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Abstract. In this paper, we introduce a first-order probabilistic model
that combines multiple cues to classify human activities from video data
accurately and robustly. Our system works in a realistic office setting
with background clutter, natural illumination, different people, and par-
tial occlusion. The model we present is compact, requires only fifteen sen-
tences of first-order logic grouped as a Dynamic Markov Logic Network
(DMLNSs) to implement the probabilistic model and leverages existing
state-of-the-art work in pose detection and object recognition.

1 Introduction

In recent years, there has been considerable success in bolstering the performance
of object recognition by considering not just the object itself but also the context
in which it occurs. For example, in [18] and [35], the recognition of objects is
boosted by analyzing contextual information within a camera image, such as
the presence and absence of other objects, the relative location of the object in
question, and global features characterizing the scene. That work expresses the
concept of context through probabilistic relationships of multiple recognizers. A
probabilistic model posits the relationship between context and objects.

In this paper, we seek a plausible extension of this work to image sequences.
By tying together information about peoples’ poses, objects seen, and relative
locations, we seek to identify peoples’ activities using probabilistic models per-
taining to these cues. Using all three cues in tandem offers far greater accuracy
than any of the cues on its own.

To achieve these results, we develop a novel framework for expressing the
spatio-temporal relation of cues and activities. Our framework is based on Dy-
namic Markov Logic Networks (DMLNs) [31], a well-established first-order prob-
abilistic representation. We demonstrate in this paper that the DMLN framework
provides a powerful language to express the probabilistic relationship of cues
and activities in the video analysis domain. In fact, we show that useful DMLN
theories establish the notion of context significantly more compactly than the
propositional representations used, for example, in [I8] and [35]. Our approach
introduces new inference techniques for DMLN inference that accommodates the
specific nature of the inference problem in the computer vision domain.

Our experiments apply state-of-the-art techniques for pose detection and ob-
ject recognition. We show empirically that DMLNs effectively leverage context
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and achieve improved recognition rates. These results are well in tune with ear-
lier work on this topic. Hence, we conjecture that the DMLN framework provides
an elegant and effective way to extend that work into the temporal domain in-
volving human activities — a research topic that has found considerable attention
in the computer vision field in past years [25], [16], [13], [7].

2 Overview of DMLNs

In this section, we present the concept of Dynamic Markov Logic Networks
(DMLNs). While a formal treatment is far beyond the scope of this work, we
refer the interested reader to [29] and [31], the definitive works regarding DMLNS.

A DMLN uses the language of First-Order Logic [10] to express a First-Order
Probabilistic Model [23]. Tt explicitly posits the notion of objects and boolean
predicates regarding them. Let us illustrate these notions by way of an example.

First, let p, ¢, and r be objects. These can be many things, depending on the
problem of interest. Examples include an image, a single pixel, a feature being
tracked, a robot, or a database entry. Probabilistic models such as Markov Ran-
dom Fields or Dynamic Bayesian Networks consider only propositions, possibly
about objects, but cannot consider objects explicitly.

Second, let A(x,y,t) and B(z,t) be fluents. Examples of fluents include
whether one tracked object is occluding another at time step ¢ or whether a
specific pixel position in a video stream is part of an edge. The fluents relate to
variables which will be substituted with actual objects at runtime.

Each possible assignment of objects to fluents forms what is known as a ground
fluent. In this example, the ground fluents are A(p,p), A(p,q), A(p,r), A(q,p),
A(q,q), Alg,r), A(r,p), A(r,q), A(r,r), B(p), B(q), and B(r). Each ground
fluent is true or false. Let us consider a concrete example. Let p, ¢, and r be
three people. Let A(z,y,t) mean that z and y are friends at time ¢ and let
B(z,t) mean that z is cheerful at time ¢. In this example, at time 0, let p and
q be friends with one another and r is unknown to the other two. Moreover, let
p be the only cheerful one. Then ground fluents A(p, ¢,0), A(q,p,0), A(p,p,0),
A(q,q,0), A(r,r,0), and B(p,0) are all true and all other fluents at time 0 are
false. We follow the arbitrary convention that one is always friends with oneself.

