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Abstract— One of the key tasks during the realization of
probabilistic approaches to localization is the design of a proper o S
sensor model, that calculates the likelihood of a measurement
given the current pose of the vehicle and the map of the
environment. In the past, range sensors have become popu-
lar for mobile robot localization since they directly measure
distance. However, in situations in which the robot operates
close to edges of obstacles or in highly cluttered environments,
small changes in the pose of the robot can lead to large
variations in the acquired range scans. If the sensor model used
does not appropriately characterize the resulting fluctuations,
the performance of probabilistic approaches may substantially
degrade. A common solution is to artificially smooth the
likelihood function or to only integrate a small fraction of the
measurements. In this paper we present a more fundamental
and robust approach which uses mixtures of Gaussians to
model the likelihood function for single range measurements. Fig. 1. In mobile robot localization, small variations in thebot pose
In practical experiments we compare our approach to previous Can cause large changes of the range measurements. This desmtit
methods and demonstrate that it yields a substantially increase Medal distributions of beam-lengths in the local neighbochoeé a pose
in robustness. hypothesis.

?y T

are sensitive to discontinuities in the map. For example,
when the environment is cluttered, slight changes in the
The ability to robustly localize a mobile robot given amapmap might lead to huge differences in the length of the
of its environment belongs to the fundamental problems igxpected measurement at that particular location. Thik wil
mobile robotics. One of the key challenges in this conteead to extremely small likelihoods of the measurement
is to design a likelihood function or observation modebnd then in turn might result in a divergence of the filter.
p(z | ,m) which specifies how to compute the likelihoodTo cope with such situations, likelihood fields have been
of an observation or measurementgiven the robot is at proposed [17]. These models provide multi-modal likelitioo
posex in a given mapm. For probabilistic approaches functions to better deal with clutter in the environment but
like Monte Carlo localization (MCL) the proper design ofignore the information along the individual beam of a range
the likelihood function is essential. For example, too -Optimeasurement. Therefore, likelihood fields are less effecti
m|Stlca”y SpeCifiEd sensor models mlght make the VehiClm situations in which the robot has to perform a g|0ba|
overly confident in its position, might cause a depletion Ofgcalization.
the correct particles, and finally might lead to a divergesice  |n this paper, we present a novel sensor model that applies
the filter. On the other hand, too conservative models mighixtures of Gaussians to better represent the likelihood
lead to a high uncertainty or even prevent the robot froMunction at each individual place. The key idea of our
Iocalizing itself as the sensor information cannot compéns approach is to simulate a series of range measurements in
for the uncertainty introduced by the motion of the vehiclethe |ocal neighborhood of each particular location and to ap
In the past, sophisticated sensor models have been gfoximate the likelihood function by a mixture of Gaussians
veloped for probabilistic approaches to robot localizatio ysing the Expectation Maximization (EM) algorithm. The
Some of them take into account various aspects such ggvantage of this approach is that the resulting likelihood
objects not contained in the map or cross-talk. Whereggnction is location-dependent and correctly captures the
such approaches have been proven to be extremely robuffects of clutter and discontinuities on the measurements
in real-world applications, they do not appropriately takexns a result, the localization process becomes more robust.
into account potential effects not stemming from the mean practical experiments carried out with data obtainedhit
surement process itself but caused by the fact that the masal robot, we demonstrate that our new model substantially
is only an approximation of the real world or that not alloutperforms existing sensor models.
objects can be appropriately modeled, for example, due This paper is organized as follows. After discussing relate
to discretization errors. Additionally, such sensor dee'W()rk in the next section, we br|ef|y describe Monte Carlo
) _ ) localization in Section 1l and the principle of likelihood
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Science, Georges-Koehler-Allee 79, 79110 Freiburg, Geyman models in Section IV. In Section V, we introduce our novel
E-mail: {pfaff, plagem, burgard @ informatik.uni-freiburg.de likelihood model based on mixtures of Gaussians and finally,

I. INTRODUCTION



in Section VI, we present experimental results illustrgtinis to maintain a probability density(x; | z1.¢, wo.1—1) Of
that our sensor model outperforms other popular likelihoothe locationz; of the robot at time given all observations
models. z1, up to timet and all control inputsug.;_; up to time

t — 1. This probability is calculated recursively as
Il. RELATED WORK

In the literature, various techniques for computing thedik (@1 | 210 uou-1) =

lihood function for probabilistic localization methods ttvi a-p(z | gct)/p(wt | w1, o) - plai_q) dee_q (1)
proximity sensors have been introduced [2], [8], [17], [18]

