Efficient Failure Detection for Mobile Robots Using Mixed-Abstraction Particle Filters

Christian Plagemann, Cyrill Stachniss, and Wolfram Burgard

Overview

- A mobile robot should
 - detect failures quickly,
 - be able to infer the cause of a failure, and
 - be efficient in the failure-free case.
- We extend the Monte Carlo Localization scheme to simultaneously track multiple system models. Samples are distributed adaptively to the most appropriate models.

Mixed Abstraction Particle Filtering

- We use multiple system models simultaneously, e.g.
 - Standard Model

- Odometry-based motion model
- Cannot handle failures
- Is efficient in the failure-free case

- For the state space $\{x, y, \theta, p_l, p_r\}$ which includes the tire pressures $\{p_l, p_r\}$, the standard model would for example assume that these are equal and constant.
- The models are organized in a model abstraction hierarchy that uses the explicit model assumptions
 - Edges: assumptions
 - Nodes: models

 p_l

More efficient

- Includes the motor commands
- Can handle certain failures, e.g.
 - Collisions
- The filter iteratively validates the model assumptions

- **Deflating tires**
- Is substantially more complex to compute

- The different models are related by considering the assumptions made about the state space.
- and samples to the most efficient model which assumptions receive enough relative evidence

Experiments

Combining the standard model with a dynamic model for detecting collisions and one for deflating tires.

Analyzing the gain in efficiency

Standard model (200 particles)	5.83 ms	\times
Dynamic model (300 particles)	10.10 ms	\checkmark
Mixed Abstraction (Standard: 20, Dyn.:	300) 3.42 ms	\checkmark

Conclusions

- The proposed system is able to combine multiple system models.
- Computational resources are distributed adaptively by verifying explicit model assumptions.
- Usefulness has been demonstrated in several failure detection settings.

