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Abstract

In this appendix, we discuss more details re-
garding the algorithm, its implementation,
test set for 3D-transformed faces, experimen-
tal results for parameter sensitivity. We also
present further visualizations for the learned
neurons.

A. Training and test images

A subset of training images is shown in Figure 1. As
can be seen, the positions, scales, orientations of faces
in the dataset are diverse. A subset of test images for

Figure 1. Thirty randomly-selected training images (shown
before the whitening step).
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identifying the face neuron is shown in Figure 2.

Figure 2. Some example test set images (shown before the
whitening step).

B. Models

Central to our approach in this paper is the use of
locally-connected networks. In these networks, neu-
rons only connect to a local region of the layer below.

In Figure 3, we show the connectivity patterns of the
neural network architecture described in the paper.
The actual images in the experiments are 2D, but for
simplicity, our images in the visualization are in 1D.

C. Model Parallelism

We use model parallelism to distribute the storage of
parameters and gradient computations to different ma-
chines. In Figure 4, we show how the weights are
divided and stored in different “partitions,” or more
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Figure 3. Diagram of the network we used with more de-
tailed connectivity patterns. Color arrows mean that
weights only connect to only one map. Dark arrows mean
that weights connect to all maps. Pooling neurons only
connect to one map whereas simple neurons and LCN neu-
rons connect to all maps.

simply, machines (see also (Krizhevsky, 2009)).

D. Further multicore parallelism

Machines in our cluster have many cores which allow
further parallelism. Hence, we split these cores to per-
form different tasks. In our implementation, the cores
are divided into three groups: reading data, sending
(or writing) data, and performing arithmetic compu-
tations. At every time instance, these groups work in
parallel to load data, compute numerical results and
send to network or write data to disks.

E. Parameter sensitivity

The hyper-parameters of the network are chosen to
fit computational constraints and optimize the train-
ing time of our algorithm. These parameters can be
changed at the expense of longer training time or more
computational resources. For instance, one could in-
crease the size of the receptive fields at an expense of
using more memory, more computation, and more net-
work bandwidth per machine; or one could increase the
number of maps at an expense of using more machines
and memories.

These hyper-parameters also could affect the perfor-
mance of the features. We performed control exper-

Figure 4. Model parallelism with the network architecture
in use. Here, it can be seen that the weights are divided ac-
cording to the locality of the image and stored on different
machines. Concretely, the weights that connect to the left
side of the image are stored in machine 1 (“partition 1”).
The weights that connect to the central part of the image
are stored in machine 2 (“partition 2”). The weights that
connect to the right side of the image are stored in machine
3 (“partition 3”).

iments to understand the effects of the two hyper-
parameters: the size of the receptive fields and the
number of maps. By varying each of these parame-
ters and observing the test set accuracies, we can gain
an understanding of how much they affect the perfor-
mance on the face recognition task. Results, shown
in Figure 5, confirm that the results are only slightly
sensitive to changes in these control parameters.
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Figure 5. Left: effects of receptive field sizes on the test set
accuracy. Right: effects of number of maps on the test set
accuracy.

F. Example out-of-plane rotated face

sequence

In Figure 6, we show an example sequence of 3D
(out-of-plane) rotated faces. Note that the faces
are black and white but treated as a color pic-
ture in the test. More details are available at the



Appendix: Building High-Level Features Using Large Scale Unsupervised Learning

webpage for The Sheffield Face Database dataset –
http://www.sheffield.ac.uk/eee/research/
iel/research/face

Figure 6. A sequence of 3D (out-of-plane) rotated face of
one individual. The dataset consists of 10 sequences.

G. Best linear filters

In the paper, we performed control experiments to
compare our features against “best linear filters.”

This baseline works as follows. The first step is to sam-
ple 100,000 random patches (or filters) from the train-
ing set (each patch has the size of a test set image).
Then for each patch, we compute its cosine distances
between itself and the test set images. The cosine dis-
tances are treated as the feature values. Using these
feature values, we then search among 20 thresholds to
find the best accuracy of a patch in classifying faces
against distractors. Each patch gives one accuracy for
our test set.

The reported accuracy is the best accuracy among
100,000 patches randomly-selected from the training
set.

H. Histograms on the entire test set

Here, we also show the detailed histograms for the neu-
rons on the entire test sets.

The fact that the histograms are distinctive for pos-
itive and negative images suggests that the network
has learned the concept detectors.

Figure 7. Histograms of neuron’s activation values for the
best face neuron on the test set. Red: the histogram for
face images. Blue: the histogram for random distractors.

Figure 8. Histograms for the best human body neuron on
the test set. Red: the histogram for human body images.
Blue: the histogram for random distractors.

I. Most responsive stimuli for cats and

human bodies

In Figure 10, we show the most responsive stimuli for
cat and human body neurons on the test sets. Note
that, the top stimuli for the human body neuron are
black and white images because the test set images are
black and white (Keller et al., 2009).
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Figure 9. Histograms for the best cat neuron on the test
set. Red: the histogram for cat images. Blue: the his-
togram for random distractors.

Figure 10. Top: most responsive stimuli on the test set for
the cat neuron. Right: Most responsive human body stim-
uli on the test set for the human body neuron.