These approaches either directly approximate the physiddere, o is a normalizing constant ensuring thatr; |
characteristics of the sensor or try to provide smooth likez;.;,up.t—1) sums up to one over alle;. The terms
lihood models to increase the robustness of the localizatido be described in Eqn. (1) are thgrediction model
process. In the past, is has been observed that the likelihop(x; | w:—1,x:—1) and thesensor modep(z; | =;) respec-
function can have a major influence on the performancévely.

of Monte Carlo Localization. Pitt and Shepard [14], for For the implementation of the described filtering scheme,
example, as well as Thruat al. [19] observed that more we use a sample-based approach which is commonly known
particles are required if the likelihood function is peakkd asMonte Carlo localization (MCL)3]. Monte Carlo local-

the limit, i.e., for a perfect sensor, the number of requiretzation is a variant of particle filtering [5] where each pele
particles becomes infinite. To deal with this problem, Lensecorresponds to a possible robot pose and has an assigned
and Veloso [10] and Thruet al. [19] introduced techniques weightw;. The belief updaterom Eqn. (1) is performed by

to directly sample from the observation model and in thishe following two alternating steps:

way ensure that there is a critical mass of samples at1) In theprediction step, we draw for each particle with
the important parts of the state space. Unfortunately, this  weight w; a new particle according ta; and to the
approach depends on the ability to sample from observa-  prediction modeb(z; | w1,z 1).

tions, which can often only be done in an approximate, 2) In the correction step, a new observatior; is inte-
inaccurate way. Another way of dealing with the limitations grated. This is done by assigning a new weightto

of the sample-based representation is to dynamically adapt  each particle according to the sensor madlel; | ).

the number of particles, as done in KLD sampling [7]. The likelihood modep(z | #) plays a crucial role in the
However, for highly accurate sensors, even such an adaptiygrrection step of the particle filter and its proper design
technique might require a huge number of samples in ordgy essential for the robustness of the filter. In the follayvin

to achieve a sufficiently high particle density during globasection we will describe typical likelihood models for rang
localization. Alternatively, one can artificially inflatehé  sensors. Afterwards, we will present our model that uses

measurement uncertainty to achieve a regularization of thgixtures of Gaussians to represent multi-modalities in the
likelihood function, e.g., see th&caling Seriesapproach |ikelihood function.

presented by Petrovskayet al. [11]. Also Kalman filters
have limitations in highly non-linear systems and in the IV. LIKELIHOOD MODELS
case of multi-modal likelihood functions. To overcome this A laser scar, is a vector of beams; = (2, .. .7z;’V)T,
problem several researchers used Gaussian mixture mod@&ich have fixed orientations relative to the sen&sam-
Duckett and Nehmzow [6], for example, introduced a multibased sensor models (see Fost al. [8] for a typical
modal generalization of the Kalman filter based on mixturesxample) consider each valug of the measurement vector
of Gaussians. Recently, Upcradt al. [20] introduced a fast z as a separate range measurement and represent its one-
re-parameterization of Gaussian mixture models to reptesedimensional distribution by a parametric function depegdi
the probability distribution. Takamas al. [9] use Gaussian on the expected distance in the respective beam direction.
mixture models to fuse odometry and sonar and to redu@uich models are closely linked to the geometry and the
the localization error in the case of noisy sensors. physics involved in the measurement process. They are
The focus of this paper is to model possible multi-sometimes also calledy castmodels because they rely on
modalities in likelihood functions for laser range measureray casting operations within the map of the environment,
ments using Gaussian mixture models. Our approach ime-g., an occupancy grid map, to calculate the expected
proves the robustness of probabilistic localization apphes beam lengths. Another popular measurement model for range
like MCL especially in situations in which small changesfinder sensors are the so-callkkelihood fields(AKA end
of the robot’s pose can have drastic effects on the rangmint mode) [17]. This correlation-based method measures
measurements. the correlation between the measurement and the map. Here,
the likelihood of a range measurement is a function of the
distance of the respective end point of the beam to the dloses
obstacle in the environment. This model lacks physical
Throughout this paper, we consider the problem of estexplanation as it can basically “see through walls”, but in
mating the poser = (z,y, ) of a robot relative to a given the case of position tracking it is efficient and works well
mapm using a particle filter. The key idea of this approachin practice. The reader may notice that likelihood fields are

