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Abstract

Despite their successes, what makes kernel
methods difficult to use in many large scale
problems is the fact that computing the de-
cision function is typically expensive, espe-
cially at prediction time. In this paper, we
overcome this difficulty by proposing Fast-
food, an approximation that accelerates such
computation significantly. Key to Fastfood
is the observation that Hadamard matri-
ces when combined with diagonal Gaussian
matrices exhibit properties similar to dense
Gaussian random matrices. Yet unlike the
latter, Hadamard and diagonal matrices are
inexpensive to multiply and store. These
two matrices can be used in lieu of Gaussian
matrices in Random Kitchen Sinks (Rahimi
& Recht, 2007) and thereby speeding up
the computation for a large range of ker-
nel functions. Specifically, Fastfood requires
O(n log d) time and O(n) storage to compute
n non-linear basis functions in d dimensions,
a significant improvement from O(nd) com-
putation and storage, without sacrificing ac-
curacy. We prove that the approximation is
unbiased and has low variance. Extensive ex-
periments show that we achieve similar accu-
racy to full kernel expansions and Random
Kitchen Sinks while being 100x faster and us-
ing 1000x less memory. These improvements,
especially in terms of memory usage, make
kernel methods more practical for applica-
tions that have large training sets and/or re-
quire real-time prediction.

1. Introduction

Kernel methods are successful techniques for solving
many problems in machine learning, ranging from clas-
sification and regression to sequence annotation and
feature extraction (Boser et al., 1992; Cortes & Vap-
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nik, 1995; Vapnik et al., 1997; Taskar et al., 2004;
Schölkopf et al., 1998). At their heart lies the idea that
inner products in high-dimensional feature spaces can
be computed in an implicit form via a kernel function
k:

k(x, x′) = 〈φ(x), φ(x′)〉 . (1)

Here φ : X → F maps elements of the observation
space X into a high-dimensional feature space F . Key
to kernel methods is that as long as kernel algorithms
have access to k, we do not need to represent φ(x) ex-
plicitly. Most often, that means although φ(x) can be
high-dimensional or even infinite-dimensional, their in-
ner products, can be evaluated in an inexpensive man-
ner by k. This idea is known as the “kernel trick.”

More concretely, to evaluate the decision function f(x)
on an example x, one typically employs the kernel trick
as follows

f(x) = 〈w, φ(x)〉 =

〈
N∑
i=1

αiφ(xi), φ(x)

〉
=

N∑
i=1

αik(xi, x)

This has been viewed as a strength of kernel methods,
especially in the days that datasets consisted of ten
thousands of examples. This is because the Represen-
ter Theorem (Kimeldorf & Wahba, 1970) states that
such a function expansion in terms of finitely many
coefficients must exist under fairly benign conditions
even whenever the space is infinite dimensional. Hence
we can effectively perform optimization in infinite di-
mensional spaces.

Unfortunately, on large amounts of data, this expan-
sion turns into a significant limitation for computa-
tional efficiency. For instance, (Steinwart & Christ-
mann, 2008) show that the number of nonzero αi (i.e.,
N , also known as the number of “support vectors”) in
many estimation problems can grow linearly in the size
of the training set. As a consequence, as the dataset
grows, the expense of evaluating f also grows. This
property makes kernel methods expensive in many
large scale problems.

Random Kitchen Sinks (Rahimi & Recht, 2007;
2008)1, the algorithm that our algorithm is based on,

1(Rahimi & Recht, 2007) introduced the method, and
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approximates the function f by means of multiplying
the input with a Gaussian random matrix, followed
by the application of a nonlinearity. If the expansion
dimension is n and the input dimension is d (i.e., the
Gaussian matrix is n× d), it requires O(nd) time and
memory to evaluate the decision function f . For large
problems with sample size m � n, this is typically
much faster than the aforementioned “kernel trick” be-
cause the computation is independent of the size of the
training set. Experiments also show that this approxi-
mation method achieves accuracy comparable to RBF
kernels while offering significant speedup.

Our proposed approach, Fastfood, accelerates Random
Kitchen Sinks from O(nd) to O(n log d) time. The
speedup is most significant when the input dimen-
sion d is larger than 1000, which is typical in most
applications. For instance, a tiny 32x32x3 image in
the CIFAR-10 (Krizhevsky, 2009) already has 3072 di-
mensions (and non-linear function classes have shown
to work well for MNIST (Schölkopf & Smola, 2002)
and CIFAR-10). Our approach relies on the fact that
Hadamard matrices, when combined with Gaussian
scaling matrices, behave very much like Gaussian ran-
dom matrices. That means these two matrices can be
used in place of Gaussian matrices in Random Kitchen
Sinks and thereby speeding up the computation for a
large range of kernel functions. The computational
gain is achieved because unlike Gaussian random ma-
trices, Hadamard matrices and scaling matrices are
inexpensive to multiply and store.

We prove that the Fastfood approximation is unbi-
ased, has low variance, and concentrates almost at
the same rate as Random Kitchen Sinks. Moreover,
extensive experiments with a wide range of datasets
show that Fastfood achieves similar accuracy to full
kernel expansions and Random Kitchen Sinks while
being 100x faster with 1000x less memory. These
improvements, especially in terms of memory usage,
make it possible to use kernel methods even for em-
bedded applications. Our experiments also demon-
strate that Fastfood, thanks to its speedup in train-
ing, achieves state-of-the-art accuracy on the CIFAR-
10 dataset (Krizhevsky, 2009) among permutation-
invariant methods.

