3 Modeling Situations

Based on the DBN model of the system outlined in the previous section, a
situation can be described as a sequence of states with a meaningful inter-
pretation. Since in general we are dealing with continuous state variables, it
would be impractical or even impossible to reason about states, and state
sequences directly in that space. Instead, we use an abstract representation
of the states, and define situations as sequences of these abstract states.

3.1 Relational State Representation

For the abstract representation of the state of the system, relational logic will
be used. In relational logic, an atom r(t1, . . . , tn) is an n-tuple of terms ti

with a relation symbol r. A term can be either a variable R or a constant c.
Relations can be defined over the state variables or over features that can
be directly extracted from them. Table 1 illustrates possible relations defined
over the distance and bearing state variables in a traffic scenario.

Table 1. Example distance and bearing relations for a traffic scenario.

Relation Distances

equal(R, R′) [0 m, 1 m)
close(R, R′) [1 m, 5 m)
medium(R, R′) [5 m, 15 m)
far(R, R′) [15 m,∞)

Relation Bearing angles

in front of(R, R′) [315◦, 45◦)
right(R, R′) [45◦, 135◦)
behind(R, R′) [135◦, 225◦)
left(R, R′) [225◦, 315◦)

An abstract state is a conjunction of logical atoms (see also Cocora et al.
(2006)). Consider for example the abstract state q ≡ far(R, R′), behind(R, R′),
which represents all states in which a car is far and behind another car.

3.2 Situation Models

Hidden Markov models (HMMs) (Rabiner (1989)) are used to describe the ad-
missible sequences of states that correspond to a given situation. HMMs are
temporal probabilistic models for analyzing and modeling sequential data. In
our framework we use HMMs whose states correspond to conjunctions of re-
lational atoms, that is, abstract states as described in the previous section.
The state transition probabilities of the HMM specify the allowed transitions
between these abstract states. In this way, HMMs specify a probability dis-
tribution over sequences of abstract states.
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Fig. 2. passing maneuver and corresponding HMM.

To illustrate how HMMs and abstract states can be used to describe situ-
ations, consider a passing maneuver like the one depicted in Figure 2. Here,
a reference car is passed by a faster car on the left hand side. The maneuver
could be coarsely described in three steps: (1) the passing car is behind the
reference car, (2) it is left of it, (3) and it is in front. Using, for example, the
bearing relations presented in Table 1, an HMM that describes this sequences
could have three states, one for each step of the maneuver: q0 = behind(R, R′),
q1 = left(R, R′), and q2 = in front of(R, R′). The transition model of this
HMM is depicted in Figure 2. It defines the allowed transitions between the
states. Observe how the HMM specifies that when in the second state (q1),
that is, when the passing car is left of the reference car, it can only remain
left (q1) or move in front of the reference car (q2). It is not allowed to move
behind it again (q0). Such a sequence would not be a valid passing situation
according to our description.

A situation HMM consists of a tuple λ = (Q, A, π), where Q = {q0, . . . , qN}
represents a finite set of N states, which are in turn abstract states as described
in the previous section, A = {aij} is the state transition matrix where each
entry aij represents the probability of a transition from state qi to state qj ,
and π = {πi} is the initial state distribution, where πi represents the prob-
ability of state qi being the initial state. Additionally, just as for the DBNs,
there is also an observation model. In our case, this observation model is the
same for every situation HMM, and will be described in detail in Section 4.1.

4 Recognizing Situations

The idea behind our approach to situation recognition is to instantiate at
each time step new candidate situation HMMs and to track these over time.
A situation HMM can be instantiated if it assigns a positive probability to
the current state of the system. Thus, at each time step t, the algorithm keeps
track of a set of active situation hypotheses, based on a sequence of relational
descriptions.

The general algorithm for situation recognition and tracking is as follows.
At every time step t,
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1. Estimate the current state of the system xt (see Section 2).
2. Generate relational representation ot from xt: From the estimated state

of the system xt, a conjunction ot of grounded relational atoms with an
associated probability is generated (see next section).

3. Update all instantiated situation HMMs according to ot: Bayes filtering
is used to update the internal state of the instantiated situation HMMs.

4. Instantiate all non-redundant situation HMMs consistent with ot: Based
on ot, all situation HMMs are grounded, that is, the variables in the
abstract states of the HMM are replaced by the constant terms present
in ot. If a grounded HMM assigns a non-zero probability to the current
relational description ot, the situation HMM can be instantiated. However,
we must first check that no other situation of the same type and with the
same grounding has an overlapping internal state. If this is the case, we
keep the oldest instance since it provides a more accurate explanation for
the observed sequence.

4.1 Representing Uncertainty at the Relational Level

At each time step t, our algorithm estimates the state xt of the system. The
estimated state is usually represented through a probability distribution which
assigns a probability to each possible hypothesis about the true state. In order
to be able to use the situation HMMs to recognize situation instances, we need
to represent the estimated state of the system as a grounded abstract state
using relational logic.

To convert the uncertainties related to the estimated state xt into ap-
propriate uncertainties at the relational level, we assign to each relation the
probability mass associated to the interval of the state space that it rep-
resents. The resulting distribution is thus a histogram that assigns to each
relation a single cumulative probability. Such a histogram can be thought of
as a piecewise constant approximation of the continuous density. The rela-
tional description ot of the estimated state of the system xt at time t is then
a grounded abstract state where each relation has an associated probability.