In addition to objects and fluents, DMLNs also have weighted sentences that
give rise to a probability distribution over models, i.e. truth assignments to all
ground fluents. Such a sentence might be

B(x,t) — B(x, succ(t)) (1)

with weight 2.0. It means that one typically but not always remains cheery in
the future when one has been cheery in the past.
Another sentence might be

B(x,t) N Az, y,t) — B(y,t) (2)

with weight 1.0. It means that cheerful people pass on their cheerfulness to their
friends. This effect is weaker than retaining one’s own cheerfulness.
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While DMLNSs properly give rise to a joint probability distribution over ground
fluents, let it suffice to state for this exposition that models that satisfy more
sentences are more likely than those that do not. Moreover, models that satisfy
higher weight sentences are more likely in a probabilistic sense than those that
satisfy lower weight sentences.

3 Activity Recognition System

3.1 Probabilistic Model

The key contribution of this paper is to express a graphical model for combin-
ing multiple cues — pose, object presence, and movement location — through a
compact DMLN theory. While graphical models have produced excellent results
in computer vision applications, they have been too complicated — difficult to
construct, modify, and communicate. We present our DMLN model in Figure [
as an alternative.

1 | VtVa Activity(a,t) — Activity(a,succ(t)) 8.3
2 VitVaiVaz Activity(ai,t) — =(a1,a2) V = Activity(az,t) 00
3 | Vtda Activity(a,t) )
4 | VitVa Activity(a,t) — Pose(a,t) 0.7
5 | Vt Activity(a,t) A Useful(o,a) — Present(o,t) 0.7
6 Useful(TYPING,KEYBOARD) 00
7 Useful( MOUSING,MOUSE) 00
8 | Useful(EATING,CANDY) 0
9 | Useful(EATING,APPLE) ()
10 | Useful(DRINKING,SODA) 00
11 | Useful(READING,BOOK) 00
12 | Useful(TALKING,PHONE) 0
13 | Useful(WRITING,PEN) 0
14 | Useful( WRITING,PAPER) 00
15 | VitVa Activity(a,t) — Movement(a,t) 0.2

Fig. 1. Probabilistic Model as Dynamic Markov Logic Network (sentence weights ap-
pear in the right column)

3.2 Fluents and Sentences

Sentence 1 of Figure [ refers to the predicates Activity(a,t) and Activity
(a,succ(t)). Activity(a,t) is a binary variable that means that the person is en-
gaged in activity a at time ¢. For example, Activity(W RITING,1244) means
that the observed person is writing in frame 1244 of the video sequence. We will
assume throughout that there is exactly one person in each image. One could
relax this assumption along the lines of [12] if need be.

This sentence states that activities tend to persist over time. In other words,
if you are drinking from a can of soda, you will most likely continue to be
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still drinking from that can in the next frame, tens of milliseconds later. In the
sentence, succ(t) means that successor to ¢, i.e. the next frame. The sentence
literally reads — for all time steps ¢ and for all activities a, if the user is engaged
in activity a at time step t, then the user will be engaged in activity a in the
time step following .

Sentence 2 establishes a mutual exclusion constraint between simultaneous
activities. Simply put, we are providing the machine a generalization of the
notion that a person cannot walk and chew gum at the same time. This sentence
reads — for all time steps ¢ and for all activities a; and for all activities as, if the
user is engaged in activity a; at time ¢, then either a; and ay refer to the same
activity or the user is not engaged in activity as at time ¢. This sentence has the
special property that it has infinite weight, i.e. this is a hard constraint.

Sentence 3 states that the user must be doing something. It is possible to add
a special activity, NOTHING, to indicate times where the user is not engaged
in any activity.

3.3 Incorporating Cues

The output of the pose recognition system described in section M is represented
by asserting the sentence Pose(a,t), which means that the person’s observed
pose appears to be in keeping with being engaged in activity a at time t. The
pose detection posits a sentence weight reflecting its confidence, as do the other
components. Sentence 4 states that a person’s pose will reflect the activity they
are currently engaged in.

The objects a person is using also provide valuables cues as to what they are
doing. In this component, we are content to consider what objects are in view.
If we see both a can of soda and a phone, we cannot definitely say which one is
being used but if we do not see a keyboard, we are less likely to think that the
person is typing.

The object recognition component uses the fluents Present(o,t) (an object of
type o is present at time t) and Useful(a,0) (objects of type o are useful for
activity a). Sentence 5 states that objects useful to an activity will be present
when that activity is engaged in. Sentences 6 through 14 specify which objects
are useful for which activities. Here, mousing refers to using a computer mouse
and talking refers to conversing on a telephone.

Sentence 15 states that the activity undertaken influences the location of the
movement in the camera image. The fluent M ovement(a, t) states which activity
seems likely by analyzing movement alone.