Other related work Speeding up kernel methods
has been a research focus for many years. Early work
compresses function expansions after the problem was
solved (Burges, 1996) by means of reduced-set expan-
sions. Subsequent work aimed to reduce memory foot-
print and complexity by finding subspaces to expand
functions (Smola & Schölkopf, 2000; Fine & Schein-
berg, 2001; Williams & Seeger, 2001). They typi-
cally require O(n3 + mnd) steps to process m obser-

(Rahimi & Recht, 2008) generalized it further. We refer
to it with the title of the latter instead of the ambiguous
phrase “random features” to better differentiate from our
own.

vations and to expand d dimensional data into an n-
dimensional function space. Moreover, they require
O(n2) storage at least at preprocessing time to obtain
suitable basis functions. Despite these efforts, these
costs are still expensive for practical applications.

Along the lines of Rahimi & Recht (2007; 2008)’s work,
fast multipole expansions (Lee & Gray, 2009; Gray &
Moore, 2003) offer another interesting avenue for effi-
cient function expansions. While this idea is attrac-
tive when the dimensionality of the input dimension d
is small, they become computationally intractable for
large d’s due to the curse of dimensionality in terms of
partitioning.

2. Random Kitchen Sinks

We start by reviewing some basic tools from kernel
methods (Schölkopf & Smola, 2002) and then analyze
key ideas behind Random Kitchen Sinks.

2.1. Mercer’s Theorem and Expansions

At the heart of kernel methods is the theorem of (Mer-
cer, 1909) which guarantees that kernels can be ex-
pressed as an inner product in some Hilbert space.

Theorem 1 (Mercer) Any kernel k : X × X → R
satisfying

∫
k(x, x′)f(x)f(x′)dxdx′ ≥ 0 for all L2(X )

measurable functions f can be expanded into

k(x, x′) =
∑
j

λjφj(x)φj(x
′) (2)

Here λj > 0 and the φj are orthonormal on L2(X ).

The key idea of (Rahimi & Recht, 2007; 2008) is to
use sampling to approximate the sum in (2). In other
words, they draw2

λi ∼ p(λ) where p(λi) ∝ λi (3)

and k(x, x′) ≈
∑
j λj

n

n∑
i=1

φλi(x)φλi(x
′) (4)

Note that the basic connection between random basis
functions was well established, e.g., by Neal (1994) in
proving that the Gaussian Process is a limit of an in-
finite number of basis functions. The expansion (3) is
possible whenever the following conditions hold:

1. An inner product expansion of the form (2) is
known for a given kernel k.

2. The basis functions φj are sufficiently inexpensive
to compute.

3. The sum
∑
j λj < ∞ converges, i.e., k corre-

sponds to a trace class operator (Kreyszig, 1989).

2The normalization arises from the fact that it is an
n-sample from the distribution over basis functions.
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Although condition 2 is typically difficult to achieve,
there exist special classes of expansions that are com-
putationally attractive. Specifically, whenever the ker-
nels are invariant under an action of a symmetry
group, we can use the eigenfunctions of its representa-
tion to diagonalize the kernel.

For instance, for the translation group the Fourier
basis diagonalizes its action because translations can
be represented by multiplications in Fourier space.
Likewise, the rotation group SO(n) leads to spheri-
cal harmonics as the matching representation. For the
symmetric group (i.e., permutations) we obtain corre-
sponding invariants. In particular, a major focus of
Random Kitchen Sinks is the class of translation in-
variant kernels that can be written as a function of
x− x′ and have the properties

k(x, x′) = k(x− x′, 0).

Here the eigenfunctions are given by the Fourier basis

k(x, x′) =

∫
z

φz(x)φz(x
′)λ(z) and φz(x) = ei〈z,x〉.

(5)

Here λ(z) ≥ 0 is a kernel-specific weight that quantifies
how much high frequency components are penalized.
By construction the function λ(z) is quite easily ob-
tained by applying the Fourier transform to k(x, 0) —
in this case the above expansion is simply the inverse
Fourier transform:

λ(z) = (2π)−d
∫
ei〈x,z〉k(x, 0)dx. (6)

This technique allows us to obtain explicit Fourier ex-
pansions for a wide class of kernel functions (Gaus-
sian RBF, Laplace, Matern, etc.). For instance, for
Gaussian RBF kernel it is a Gaussian with the in-
verse covariance structure. For the Laplace kernel it
yields the damped harmonic oscillator spectrum and
for the Matern kernel, i.e., Bessel functions, this yields
the convolutions of the unit ball (Schölkopf & Smola,
2002).

2.2. Random Kitchen Sinks for Gaussians

Rahimi & Recht (2008) use this property of λ(z) to
generate approximations to the Gaussian RBF kernel,

k(x, x′) = exp(−‖x− x′‖2 /(2σ2)), by drawing values
zi from a normal distribution:

input Scale σ2, n, d
Sample entries in Z ∈ Rn×d i.i.d. from N (0, σ−2).
for all x do

Use (6) and compute empirical feature map

φj(x) =
1√
n

exp(i[Zx]j)

end for

As derived above, the associated feature map con-
verges in expectation to the Gaussian RBF kernel.

In fact, convergence occurs with high probability and
at the rate of independent empirical averages (Rahimi
& Recht, 2007; 2008). This allows one to use primal
space methods for training, and thus prevents the cost
of computing decision function from growing as the
dataset grows.