The probability P (ot|qi) of observing ot while being in a grounded abstract
state qi is computed as the product of the matching terms in ot and qi. In
this way, the observation probabilities needed to estimate the internal state
of the situation HMMs and the likelihood of a given sequence of observations
O1:t = (o1, . . . , ot) can be computed.

4.2 Situation Model Selection using Bayes Factors

The algorithm for recognizing situations keeps track of a set of active situation
hypothesis at each time step t. We propose to decide between models at a
given time t using Bayes factors for comparing two competing situation HMMs
that explain the given observation sequence. Bayes factors (Kass and Raftery
(1995)) provide a way of evaluating evidence in favor of a probabilistic model
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as opposed to another one. The Bayes factor B1,2 for two competing models
λ1 and λ2 is computed as

B12 =
P (λ1|Ot1:t1+n1

)

P (λ2|Ot2:t2+n2
)

=
P (Ot1:t1+n1

|λ1)P (λ1)

P (Ot2:t2+n2
|λ2)P (λ2)

, (1)

that is, the ratio between the likelihood of the models being compared given
the data. The Bayes factor can be interpreted as evidence provided by the
data in favor of a model as opposed to another one (Jeffreys (1961)).

In order to use the Bayes factor as evaluation criterion, the observation
sequence Ot:t+n which the models in Equation 1 are conditioned on, must be
the same for the two models being compared. This is, however, not always the
case, since situation can be instantiated at any point in time. To solve this
problem we propose a solution used for sequence alignment in bio-informatics
(Durbin et al. (1998)) and extend the situation model using a separate world

model to account for the missing part of the observation sequence. This world

model in our case is defined analogously to the bigram models that are learn
from the corpora in the field of natural language processing (Manning and
Schütze (1999)). By using the extended situation model, we can use Bayes
factors to evaluate two situation models even if they where instantiated at
different points in time.

5 Evaluation

Our framework was implemented and tested in a traffic scenario using a sim-
ulated 3D environment. TORCS - The Open Racing Car Simulator (Espié
and Guionneau) was used as simulation environment. The scenario consisted
of several autonomous vehicles with simple driving behaviors and one refer-
ence vehicle controlled by a human operator. Random noise was added to the
pose of the vehicles to simulate uncertainty at the state estimation level. The
goal of the experiments is to demonstrate that our framework can be used to
model and successfully recognize different situations in dynamic multi-agent
environments. Concretely, three different situations relative to a reference car
where considered:

1. The passing situation corresponds to the reference car being passed by
another car. The passing car approaches the reference car from behind, it
passes it on the left, and finally ends up in front of it.

2. The aborted passing situation is similar to the passing situation, but the
reference car is never fully overtaken. The passing car approaches the
reference car from behind, it slows down before being abeam, and ends
up behind it again.

3. The follow situation corresponds to the reference car being followed from
behind by another car at a short distance and at the same velocity.
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Fig. 3. (Left) Likelihood of the observation sequence for a passing maneuver ac-
cording to the different situation models, and (right) Bayes factor in favor of the
passing situation model against the other situation models.

The structure and parameters of the corresponding situation HMMs where de-
fined manually. The relations considered for these experiments where defined
over the relative distance, position, and velocity of the cars.

Figure 3 (left) plots the likelihood of an observation sequence correspond-
ing to a passing maneuver. During this maneuver, the passing car approaches
the reference car from behind. Once at close distance, it maintains the dis-
tance for a couple of seconds. It then accelerates and passes the reference car
on the left to finally end up in front of it. It can be observed in the figure how
the algorithm correctly instantiated the different situation HMMs and tracked
the different instances during the execution of the maneuver. For example, the
passing and aborted passing situations where instantiated simultaneously from
the start, since both situation HMMs initially describe the same sequence of
observations. The follow situation HMM was instantiated, as expected, at
the point where both cars where close enough and their relative velocity was
almost zero. Observe too that at this point, the likelihood according to the
passing and aborted passing situation HMMs starts to decrease rapidly, since
these two models do not expect both cars to drive at the same speed. As
the passing vehicle starts changing to the left lane, the HMM for the follow

situation stops providing an explanation for the observation sequence and,
accordingly, the likelihood starts to decrease rapidly until it becomes almost
zero. At this point the instance of the situation is not tracked anymore and is
removed from the active situation set. This happens since the follow situation
HMM does not expect the vehicle to speed up and change lanes.

The Bayes factor in favor of the passing situation model compared against
the follow situation model is depicted in Figure 3 (right). A positive Bayes
factor value indicates that there is evidence in favor of the passing situation
model. Observe that up to the point where the follow situation is actually
instantiated the Bayes factor keeps increasing rapidly. At the time where both
cars are equally fast, the evidence in favor of the passing situation model
starts decreasing until it becomes negative. At this point there is evidence
against the passing situation model, that is, there is evidence in favor of
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the follow situation. Finally, as the passing vehicle starts changing to the
left lane the evidence in favor of the passing situation model starts increasing
again. Figure 3 (right) shows how Bayes factors can be used to make decisions
between competing situation models.

6 Conclusions and Further Work

We presented a general framework for modeling and recognizing situations.
Our approach uses a relational description of the state space and hidden
Markov models to represent situations. An algorithm was presented to recog-
nize and track situations in an online fashion. The Bayes factor was proposed
as evaluation criterion between two competing models. Using our framework,
many meaningful situations can be modeled. Experiments demonstrate that
our framework is capable of tracking multiple situation hypotheses in a dy-
namic multi-agent environment.
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