Before we move on, let us ensure that we understand the sentences by un-
derstanding the effect of removing any one sentence in isolation. Removing the
first sentence would eliminate the continuity of our temporal model, forcing the
inference procedure to consider each image in isolation without the benefit of the
entire video sequence. Removing the second and/or third sentence would allow
for the classifier to choose no activity or to choose more than one. Removing
the fourth sentence would prevent the pose detector from providing useful in-
formation and removing the fifth or fourteenth sentence would do the same for
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the object and movement detection, respectively. Removing any of the sentences
from six through fourteen would make the system blind to the corresponding
object type.

3.4 Ease of Expression in DMLNs

This paper is as much about building an activity recognition system using mul-
tiple cues as it is about the efficacy of DMLNs in computer vision. We use mul-
tiple cues and do activity recognition in this manner because it is robust against
background clutter, lighting differences, intra- and inter-personal variance, and
difficulties in pose and object recognition.

Our motivation for leveraging DMLNs is very different. We use the DMLN
because it is possible to posit a temporal probabilistic model that is simple to
express and easy to understand without compromising the sophistication neces-
sary for high performance. Table[lis our entire probabilistic model. We wrote a
set of sentences that we thought represented activities and cues well and revised
it until we were pleased with it. Contrast this with comparable models expressed
with Markov Random Fields (MRFs) and Dynamic Bayesian Networks (DBNs).
Those models are equally effective but they are hard to understand and chal-
lenging to implement.

In practice, DMLNs are inferentially equivalent to MRFs and DBNs. Indeed,
to perform inference on the DMLN, we convert it twice, first to a ground MLN
which is an MRF and then to a DBN. This process is straightforward except for
the challenge that is addressed in section Bl Thus, one can think of DMLNs
much as one would view a high-level computer programming language like C
as opposed to a low-level assembly language. The study and design of systems
in assembly language paved the way for the new languages. While initially the
new language only brought programmer convenience, it eventually allowed for
greater abstraction and better programs.

4 Obtaining the Ground Predicates

In section Bl we explored a theory for understanding how various activities give
rise to cues that are useful in identifying those activities. In this section, we
discuss how we use computer vision algorithms to translate our video stream
into assertions regarding the cue predicates.

4.1 Pose Detection

Comparing Poses. Traditionally, pose detection is the problem of recovering
the position of important body parts from a single image. For example, for a
person playing baseball, a pose detection algorithm may identify the x,y positions
in the image of her feet, hands, and head [I7]. Or, for a person walking down
the street, an algorithm may fit a skeleton, thus identifying the feet, knees, and
hip [34].
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Fig. 2. Examples of difference images

We take an alternate approach to pose detection. The process of inferring
body part positions and then linking configurations to activities is problematic
on two levels. First, traditional pose detection is a difficult problem and even the
best algorithms are subject to both inaccuracy and catastrophic failure. Second,
the simplified 2D representation of pose is a poor indicator of human activity.
Studying the evolution of pose over time is even less effective as the errors in pose
detection create more phantom movements than actual ones. Earlier versions of
our pose detection system suffered from each of the aforementioned difficulties.

We eliminate the intermediate step of recovering body part positions and
instead map changes in pose to activities directly. To identify the change in
pose, we start with difference image generated by subtracting two consecutive
frames and thresholding it:

dgy = abs(il, , — st} (3)

Yy z,Y

Examples of such difference images appear in Figure 2l Note that this differ-
ence image captures the outline of the body part that is moving, even if it does
so imperfectly.

Second, to allow comparison between difference images, we construct a list
of all pairwise point to point distances of the illuminated pixels in the differ-
ence image. This list retains the basic shape of the image while removing exact
position and orientation information.

Third, we form a histogram over the list of distances just constructed. This
is similar to how shape contexts [4] compact distance information except that
angles are considered there but not here.

To compute the similarity of two histograms, we use the same scoring function
as shape contexts:

(hi —h3)?
> T (4)
i=1 hi + h;

where N is the number of bins in the histogram.

Realizing the Pose Cue Predicates. We have established a metric for deter-
mining if two frames from different video streams represent the same or different
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changes in pose. To make this useful, we capture a several minute training video
with different people performing each of the activities we are working to recog-
nize. The new activity being undertaken is marked at activity transitions (e.g.
when a person stops typing and starts drinking) in this video are labeled by
hand. When the machine is later observing novel video, it compares the his-
togram of the incoming frame ¢* with each of these histograms of the frames in
the training video, as in [32]. All histograms are cached to ensure that this is a
fast operation. For each activity, the number of comparisons exceeding a thresh-
old is counted. The activity with the greatest count is selected (let it be a*)
and if the count exceeds a predetermined threshold, then the ground predicate
Pose(a*,t*) is observed to be true.