IIl. M ONTE CARLO LOCALIZATION USING RANGE
SENSORS



less effective in situations in which the robot has to penfor
global localization. In all above mentioned approaches, th
individual beams are treated independently. Due to this, th
likelihood p(z; | x:, m) of the scanz; given the positione;
and the mapm can be calculated by

N
p(Zt | :ct,m) = HP(Zz | mtvm)' (2)
i=1 Starting
. . . . Position
Given that laser range finders typically provide between i

181 and 540 measurements with a resolution frair25 to

1.0 degrees, the independence assumption leads to hig”ﬂg 2. Traditional sensor models which ignore the multi-mitdah
the distribution of beam lengths become inaccurate in theimity of

peaked ”k‘_':‘”hOOds- In practice, this prOb!em is d?alt VIZl}h doors, corners, and clutter. In this diagram, dark parts ef ttajectory
sub-sampling of measurements [18], by introducing minimahark locations, where the true pose receives a high liketihosative

likelihoods for beams, or by other means of regularizatioff neighboring ones, while orange/brightly colored paithlight the less
of the resulting likelihoods, see e.g.Arulampalatal. [1]. accurately modeled locations.
In our previous work [12], we addressed this problem byrhe distribution of measured distances that arises when the
adapting the “peakedness” of the beam model using learnesbot pose is varied locally as described in the previous
heuristics. In other previous work [13], [15], we introddce section is only unimodal in a perfectly convex world. In
scan-basedikelihood models. These models allow to di-general, however, there can be large jumps in perceivedrang
rectly calculate the likelihood of entire scans rather thameasurements when the sensor pose is changed only slightly.
individual beams only. The common idea of these twdypically, such multi-modalities arise in the proximity of
approaches is that they are location-dependent and dkplicidoorways, corners, and cluttered areas of the environment.
take the approximation error coming from the sample-based In contrast to former approaches [8], [12], [13], [15] which
representation into account. More precisely, they esémamodeled the likelihood functions as unimodal distribusion
p(z | ) based on the local environmet{(x) of a posex, for single beams or entire scans we now consider to model
each beam independently as a mixture &f Gaussian
p(z|®) = /~€u( )p(z | @) p(z) da . (3) distributions [16]. In such a mixture model, the likelihood

o . ~of the i-th beam ofz; becomes
This is based on the observation that laser range finders

are extremely accurate sensors with a low level of mea- . K . .

surement noise. Thus, if one learpéz | x) directly for plei | z,m) = Zp(z,? |3) P5), )
exact sensor poses, e.g., with a mobile robot that is =t
not moved during training, one gets an extremely peakeaghere
model withp(z | = + 6) < p(z | =) already for small i N2
pose perturbation®. This peakedness, in turn, leads to p(zj) = . .e p<_ <fo fléﬂ') ) (5)
problems when only a finite number of pose hypotheses can \/ﬂo; 20

J
be evaluated, as it is the case, for example, with partic\g]ere the individual mixture components are indexed;b
filters where the number of particles is limited. The mode ! P DY

. . . . . —and their relative mixing weights are denoted — with a slight
described in Eqn. 3, however, is able to explicitly con:yderbuse of notation for better readability — B;) —: aj-. To

the sampling density by adjusting the spatial extent of thd ) _ o K .
local neighborhoods/(z) accordingly. The hard task is determine these weights; with 35—, of = 1,0 < aj <1,
indeed to estimate and represent the distributions of rangé Well as the parameters; and o of the individual
scansp(z | =) from a given number of training scans fromGaussians, we cluster the simulated ranggsusing the
U(x), which are typically simulated using the map of theexpectatlon—mammlzatlo.n (EM) .algorlthm [4]. Concretely
environmentn. Our previous approaches [13], [15] deal withfor €ach pose hypothesis;, we simulateL. complete range

the high dimensionality of this distribution by modelingais  S¢ansD = {d.,...,d.} at locations drawn uniformly from

an N-dimensional Gaussian. While this leads to an increaséé(Z:) using the given mapn of the environment. The
performance compared to approaches that only consider thigulation of the laser range scabs= {d;, ... d.} takes
current pose of the particle, it does not capture the multinto account the geometry and the physics involved in the
modality of the likelihood function. In the following seoti, Measurement process. It relies on ray casting operations
we describe how to learn a Gaussian mixture model for théithin an occupancy grid map to calculate the expected beam