This approach is still limited by the fact that we need
to store Z and, more importantly, we need to compute
Zx for each x. That is, each observation costs O(nd)
operations and we need O(nd) storage. In the next
section, we propose Fastfood that improves Random
Kitchen Sinks further by approximating the random
matrix using a set of simple transforms.

3. Fastfood

Our main contribution is to show strategies for accel-
erating Zx from O(nd) to O(n log d) time and how
this can be used for constructing kernels using arbi-
trary spectral distributions λ(z) provided that they
are spherically invariant, i.e., they must only depend
on ‖z‖2. In a nutshell, the approach relies on the fact
that Hadamard matrices, when combined with Gaus-
sian scaling matrices, behave very much like Gaus-
sian random matrices. The adaptation to distributions
other than Gaussians then occurs via rescaling by coef-
ficients drawn from the equivalent radial distribution.

3.1. Gaussian RBF Kernels

We begin with the Gaussian RBF case and extend
it to more general spectral distributions subsequently.
Without loss of generality assume that d = 2l for some
l ∈ N.3 For the moment assume that d = n. The ma-
trices that we consider instead of Z are parameterized
by a product of diagonal and simple matrices:

V =
1

σ
√
d
SHGΠHB. (7)

Here Π ∈ {0, 1}d×d is a permutation matrix and H is
the Walsh-Hadamard matrix.4 S,G and B are all di-
agonal random matrices. More specifically, B has ran-
dom {±1} entries on its main diagonal, G has random
Gaussian entries, and S is a random scaling matrix. V
is then used to compute the feature map.

The coefficients for S,G,B are computed once and
stored. The Walsh-Hadamard matrix is given by

H2 :=

[
1 1
1 −1

]
and H2d :=

[
Hd Hd

Hd −Hd

]
.

3If this is not the case, we can trivially pad the vectors
with zeros until d = 2l holds.

4We conjecture that H can be replaced by any matrix
T ∈ Rd×d, such that T/

√
d is orthonormal, maxij |Tij | =

O(1), i.e. T is smooth, and Tx can be computed in
O(d log d) time. A natural candidate is the Discrete Co-
sine Transform (DCT); we defer its analysis to the journal
version of the paper.
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The fast Hadamard transform, a variant of the FFT,
allows us to compute Hdx in O(d log d) time.

When n > d, we replicate (7) for n/d indepen-
dent random matrices Vi and stack them via V T =
[V1, V2, . . . Vn/d]

T until we have enough dimensions.
The feature map for Fastfood is then defined as

φj(x) = n−
1
2 exp(i[V x]j). (8)

In the next section, we will prove that this feature map
approximates the RBF kernel. The rest of this section
will focus on its attractiveness in terms of computa-
tional efficiency.

Lemma 2 (Computational Efficiency) The fea-
tures of (8) can be computed at O(n log d) cost using
O(n) permanent storage for n ≥ d.

Proof Storing the matrices S,G,B costs 3n entries
and 3n operations for a multiplication. The permu-
tation matrix Π costs n entries and n operations.
The Hadamard matrix itself requires no storage since
it is only implicitly represented. Furthermore, the
fast Hadamard transforms costs O(n log d) operations
to carry out (we have O(d log d) per block and n/d
blocks). Computing the Fourier basis for n numbers
is an O(n) operation. Hence the total CPU budget is
O(n log d) and the storage is O(n).

Note that the construction of V is analogous to that
of (Dasgupta et al., 2011). We will use these results
in establishing a sufficiently high degree of decorrela-
tion between rows of V . Also note that multiplying
with a longer chain of Walsh-Hadamard matrices and
permutations would yield a distribution closer to in-
dependent Gaussians. However, as we shall see, two
matrices provide a sufficient amount of decorrelation.

3.2. Basic Properties

Now that we showed that the above operation is fast,
let us give some initial indication why it is also useful
and how the remaining matrices S,G,B,Π are defined.

Binary scaling matrix B: It is a diagonal matrix
with Bii ∈ {±1} drawn iid. The initial HBd−

1
2

acts as an isometry that makes the input dense
(Ailon & Chazelle, 2009).

Permutation Π: This ensures that the rows of the
two Walsh-Hadamard matrices are incoherent rel-
ative to each other. Π can be stored efficiently as a
lookup table at O(d) cost and it can be generated
by sorting random numbers.

Gaussian scaling matrix G: This is a diagonal ma-
trix whose elements Gii ∼ N (0, 1) are drawn iid
from a Gaussian. The next Walsh-Hadamard ma-
trices H will allow us to ’recycle’ n Gaussians to
make the resulting matrix closer to an iid Gaus-
sian. The goal of the preconditioning steps above

is to guarantee that no single Gii can influence
the output too much and hence provide near-
independence.

Scaling matrix S: Note that the length of all rows
of HGΠHB are constant as equation (11) shows
below. In the Gaussian case S ensures that the
length distribution of the row of V are indepen-
dent of each other. In the more general case, one
may also adjust the capacity of the function class
via a suitably chosen scaling matrix S. That is,
large values in Sii correspond to high complexity
basis functions whereas small Sii relate to simple
functions with low total variation. For the RBF
kernel we choose

Sii = si ‖G‖
− 1

2

Frob (9)

si ∼ (2π)−
d
2A−1

d−1r
d−1e−

r2

2 . (10)

Here the normalization constant Ad−1 denotes
the surface volume of the d-dimensional unit ball.
Thus si matches the radial part of a normal distri-
bution and we rescale it using the Frobenius norm
of G.