4.2 Object Detection

Object detection offers a far more out of the box output for activity recognition
than does pose detection. To compare two images, we find all of the SIF'T features
from each of the images. Then we compute the number of features the two images
share in common.

To realize object-related cues, we first crop by hand images of the objects
used form the training video. Second, we label each image with the object inside
that image (e.g. a pen).

When identifying objects in novel frames, the program compares the large
novel frame with each of the cropped training images. For each object category
o* for which the novel frame ¢t* has over a fixed threshold of matches, the predi-
cate Present(o*,t*) is asserted. Note that the matches may come from different
cropped images. For example, if the threshold is fifth SIFT matches and there
are three cropped images of a candy bar with twenty-four, fifteen, and twelve
SIFT matches respectively, then the program believes that a candy bar is present
even though that could not have been ascertained from a single image.

4.3 Movement

We found that for some activities, movement tends to occur in some areas more
than others. This pattern was previously noted in [35]. For example, mouse move-
ment tends to occur in the bottom half of the screen. While this is a weak source
of information on its own, it provides a valuable third stream of information
to the probabilistic model. It can differentiate between drinking and using the
mouse, for example, but not between drinking and eating. On its own, it fares
rather poorly because the relative movement depends on camera placement rel-
ative to the subject and that was not rigidly fixed in our experiments.

We learn a mixture of Gaussians from training data about typical move-
ment locations as expressed in the training data. Each activity is thus rep-
resented by the mean and covariance of observed movement locations of that
activity in the training data. The posterior weights of novel frames are asserted
as Movement(a,t).
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5 Inference

As DMLNSs are inferentially equivalent to DBNs [29], we can use efficient ap-
proximate inference algorithms designed for the latter. We use a variant of the
standard Rao-Blackwellized Particle Filter (RBPF) [9] that runs the particles
both forward and backward, as in [26].

A difficulty arises however. Sentences 2, 3, and 6 through 14 all have infinite
weight and while this does not break inference, it does slow it down considerably.
In our proposed DMLN, nearly all of proposed next states will be inconsistent
and receive weights of 0.

What we have here is a mixed network — a probabilistic model with both
probabilistic and deterministic components. Inference in mixed networks is well
understood in atemporal settings [2], [3], [8], [I5]. In handling DBNs generated
from DMLNs though, we believe that generating a more compact, inferentially
equivalent non-mixed DBN works best. For DMLNSs to have broader applicability
in computer vision past our specific application, we need a general algorithm to
compact mixed DMLNs. We include such an algorithm here.

5.1 Compacting Mixed DMLNs

The process of converting a DMLN into a DBN is slightly tortuous and involves
generating a Markov Random Field (MRF) as an intermediate step. It is at
this stage we will compact the model. Let L be a single time slice of the MRF
with L referring to deterministic potentials and L referring to probabilistic ones.
Moreover, let P refer to all nodes referred to by deterministic potentials and let
P refer to all nodes not referred to by deterministic potentials. Thus, if a node
is referred to in both L and ﬁ, it will be in the set P but not in the set P.

First, we divide the nodes in P into independent subproblems, i.e. into max-
imally disjoint sets such that there exists no potential in P that refers to nodes
in different subproblems. This is done by postulating a graph with MRF nodes
as graph nodes and adding edges if and only if there exists a potential in P that
refers to both nodes. The connected components of this graph are the indepen-
dent subproblems of our MRF.

Second, for each independent subproblem, we use WalkSAT, a fast Constraint
Satisfaction Problem sampling technique [39], to identify all solutions to the
subproblem. This can take up to O(2"V) time where N is the number of nodes
that are linked together by deterministic potentials. This is clearly better than
the non-compacted network, which will require at least that much time at every
single time step whereas compacting requires it just once. In practice, WalkSAT
takes only linear time in the number of solutions, barring pathological DMLNs.

Third, we replace each independent subproblem with a single multinomial
variable, in the same manner as the variable elimination algorithm [24].