distribution obtained by Eqn. 3 to improve the robustness dgngths. The set of ranges simulated in direction of ihe

algorithm iteratively assigns these distances to the mextu

V. PLACE-DEPENDENTGAUSSIAN MIXTURE MODELS  components and optimizes their parameters in the following
Figure 1 illustrates the drastic effects that small changesanner. Consider tha®’ denotes the current estimate of
of the robot’s pose can have on the measured range scaparameter% , a;:, and a;i. In the E-Step, we calculate the
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Heinz-Nixdorf-Forum in Paderborn. The experiment shows i standard
ray cast model IB) performs sub-optimally in regions close to corners
L _ ) _ and that it produces highly fluctuating likelihood estimat®sir Gaussian
lel P(j | d;, 0’)(d; — MZ‘) mixture model GM) outperforms the other sensor models and produces

7 — 1 (11)  much less variance in the evaluated likelihoods.
> Pl dj, ') A Likelihood Evaluati

We now setd’ «— 6" and iterate this procedure until the elinood Evallation
amount of improvement per iteration falls below a specified In the first set of experiments we evaluated the likelihood
threshold. of the true position of the robot in different data sets. We
therefore compared our Gaussian mixture mod&M to

VI. EXPERIMENTS other likelihood models which are also based on ray casting

The approach described above has been implementggerations I, EC, and DC). This set of experiments is
and tested on data obtained with a mobile robot and hyesigned to investigate the case that the robot is not able to
simulation. To evaluate our approach we performed sevenalkalize itself at different locations with the same rolmgss.
experiments. We first show that the pose uncertainty of theigures 2 and 3 show two experiments using maps built
robot can result in serious problems during a localizatiofrom a real data. Figure 5 shows an artificial data set with
process, especially when the multi-modality of the beamstrong discontinuities in the right part of the map. During
is not considered. Then we analyze our Gaussian mixtutBese experiments, we simulated laser range scans with an
model in a global localization task in which in mu|ti-m0da|0pening angle o180° on a simulated robot trajectory. Then
situations frequently occur and compare it to alternativgve calculated for different sensor modeB®\, IB, EC, and
models that do not take into account the multi-modality. I'DC) the likelihood of the simulated range scan given the
particular, we compared the performance of the followingrue position of the robot. Figure 2, 3, and 5 depict the

S PG| die)

sensor models: trajectories of the robot. The likelihoods of the scans at th
GM: Our place-dependent beam-based Gaussian mixturee robot poses are represented by the different coloey (gr
sensor model as detailed in Section V. scale values) between orange (light grey) and black. While

IB: The standard beam-based sensor model that asange (light grey) marks regions where the scans at the true
sumes independent beams with an additive whiteobot location are assigned low likelihoods, high likelbdo
noise component. areas are printed in black. The figures show that whenever

EP: The end-point sensor model [17] that calculates ththe robot traverses regions close to obstacles, doorways, o
likelihood of a range measurement as a function oflutter the likelihood of the true position decreases. la th
the distance of the end point of the respective beamase of global localization using a particle filter this lgad
to the closest obstacle in the environment. to serious problems because the particles at these pasition

EC. The scan-based place-dependent model withave a high risk of being depleted. Figure 4 shows the mean
learned covariance matrix as detailed in our prelikelihoods for 31, 61, and 181 laser beams and different
vious work [13]. sensor models. We evaluated the likelihood at 847 robot

DC: The same model &C with cross-correlation com- poses in our office environment depicted in Figure 2 and
ponents ignored, which means that only the diagoaveraged over 50 runs. As can be seen from the figures, our
nal entries of the covariance matrix are learned. Gaussian mixture modeGM) yields much less variance in
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Fig. 4. Evaluated likelihood for 31, 61, and 181 laser beamm(fleft to right) and different sensor models at 847 robotegds our office environment
depicted in Figure 2. The figures show that the likelihood of Gaussian mixture modeGM) yields much less variance in the estimated likelihood of
the true pose of the robot than the other sensor models. Thermigst diagram depicts the standard deviations of the diftesensor models for 31, 61,
and 181 laser beams.