We now analyze the distribution of entries in V .

The rows of HGΠHB have the same length.
To compute their length we take

l2 :=
[
HGΠHB(HGΠHB)>

]
jj

(11)

=[HG2H]jjd =
∑
i

H2
ijG

2
iid = ‖G‖2Frob d

Rescaling with ‖G‖−
1
2

Frob d
− 1

2 yields length 1 rows.
Any given row of HGΠHB is iid Gaussian.

Each entry [HGΠHB]ij = BjjH
T
i GΠHj is

zero-mean Gaussian as it consists of a sum
of zero-mean independent Gaussian random
variables. Sign changes retain Gaussianity. Also
note that Var [HGΠHB]ij = d. B ensures that
different entries in [HGΠHB]i· have 0 correla-
tion. Hence they are iid Gaussian (checking first
and second order moments suffices).

The rows of SHGΠHB are Gaussian. Rescaling
the length of a Gaussian vector using (10) retains
Gaussianity. Hence the rows of SHGΠHB are
Gaussian (albeit not independent).

Lemma 3 The expected feature map recovers the
Gaussian RBF kernel, i.e.,

ES,G,B,Π

[
φ(x)

>
φ(x′)

]
= e−

‖x−x′‖2
2σ2 .

Moreover, the same holds for V ′ = 1
σ
√
d
HGΠHB.

Proof We already saw above that any given row
in V is a random Gaussian vector with distribution
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N (0, σ−2Id), hence we can directly appeal to the con-
struction of (Rahimi & Recht, 2008). This also holds
for V ′. The main difference being that the rows in V ′

are considerably more correlated.

3.3. Approximation Guarantees

In this section we prove that the approximation that
we incur relative to a Gaussian random matrix is mild.

3.3.1. Low Variance

Theorem 4 shows that when approximating the RBF
kernel with n features the variance of Fastfood (even
without the scaling matrix S) is at most the variance
of straightforward Gaussian features, the first term in
(12), plus O(1/n). In fact, we will see in experiments
that our approximation works as well as an exact ker-
nel expansion and Random Kitchen Sinks.

Since the kernel values are real numbers, let us con-
sider the real version of the complex feature map φ for
simplicity. Set yj = [V (x′ − x)]j and recall that

φj(x)φj(x
′) = n−1 exp(iyj) = n−1(cos(yj) + i sin(yj)).

Thus we can replace φ(x) ∈ Cn with φ′(x) ∈ R2n,
where φ′2j−1(x) = n−1/2 cos([V x]j) and φ′2j(x) =

n−1/2 sin([V x]j), see (Rahimi & Recht, 2007).

Theorem 4 Let C(α) = 6α4
[
e−α

2

+ α2

3

]
and v =

(x − x′)/σ. Then for the feature map φ′ : Rd → R2n

obtained by stacking n/d i.i.d. copies of matrix V ′ =
1

σ
√
d
HGΠHB we have that

Var
[
φ′(x)>φ′(x′)

]
≤

2
(

1− e−‖v‖2
)2

n
+
C(‖v‖)
n

.

(12)

Moreover, the same holds for V = 1
σ
√
d
SHGΠHB.

Proof φ′(x)>φ′(x′) is the average of n/d independent
estimates, each arising from 2d features. Hence it’s
sufficient to prove the claim for a single block, i.e.
when n = d. We show the latter for V ′ in Theorem 5
and omit the near identical argument for V .

Theorem 5 Let v = (x − x′)/σ and let ψj(v) =

cos(d−
1
2 [HGΠHBv]j) denote the estimate of the ker-

nel value that comes from the jth pair of random fea-
tures for each j ∈ {1 . . . d}. Then for each j we have

Var [ψj(v)] =
1

2

(
1− e−‖v‖

2
)2

, and (13)

Var

[
d∑
j=1

ψj(v)

]
≤ d

2

(
1− e−‖v‖

2
)2

+ dC(‖v‖) (14)

where C(α) = 6α4
[
e−α

2

+ α2

3

]
.

Proof Since Var(
∑
Xj) =

∑
j,t Cov(Xj , Xt) for

any random variable Xj , our goal is to compute
Cov(ψ(v), ψ(v)) = E

(
ψ(v)ψ(v)T

)
−E(ψ(v))E(ψ(v))T .

Let w = 1√
d
HBv, u = Πw, and z = HGu and hence

ψj(v) = cos(zj). Now condition on the value of u.

Then it follows that Cov(zj , zt|u) = ρjt(u) ‖v‖2, where
ρjt(u) ∈ [−1, 1] is the correlation of zj and zt.

To simplify the notation, in what follows we write ρ
instead of ρjt(u). Observe that the marginal distribu-

tion of each zj is N (0, ‖v‖2) as ‖u‖ = ‖v‖ and each
element of H is ±1. Thus the joint distribution of zj
and zt is a Gaussian with mean 0 and covariance

Cov [[zj , zt]|u] =

[
1 ρ
ρ 1

]
‖v‖2 = L · LT ,

L =
[

1 0

ρ
√

1− ρ2

]
‖v‖ is its Cholesky factor. Hence

Cov(ψj(v), ψt(v)|u) (15)

=Eg [cos([Lg]1) cos([Lg]2)]−Eg[cos(zj)]Eg[cos(zt)]

where g ∈ R2 is drawn from N (0,1). From the
trigonometric identity

cos(α) cos(β) =
1

2
[cos(α− β) + cos(α+ β)]

it follows that we can rewrite

Eg [cos([Lg]1) cos([Lg]2)] =
1

2
Eh [cos(a−h) + cos(a+h)]

=
1

2

[
e−

1
2a

2
− + e−

1
2a

2
+

]
h ∼ N (0, 1) and a2

± =
∥∥L>[1,±1]

∥∥2
= 2 ‖v‖2 (1 ± ρ).