While the entire process of converting DMLNs into a form suitable for RBPF
inference does have such intricacies, it is important to note that this pipeline is
independent of the specific DMLN and application. Indeed, toolkits for DMLN
inference are already publicly available [1].
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5.2 Weight Learning

The algorithm in [31] learns weights directly from training data, freeing us from
such considerations as how long people actually drink from a can of soda. It
essentially follows a frequentist strategy, assigning a weight that corresponds to
the observed probability of that sentence in the training data. The sentences
appearing in the right-hand column of Figure [l are from this algorithm. Higher
weights indicate greater certainty with infinite weights indicating deterministic
sentences.

6 Experimental Results

To evaluate our algorithm, we solicited volunteers for what they believed was
a psychology experiment. When each volunteer arrived, they were seated at a
desk in our laboratory and provided with a list of the following activities in a
random order and with repetition. First, they were to write a paragraph with a
pen and notebook. These and all other objects were placed on the desk at which
the subjects were seated. Second, they skimmed several pages of a textbook.
Third, they ate part of a candy bar and drank from a can of soda. Fourth, they
answered a phone call. Fifth, they typed on a laptop and used an external mouse.

The subjects were seated at a wooden desk illuminated by sunlight. A Canon
HV10 consumer grade video camera recorded the scene from atop a fixed tripod
looking down on the scene. This viewpoint is common on many laptop cameras
with built-in webcams as well as several off the shelf webcam mounting kits.
Objects often remain in view when not being used and other objects clutter the
desk where activities take place. The camera was set to focus and adjust light
balance automatically. Audio input was not used.

Training data for the experiments was comprised of the same activities per-
formed in the same manner. Each transition from one activity to another was
marked by hand and this was used to generate activity labels for each frame.
Also, four images of each object were cropped by hand. The training data in-
cludes twenty minutes of video. All frames had to be labeled as one of the seven
activities.

The algorithm received no additional information about the test sequence
except for the raw video stream. The metrics that follow are calculated on a
frame by frame basis. The algorithm was forced to label all frames. The complete
test sequence was eight minutes long.

6.1 Information Gain

Figure[3 presents the information gain of each component, that is, the reduction
in entropy of the confusion matrices as different components are added to the
DMLN. Here, an asterisk denotes that Sentence 1 from Table [Tl was included in
the DMLN. For reference, ground truth represents an information gain of 2.8.
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Components Information Gain
POSE 0.4
PRESENT 1.3
MOVEMENT 0.5
POSE * 1.7
PRESENT * 2.0
MOVEMENT * 0
POSE + PRESENT * 2.5
POSE + MOVEMENT * 1.8
PRESENT + MOVEMENT * 2.3
POSE + PRESENT + MOVEMENT * 2.6
Ground Truth 2.8

Fig. 3. Information Gain from Different Components

6.2 Confusion Matrices

Figure M shows a confusion matrix for pose detection. Confusing drinking and
eating is the most common mistake and for good reason — we lift food to our
mouths without regard to its phase. In mousing and talking, we hold roughly
similar sized objects in our hands, casting a unique signature to the pose detec-
tion system. The difference in location only comes in when movement location
is considered.

Figure[Blshows a confusion matrix for movement location detection. Movement
fares poorly but the confusion matrix holds interesting clues. It works well for
mousing, which is predominantly in the lower right of the image as all of our
subjects were right handed. Activities such as writing, reading, and typing were
found to be predominantly in the bottom half of the screen while drinking and
talking were in the top half.

WR RE EA DR TA TY MO
Writing 5 5 7 2 14 7 10
Reading 7 64 9 0 15 2 1
Eating 5 14 46 7 17 8 3
Drinking 15 12 32 9 13 5 13
Talking 21 8 3 2 40 17 9
Typing 11 2 24 3 27 26 8
Mousing 23 3 9 4 31 17 13

Fig. 4. Confusion Matrix for Pose Detection

6.3 Accuracy

Since many of the computer vision components are computationally expensive,
the processing time is linearly dependent on both the resolution and frame rate.
While lowering the resolution can make object recognition impossible, the frame
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WR RE EA DR TA TY MO
Writing 3 0 0 7 18 0
Reading 0 0 0 26 7 67 O
Eating 0 0 0 33 16 44 7
Drinking 0O 0 0 8 1 18 0
Talking 0 0 0 69 22 9 0
Typing 1 0 0 0 0 9 o0
Mousing 0O 0 0 11 0 24 65

Fig. 5. Confusion Matrix for Movement Location Detection
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Precision—Recall for Object Recognition