Starting of measurements into account achieves more robust and
Position accurate localization than the other sensor models. The lef
- o =y part of Figure 6 shows the six positions in a real environment

where we obtained the highest probability that the global

localization fails. These probabilities have been deteedi

by random restarts of the localization procedure during 50

complete runs on the data set. The marked positions directly
correspond to orange (light grey) marked regions in Figure 2
where the likelihoods of the true poses are extremely low

due to the multi-modality of the measurements. To evaluate

250 the properties of the different sensor models we performed
EC ¥~ 20 global localization runs at each position and compared

200y oM —=— | the average success rates. In these experiments, we assumed

150 | | that the localization was achieved when the mean of the

particles differed by at most 50 cm from the true location

average truepose log likelihood

std deviation of true pose log likelihood

e e *71  of the robot. The central diagram of Figure 6 shows the
e ] number of successful localizations after ten integratiohs
o j 61 measurements of each scan for different models. The
0 50 100 150 200 250 300 %20 e om0 €xperiments show that our Gaussian mixture mo@vi(
fteration step number of beams allows us to more robustly localize the robot in situations

Fig. 5. Experiment carried out to evaluate the likelihood 483imulated 1N Which the other models frequently fail. It also illustat
robot poses using an artificial data set including strongatisinuities like  that the endpoint modeEP) which shows good performance
corners and doorways. The left diagram depicts the aver&géhbods oy position tracking in cluttered environments is not atdle
for 61 laser beams and different sensor models. The figures 8raivihe | h lobal | lizati K in th ked . i
likelihood of our Gaussian mixture modeébi) yields much less variance solve t.e globa oca.'_zat'on task in the marked regions o
in the likelihood of the true pose of the robot than the otieerser models. our environment. Additionally, we analyzed the robustrafss
The right diagram shows the standard deviations of the rdiffesensor  the different sensor models with respect to the computation
models for 31, 61, and 181 laser beams. . . . . . .

time (see the right diagram of Figure 6). The x-axis of this
the estimated likelihood of the true pose compared to thdiagram represents the product of the number of particles
other sensor models. The rightmost diagram shows the starsed and the average computation time per particle for the
dard deviation of the different sensor models for 31, 61, andifferent sensor models. As can be seen from this diagram,
181 laser beams. Figure 3 shows the same experiment usipigy Gaussian mixture modeGM) outperforms the other
data collected in the Heinz-Nixdorf-Forum in Paderborn fomodels also with respect to the computational complexity.
61 laser beams. The experiment shows that the standard iéereas the time per iteration is higher compared to the
cast model IB) performs sub-optimally in regions close toother approaches, it requires considerably less partiotes
corners and that it produces highly fluctuating likelihoodsuccessful localization run and thus achieves a higherstobu
estimates. Our Gaussian mixture modéM) outperforms ness relative to the required computational resources |Ste a
the other sensor models and has much lower variance ¢arried out experiments, in which we analyzed the accuracy
the estimated likelihoods. In a final experiment documenteef our model GM) when the system is tracking the pose of
in Figure 5 we observed a similar behavior of the differenthe vehicle. We compared our sensor model to various other
sensor models in an artificial data set which produces stromgodels and evaluated the average localization error of the
discontinuities because of corners and doorways. individual particles. The right diagram of Figure 6 depitts
N average localization error for a position tracking experin
B. Localization .

with 61 laser beams. It can be seen that the two beam-based

The second set of experiments is designed to illustrate thaly cast sensor modeli8) and OC) diverge while our beam
our new sensor mode5M) which takes the multi-modality
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The six positions with the highest probability thae tglobal localization in the office environment fails (leffjhe positions marked in this
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the multi-modality of the measurements. The central diagranwshbe number of successful localizations after ten intégratof 61 measurements at
these locations. The right diagram also depicts the suae¢ssbut now plotted over the product of the correspondingbrers of particles and average
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Fig. 7.  Average localization error in meters for a positioacking
experiment with 61 laser beams. (7]
based Gaussian mixture modeNl) performs as well as the [8]

endpoint model EP) and the scan-based place-dependent
model EC). [l

VII. CONCLUSIONS

In this paper, we presented a novel beam-based senst#
model for probabilistic localization techniques that ésitlly
takes multi-modalities in the distribution of beam lengtits
account. In contrast to other location-independent mouleis
approach adapts the likelihood evaluation according tdothe 1
cal environment of each evaluated pose hypothesis to achiev
a natural and accurate form of regularization. By learning
a Gaussian mixture model for the resulting distribution of; 3
possible range measurements using the EM algorithm, our
approach is able to outperform the state-of-the-art aphes [14]
in terms of localization accuracy and robustness alsoivelat
to the required computational resources. [15]
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