That is, after applying the addition theorem we ex-
plicitly computed the now one-dimensional Gaussian
integrals.

Likewise, since by construction zj and zj have zero

mean and variance ‖v‖2 we have that

Eg[cos(zj)]Eg[cos(zt)] = Eh[cos(‖v‖h)]2 = e−‖v‖
2

Combining both terms we obtain that the covariance
can be written as

Cov[ψj(v), ψt(v)|u] = e−‖v‖
2
[
cosh[‖v‖2 ρ]− 1

]
(16)

To prove the first claim realize that here j = t and
correspondingly ρ = 1. Plugging this into the above
covariance expression and simplifying terms yields our
first claim (13).

To prove our second claim, observe that from the Tay-
lor series of cosh with remainder in Lagrange form, it
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follows that there exists η ∈ [−‖v‖2 |ρ|, ‖v‖2 |ρ|] such

cosh(‖v‖2 ρ) =1 +
1

2
‖v‖4 ρ2 +

1

6
sinh(η) ‖v‖6 ρ3

≤1 +
1

2
‖v‖4 ρ2 +

1

6
sinh(‖v‖2) ‖v‖6 ρ3

≤1 + ρ2 ‖v‖4B(‖v‖),

where B(‖v‖) = 1
2 + sinh(‖v‖2)‖v‖2

6 . From (16) we have

Cov[ψj(v), ψt(v)|u] ≤ ρ2 ‖v‖4B(‖v‖).

Note that we still conditioned on u. What remains
is to bound Eu[ρ2], which is small if E[‖u‖44] is
small. The latter is ensured by HB, which acts as
a randomized preconditioner. These calculations are
fairly standard and can be found in Appendix A.1 of
the supplementary material.

3.3.2. Concentration

The following theorem shows that given error proba-
bility δ, the approximation error of a d × d block of
Fastfood is at most O(

√
log(d/δ)) times larger than

the error of Random Kitchen Sinks. We believe that
this bound is not tight and could be further improved.
We defer analyzing the concentration of n > d stacked
Fastfood features to future work.

Theorem 6 For all x, x′ ∈ Rd let k̂(x, x′) =∑d
j=1 cos(d−

1
2 [HGΠHB(x−x′)/σ]j)/d denote our es-

timate of the RBF kernel k(x, x′) that arises from a
d× d block of Fastfood. Then we have that

P

[∣∣∣k̂(x, x′)− k(x, x′)
∣∣∣ ≥√ log(2/δ)

d
α

]
≤ 2δ

for all δ > 0 where α =
2 ‖x− x′‖

σ

√
log(2d/δ).

Theorem 6 demonstrates almost sub-Gaussian conver-
gence Fastfood kernel for a fixed pair of points x, x′.
A standard ε-net argument then shows uniform con-
vergence over any compact set of Rd with bounded
diameter (Rahimi & Recht, 2007)[Claim 1]. Also, the
small error of the approximate kernel does not signifi-
cantly perturb the solution returned by wide range of
learning algorithms (Rahimi & Recht, 2007)[Appendix
B] or affect their generalization error.

We refer the interested reader to Appendix A.2. in the
supplementary material for the proof of the theorem.
Our key tool is concentration of Lipschitz continuous
functions under the Gaussian measure (Ledoux, 1996).
We ensure that Fastfood construct has a small Lips-
chitz constant using Lemma 7.

Lemma 7 (Ailon & Chazelle, 2009) Let x ∈ Rd and
t > 0. Let H ∈ Rd×d and B ∈ Rd×d denote the
Hadamard and the binary random diagonal matrices
in our construct. Then for any δ > 0 we have that

P

[∥∥∥d− 1
2HBx

∥∥∥
∞
≥ ‖x‖2

√
log
(

2d
δ

)
2
d

]
≤ δ.

3.4. Changing the Spectrum

Changing the kernel from a Gaussian RBF to any other
radial basis function kernel is straightforward. After
all, HGΠHB provides almost spherically uniformly
distributed random vectors with common length.
Rescaling each direction of projection separately costs
only O(n) space and computation. Consequently we
are free to choose different coefficients Sii rather than
(9). Instead, we may use

Sii ∼ c−1rd−1A−1
d−1λ(r).

Here c is a normalization constant and λ(r) is the ra-
dial part of the spectral density function of the regu-
larization operator associated with the kernel.

A key advantage over a conventional kernel approach
is that we are not constrained by the requirement
that the spectral distributions (5) be analytically com-
putable. Even better, the spectra only need to be
computable by some procedure (rather than have a
closed-form representation).

For concreteness consider the Matern kernel. Its spec-
tral properties are discussed, e.g. in (Schölkopf &
Smola, 2002). In a nutshell, given data in Rd denote
by ν := d

2 a dimension calibration and let t ∈ N be a
fixed parameter, which is usually set experimentally.
Moreover, denote by Jν(r) the Bessel function of the
first kind of order ν. Then the kernel given by

k(x, x′) := ‖x− x′‖−tν J tν(‖x− x′‖) for t ∈ N

has as its associated Fourier transform

Fk(ω) =

t⊗
i=1

χSd [ω].