Precision
e o o o o o o o
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T T T T T T

°

0 0.1 02 03 0.4 05 06 07 08 0.9 1
Recall

Fig. 8. Precision-Recall for Object Recognition

Fig. 9. An example where the pose detector correctly classifies the image but the object
recognizer finds neither the pen nor the paper (left) and an example where the object
detector finds the book but the pose detector misclassifies the activity (right)

rate provides a more balanced trade-off between computation time and perfor-
mance. The effects of this balance is explored in Figure

This figure also shows an alternate view of the value of each component after
being processed by the DMLN as well as the benefit of bringing all the cues
together. By itself, pose recognition could only classify 55% of the frames cor-
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rectly; object recognition could only classify 65% of the frames correctly; and
movement location could classify only 14% of the frames correctly. In tandem
however, they are able to classify 95% of the frames correctly. This is the benefit
of using multiple cues.

Figures [l and ] show the precision-recall graphs for pose detection and object
recognition, respectively. These graphs highlight how far the field has progressed
and the potency of [32] and [38]. They also show the benefit of using a DMLN
as the latter incorporates information in proportion to the pose detection and
object recognition algorithms’ confidences.

Figure [ show examples of where the pose detector works but the object
recognizer fails and vice versa. This speaks to the need for multiple cues as no
single cue will suffice in all situations.

7 Related Work

Pose detection seeks to identify the positions of a person’s body parts from im-
ages without the use of motion capture devices or other artificial markers. It is a
difficult problem in general because of differences in people’s appearances, self-
occlusion, self-shadows, and non-Lambertian clothing. Despite these challenges,
several promising approaches have emerged [27], [22], [33], [28], [34], [32]. Three
basic approaches typify the field. The first (e.g. [28]) takes a bottom-up approach,
first identifying body parts and building them up into complete poses. The sec-
ond (e.g. [34]) takes a top-down approach, performing joint optimization on the
entire image at once. The third, introduced by [32], opts for a memory-based
approach, recognizing pose by comparing images to existing training examples.
Object recognition and localization are equally difficult problems but we see
substantial progress here as well. The challenges here include occlusion, illu-
mination inconsistency, differences in viewpoint, intra-class variance, and clut-
ter. Most techniques focus on either features [37], [38], [19], [30] or shapes [6],
[21]. The advent of the SIFT descriptor [I4] marked a great step forward for
same-object recognition and most feature based approaches use SIFT or simi-
lar descriptors in a bag of words (e.g. [38]) or constellation (e.g. [11]) setting.
Shape based approaches work well for different objects of the same category.
The geometric blur feature descriptor [5] has proven especially effective here.
The use of multiple cues for object detection has primarily been explored by
Torralba and colleagues in [20], [I8], [35], [36]. They explore different proba-
bilistic models in these works but the central theme throughout is to leverage
hypothesized location information to place a prior over possible objects. They
do this both to increase classification accuracy as well as improve running time.
[16] follows a similar approach but focuses on integrating speech and pose.
Activity recognition [25], [16], [13], [7] has seen growing interest. [25] is similar
to this work in their notion of activities but focuses on more complicated tasks
(e.g. infant care) and uses RFID-tagged objects instead of cameras. [7] offers an
elegant algorithm for detecting irregularities without requiring any labeling. [13]
is also similar to this work in their notion of activities but focuses on substantial
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movement (e.g. going to the supermarket) and uses GPS data. None of these
approaches however combine multiple cues, relying instead on a single source of
information.

8 Future Work

Our results are promising and our framework makes it straightforward to extend
our system with additional capabilities. This includes additional cues such as ob-
ject location, perceived sound, and scene classification. We also want to evaluate
our system on a non-stationary camera and in a wider variety of environments.
Lastly, we want to explore integrating our system with a mobile robot.

9 Conclusion

In this paper, we introduced a first-order probabilistic model that combines mul-
tiple cues to classify human activities from video data accurately and robustly.
The model we presented is compact, requiring only fifteen sentences of first-order
logic grouped as a Dynamic Markov Logic Network (DMLNSs) to implement the
probabilistic model and leveraging existing state-of-the-art work in pose detec-
tion and object recognition.

Our results show that the algorithm performs well in a realistic office set-
ting with background clutter, natural illumination, different people, and partial
occlusion. It is robust against intra- and inter-person variance. We have shown
promising results on classification accuracy, information gain, precision-recall,
and confusion matrices.
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