Here χSd is the characteristic function on the unit
ball in Rd and

⊗
denotes convolution. In words, the

Fourier transform of k is the t-fold convolution of χSd .
As convolutions of distributions arise from adding in-
dependent random variables this yields a simple algo-
rithm for computing the Matern kernel:

for each Sii do
Draw t iid samples ξi uniformly from Sd.

Use Sii =
∥∥∥∑t

i=1 ξi

∥∥∥ as scale.

end for

While this may appear costly, it only needs to be car-
ried out once at initialization time. After that we can
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Figure 1. Kernel approximation errors of different methods
with respect to number of basis functions n.

store the coefficients Sii. Also note that this addresses
a rather surprising problem with the Gaussian RBF
kernel — in high dimensional spaces draws from a
Gaussian are strongly concentrated on the surface of a
sphere. That is, we only probe the estimation problem
with a fixed characteristic length. The Matern kernel,
on the other hand, spreads its capacity over a much
larger range of frequencies.

4. Experiments

In the following we assess the performance of Random
Kitchen Sinks and Fastfood. The results show that
Fastfood performs as well as Random Kitchen Sinks in
terms of accuracy. Fastfood, however, is orders of mag-
nitude faster and exhibits a significantly lower memory
footprint. For simplicity, we focus on penalized least
squares regression since in this case we are able to com-
pute exact solutions and are independent of any other
optimization algorithms. We also benchmark Fastfood
on CIFAR-10 (Krizhevsky, 2009) and observe that it
achieves state-of-the-art accuracy. This advocates for
the use of non-linear expansions even when d is large.

4.1. Approximation quality

We begin by investigating how well our features can
approximate the exact kernel computation as n in-
creases. For that purpose, we uniformly sample 4000
vectors from [0, 1]10. We compare the exact kernel val-
ues to Random Kitchen Sinks and Fastfood.

The results are shown in Figure 1. We used the abso-
lute difference between the exact kernel and the ap-
proximation to quantify the error (the relative dif-
ference also exhibits similar behavior and is thus not
shown due to space constraints). The results are pre-
sented as averages, averaging over 4000 samples. As
can be seen, as n increases, both Random Kitchen
Sinks and Fastfood converge quickly to the exact ker-
nel values. Their performance is indistinguishable, as
expected from the construction of the algorithm.

Note, though, that fidelity in approximating k(x, x′)
does not imply generalization performance (unless the
bounds are very tight). To assess this, we carried out
experiments on all regression datasets from the UCI
repository (Frank & Asuncion, 2010) that are not too
tiny, i.e., that contained at least 4, 000 instances.

We investigate estimation accuracy via Gaussian pro-
cess regression using approximated kernel computation
methods and we compare this to exact kernel computa-
tion whenever the latter is feasible. For completeness,
we compare the following methods:

Exact RBF uses the exact RBF kernel. This is possi-
ble on all but the largest datasets where the kernel
matrix does not fit into memory.

Nystrom uses the Nystrom approximation of the ker-
nel matrix (Williams & Seeger, 2001). These
methods have received recent interest due to the
improved approximation guarantees of (Jin et al.,
2011) which indicate that approximation rates

faster than O(n−
1
2 ) are achievable. Hence, the-

oretically, the Nystrom method could have a sig-
nificant accuracy advantage over Random Kitchen
Sinks and Fastfood when using the same number
of basis functions, albeit at exponentially higher
cost (d vs. log d) per function. We set n = 2, 048.

Random Kitchen Sinks uses the the Gaussian ran-
dom projection matrices described by (Rahimi &
Recht, 2007). We use n = 2, 048 basis functions.

Fastfood (“Hadamard features”) uses the random
matrix given by SHGΠHB, again with n = 2, 048
dimensions.

FFT Fastfood (“Fourier features”) uses a variant of
the above construction. Instead of combining two
Hadamard matrices, a permutation and Gaussian
scaling, we use a permutation in conjunction with
a Fourier Transform matrix F : the random ma-
trix given by V = ΠFB. The motivation is the
Subsampled Random Fourier Transform (Tropp,
2011): by picking a random subset of columns
from a (unitary) Fourier matrix, we end up with
vectors that are almost spatially isotropic, albeit
with slightly more dispersed lengths than in Fast-
food. We use this heuristic for comparison pur-
poses.

The results of the comparison are given in Table 2.
As can be seen, there is virtually no difference be-
tween the exact kernel, the Nystrom approximation,
Random Kitchen Sinks and Fastfood. Somewhat sur-
prisingly the Fourier features work very well. This
indicates that the concentration of measure effects im-
pacting Gaussian RBF kernels may actually be coun-
terproductive at their extreme.

In Figure 2, we show regression performances as a
function of number of basis functions n on the CPU
dataset and demonstrates that it is necessary to have
a large n in order to learn highly nonlinear functions.
Interestingly, although Fourier features do not seem



Fastfood — Computing Hilbert Space Expansions in loglinear time

Table 2. Test set RMSE of different kernel computation methods. We can see Fastfood methods perform comparably with
Exact RBF, Nystrom or Random Kitchen Sinks. m and d are the size of the training set the dimension of the input.

Dataset m d Exact Nystrom Random Kitchen Fastfood Fastfood Exact Fastfood
RBF RBF Sinks (RBF) FFT RBF Matern Matern

Insurance Company 5, 822 85 0.231 0.232 0.266 0.266 0.264 0.234 0.235
Wine Quality 4, 080 11 0.819 0.797 0.740 0.721 0.740 0.753 0.720
Parkinson Telemonitor 4, 700 21 0.059 0.058 0.054 0.052 0.054 0.053 0.052
CPU 6, 554 21 7.271 6.758 7.103 4.544 7.366 4.345 4.211
Location of CT slices (axial) 42, 800 384 n.a. 60.683 49.491 58.425 43.858 n.a. 14.868
KEGG Metabolic Network 51, 686 27 n.a. 17.872 17.837 17.826 17.818 n.a. 17.846
Year Prediction MSD 463, 715 90 n.a. 0.113 0.123 0.106 0.115 n.a. 0.116
Forest 522, 910 54 n.a. 0.837 0.840 0.838 0.840 n.a. 0.976

Table 1. Runtime, speed and memory improvements of
Fastfood relative to Random Kitchen Sinks

d n Fastfood RKS Speedup RAM
1, 024 16, 384 0.00058s 0.0139s 24x 256x
4, 096 32, 768 0.00136s 0.1224s 90x 1024x
8, 192 65, 536 0.00268s 0.5360s 200x 2048x

Figure 2. Test RMSE on CPU dataset with respect to the
number of basis functions. As number of basis functions
increases, the quality of regression generally improves.

to approximate the Gaussian RBF kernel, they per-
form well compared to other variants and improve as
n increases. This suggests that learning the kernel by
direct spectral adjustment might be a useful applica-
tion of our proposed method.

4.2. Speed of kernel computations

In the previous experiments, we observe that Fastfood
is on par with exact kernel computation, the Nystrom
method, and Random Kitchen Sinks. The key point,
however, is to establish whether the algorithm offers
computational savings.

For this purpose we compare Random Kitchen Sinks
using Eigen5 and our method using Spiral6. Both are
highly optimized numerical linear algebra libraries in
C++. We are interested in the time it takes to go
from raw features of a vector with dimension d to the

5
http://eigen.tuxfamily.org/index.php?title=Main_Page

6
http://spiral.net

label prediction of that vector. On a small problem
with d = 1, 024 and n = 16, 384, performing prediction
with Random Kitchen Sinks takes 0.07 seconds. Our
method is around 24x faster, taking only 0.003 seconds
to compute the label for one input vector. The speed
gain is even more significant for larger problems, as
is evident in Table 1. This confirms experimentally
the O(n log d) vs. O(nd) runtime and O(n) vs. O(nd)
storage of Fastfood relative to Random Kitchen Sinks.

4.3. Random features for CIFAR-10

To understand the importance of nonlinear feature ex-
pansions for a practical application, we benchmarked
Fastfood, Random Kitchen Sinks on the CIFAR-10
dataset (Krizhevsky, 2009) which has 50,000 train-
ing images and 10,000 test images. Each image has
32x32 pixels and 3 channels (d = 3072). In our ex-
periments, linear SVMs achieve 42.3% accuracy on
the test set. Non-linear expansions improve the clas-
sification accuracy significantly. In particular, Fast-
food FFT (“Fourier features”) achieve 63.1% while
Fastfood (“Hadamard features”) and Random Kitchen
Sinks achieve 62.4% with an expansion of n = 16, 384.
These are also best known classification accuracies
using permutation-invariant representations on this
dataset. In terms of speed, Random Kitchen Sinks
is 5x slower (in total training time) and 20x slower
(in predicting a label given an image) compared to
Fastfood and Fastfood FFT. This demonstrates that
non-linear expansions are needed even when the raw
data is high-dimensional, and that Fastfood is more
practical for such problems.

In particular, in many cases, linear function classes
are used because they provide fast training time, and
especially test time, but not because they offer better
accuracy. The results on CIFAR-10 demonstrate that
Fastfood can overcome this obstacle.

Summary We demonstrated that it is possible to
compute n nonlinear basis functions in O(n log d) time,
a significant speedup over the best competitive algo-
rithms. This means that kernel methods become more
practical for problems that have large datasets and/or
require real-time prediction. In fact, Fastfood can be
used to run on cellphones because not only it is fast,
but it also requires only a small amount of storage.
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A. Proofs

A.1. Low Variance

Proof [Theorem 5 continued]

Since G is diagonal and Gii ∼ N (0, 1) independently
it holds that

Cov[z, z] = Cov[HGu,HGu] = H Cov[Gu,Gu]H>

= HE
[
diag(u2

1, . . . , u
2
d)
]
H>.

Recall that Hij = Hji are elements of the Hadamard
matrix. For ease of notation fix j 6= t and let T = {i ∈
[1..d] : Hji = Hti} be the set of columns where the jth

and the tth row of the Hadamard matrix agree. Then

ρ ‖v‖2 = Cov(zj , zt|u) =

d∑
i=1

HjiHtiu
2
i =

∑
i∈T

u2
i −

∑
i/∈T

u2
i

= 2
∑
i∈T

u2
i −

d∑
i=1

u2
i = 2

∑
i∈T

u2
i − ‖v‖2 .

Now recall that u = Πw and that Π is a random
permutation matrix. Therefore ui = wπ(i) for a ran-
domly chosen permutation π and thus the distribution
of ρ ‖v‖2 and 2

∑
i∈R w

2
i −‖v‖

2
where R is a randomly

chosen subset of size d
2 in {1 . . . d} are the same. Let

us fix (condition on) w. Since 2ER

[∑
i∈R w

2
i

]
= ‖v‖2

we have that

ER

[
ρ2 ‖v‖4

]
= 4ER

[∑
i∈R

w2
i

]2
− ‖v‖4 . (17)

Now let δi = 1 if i ∈ R and 0 otherwise. Note that
Eδ(δi) = 1

2 and if j 6= k then Eδ(δiδk) ≤ 1
4 as δi

are (mildly) negatively correlated. From ‖w‖ = ‖v‖ it
follows that

ER

[[∑
i∈R

w2
i

]2]
= Eδ

[ d∑
i=1

δiw
2
i

]2 (18)

=Eδ

∑
i 6=k

δiδkw
2
iw

2
k

+ Eδ
∑
i

δiw
4
i ≤
‖v‖4

4
+
‖w‖44

2
.

Therefore from equations (17), and (18) it follows that

ER

[
ρ2 ‖v‖4

]
≤ 2‖w‖44. (19)

Let bi be the independent ±1 on the diagonal of B.

Using the fact wi = 1√
d

∑d
t=1Hitbtvt and that bi are

independent with similar calculations to the above it
follows that Eb

[
w4
i

]
≤ 6(

∑
t6=j v

2
t v

2
j + v4

i )/d2. Thus

Eb

[
‖w‖44

]
≤ 6

d
‖v‖42

which shows that 1√
d
HB acts as preconditioner that

densifies the input. Putting it all together we have∑
j 6=t

Eu [Cov(ψj(v), ψt(v)|u)]

≤d2e−‖v‖
2

B(‖v‖)ER[ρ2 ‖v‖4]

≤12de−‖v‖
2

B(‖v‖) ‖v‖4 = 6d ‖v‖4
(
e−‖v‖

2

+ ‖v‖2/3
)

Combining the latter with the already proven first
claim establishes the second claim.

A.2. Concentration

Let us recall the following fundamental fact about the
concentration of Gaussian measure.

Definition 8 A function f : Rd → R is Lipschitz con-
tinuous with Lipschitz constant L if for all x, y ∈ Rd
it holds that |f(x)− f(y)| ≤ L ‖x− y‖2.

Theorem 9 (Inequality (2.9) in (Ledoux, 1996))
Let f : Rd → R be Lipschitz continuous with constant
L and g distributed according to N (0, Id×d). Then

P [|f(g)−Egf(g)| ≥ t] ≤ 2e−t
2/(2L2).

Proof [Theorem 6] As both k and k̂ are shift
invariant, set v = σ(x − x′) and write k(v) =

k(x, x′) and k̂(v) = k̂(x, x′) to simplify the nota-

tion. Set u = Πd−
1
2HBv, and z = HGu and define

f(G,Π, B) =
∑d
j=1 cos(zj)/d. Observe that Lemma 3

implies EG,Π,B [f(G,Π, B)] = k(v). Therefore it’s suf-
ficient to prove that f(G,Π, B) concentrates around
its mean. We’ll accomplish this by showing that f is
Lipschitz continuous as a function of G for most Π and
B. For a ∈ Rd let

h(a) =

d∑
j=1

cos(aj)/d. (20)

Using the fact that cosine is Lipschitz continuous with
constant 1 we observe that for any pair of vectors a, b ∈
Rd it holds that

|h(a)− h(b)| ≤
d∑
j=1

| cos(aj)− cos(bj)|/d

≤ ‖a− b‖1 /d ≤ ‖a− b‖2 /
√
d. (21)

For any vector g ∈ Rd let Diag(g) ∈ Rd×d denote the
diagonal matrix whose diagonal is g. Observe that for
any pair of vectors g, g′ ∈ Rd we have that

‖HDiag(g)u−HDiag(g′)u‖2 ≤ ‖H‖2 ‖Diag(g − g′)u‖2
(22)
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Let G = Diag(g) in the Fastfood construct and recall
the definition of function h, (20). Combining inequali-
ties (21) and (22) for any pair of vectors g, g′ ∈ Rd we
have that

|h(HDiag(g)u))− h(HDiag(g′)u)| ≤ ‖u‖∞ ‖g − g
′‖2 .
(23)

From u = Πd−
1
2HBv and ‖Πw‖∞ = ‖w‖∞ combined

with Lemma 7 it follows that

‖u‖∞ ≤ ‖v‖2

√
log

(
2d

δ

)
2

d
(24)

holds with probability at least 1− δ, where the proba-
bility is over the choice of B.7 Now condition on (24).
From inequality (23) we have that the function g →
h(HDiag(g)u) = f(Diag(g),Π, B) is Lipschitz contin-
uous with Lipschitz constant

L = ‖v‖2

√
log

(
2d

δ

)
2

d
. (25)

Therefore from Theorem 9 and from the independently
chosen Gjj ∼ N (0, 1) it follows that

PG

[
|f(G,Π, B)− k(v)| ≥

√
2 log(2/δ)L

]
≤ δ. (26)

Combining inequalities (25) and (26) with the union
bound concludes the proof.

7 Note that in contrast to Theorem 5, the permutation
matrix Π doesn’t play a role in the current proof of Theo-
rem 6.


